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Abstract

We present an algorithm RealRootlsolate for isolating the real roots of a system
of multivariate polynomials given by a zerodimensional squarefree regular chain. The
output of the algorithm is guaranteed in the sense that all real roots are obtained and
are described by boxes of arbitrary precision. Real roots are encoded with a hybrid
representation, combining a symbolic object, namely a regular chain, and a numeri-
cal approximation given by intervals. Our isolation algorithm is a generalization, for
regular chains, of the algorithm proposed by Collins and Akritas. We have imple-
mented RealRootlsolate as a command of the module SemiAlgebraicSetTools of the
RegularChains library in MAPLE. Benchmarks are reported.

1 Introduction

Finding real roots for univariate polynomials has been widely studied. Some methods
guarantee the number of real roots and isolate each real root in an arbitrary small interval.
The algorithm presented in this paper is a generalization to regular chains of the algorithm
given by Collins and Akritas [8], whose termination proof is based on a theorem due to
Vincent [32] and [24, Theorem of 2 circles].

There exist many different approaches for isolating real roots of univariate polynomials
by means of Descartes rules of signs [13]. Uspensky [31] rediscovered independently* an
inefficient version of Vincent’s work [1]. More recent algorithms are closer to the original
work of Vincent and based on continuous fractions [2, 3]. The approach of [29] is very
efficient in memory since it avoids the storage of one polynomial at each node of the tree
of the recursive calls. Observe that the application of this idea to our context should be
possible. It is left to future work.

The methods mentioned above are all for univariate polynomials with integral or ra-
tional coefficients. In [14], the authors apply Descartes Algorithm for polynomials with
bit-stream coefficients. In [9, 16], the authors present algorithms for isolating the real roots
of univariate polynomials with real algebraic number coefficients.

There exist different approaches for isolating real roots of polynomial systems with
finitely many complex solutions. Various constructions are employed to generalize to mul-
tivariate systems the techniques known for univariate equations: rational univariate repre-
sentation [27], polyhedron algebra [23], and triangular decompositions [7, 20, 25, 35].

In this paper, we generalize the Vincent-Collins-Akritas Algorithm to zerodimensional
squarefree regular chains; therefore our work falls in the same category as this latter group

*Recent investigations of A. Akritas seem to prove that Uspensky only had an incomplete knowledge of
Vincent’s paper, from [30, pages 363-368].



of papers. Our idea is to build inductively (one variable after another) “boxes” in which
one and only one real solution lies. This basically amounts to applying the Vincent-Collins-
Akritas Algorithm to polynomials with real algebraic coefficients defined by a regular chain.
Our main algorithm RealRootlsolate takes a zerodimensional squarefree regular chain 7' as
an input and returns a list of disjoint boxes (Cartesian products of intervals) such that
each box contains exactly one real root of T (as a byproduct, RealRootlsolate counts the
number of real roots). We have implemented our algorithm in MAPLE in the module
SemiAlgebraicSetTools of the RegularChains library.

Although rediscovered independently, the techniques presented here share some ideas
with those of [25, 26]. However, our algorithm focuses on finding isolation boxes for real
solutions of polynomial systems whereas Rioboo’s primary goal is to implement the real
closure of an ordered field. Moreover, Rioboo relies on Sturm sequences and subresultants
for univariate polynomial real root isolation.

The other real root isolation algorithms based on triangular decompositions, namely
those reported in [7, 20, 35], rely on the so-called “sleeve polynomials”, see Section 2.5.

We do not report on a comparative implementation with the methods in [7, 9, 20, 25, 35].
In order to ensure a fair comparison (similar to what was done in [4] for four triangular
decomposition methods) one would need to bring these six real root isolation methods
(including ours) in a common implementation framework. This would require to overcome
several substantial difficulties. For instance, the method in [25] is available in AXIOM and
Aldor only, and relies heavily on the features of those languages. In addition, the possible
generalization of the work in [9] from simple algebraic extensions to multiple algebraic
extensions would also require adjustment for those multiple extensions to be presented by
regular chains that do not necessarily generate a maximal ideal. For all these reasons, we
leave this comparative implementation for future work.

As mentioned, the algorithm presented here has been implemented in MAPLE inter-
preted code. However, it does not rely yet on fast polynomial arithmetic nor modular
methods for regular chain computations. Following [18], these techniques should speed-up
our implementation dramatically.

We compare our code with another real root isolation tool available in MAPLE: the
RootFinding[lsolate] command based on the rational univariate representation [27]. With no
surprise, the highly optimized supporting C code allows RootFinding[lsolate] to outperform
our modest MAPLE implementation on systems that are in Shape Lemma position [5].
However, for different families of examples, corresponding to non-equiprojectablel varieties
the situation is reversed which demonstrates the great interest of our approach, even in this
unfair comparative implementation framework.

Another contribution of our work is that it equips MAPLE with a tool for manipulating
real numbers exactly. For instance, our code provides a data-type (called a boz) for encoding
a point with n coordinates that are real algebraic numbers, together with a function for
deciding whether this point cancels a given n-variate polynomial.

Our encoding of such points uses a hybrid representation, combining a symbolic object,
namely a regular chain, and a numerical approximation given by intervals. We investigate
the impact of different strategies on this hybrid arithmetic. In particular, we identify a
family of examples where the use of normalized regular chains instead of arbitrary (but still
zero-dimensional) regular chains can speed-up the root isolation even though normalization
tends to substantially increase coefficient sizes, as established in [11].

TThe notions of an equiprojectable variety and equiprojectable decomposition are discussed in [10].



2 Real root isolation of a zerodimensional regular chain

After recalling the Vincent-Collins-Akritas algorithm in Section 2.1 and introducing defi-
nitions in Section 2.2 and Section 2.3, the algorithm RealRootlsolate and its subalgorithms
are presented in Section 2.4. In Section 2.5 we compare our method with other existing
approaches.

2.1 The Vincent-Collins-Akritas algorithm

The Vincent-Collins-Akritas algorithm isolates the real roots of a squarefree polynomial
(with rational coefficients) with an arbitrary precision. A basic version (Algorithm 1) is
recalled here, as a first step to its generalization in Section 2.4.

Definition 1 Let V be a finite set of t real numbers. An interval decomposition of V is

a list Iy, ..., It of intervals such that each interval I; is an open rational interval ]a,b[ or
a rational singleton {a}, each interval I; contains one element of V and I; N I; = () when
1% 7.

Algorithm 1 RootlsolateVCA(p)

Input: p squarefree polynomial of Q[x] with ¢ real roots
Output: an interval decomposition of the real roots of p
1: H < a strict bound on the roots of p
2: return RootlsolateAuxVCA(p,| — H, H|)

In Algorithm 1, there are different ways to compute a strict bound H (in the sense that
any root « of p satisfies |a| < H). For example, if p = Z?:O a;x', take the Cauchy bound
H= ﬁ Z?:o |a;|. Sharper bounds are given in [2].

Algorithm 2 RootlsolateAuxVCA(p, ]a, b))

Input: p squarefree polynomial in Q[z] and a < b rational
Output: an interval decomposition of the real roots of p which lie in ]a, b[
1: nsv < BoundNumberRootsVCA(p, Ja, b[)
2: if nsv =0 then
3:  return
4: else if nsv =1 then
5. return |a,b|
6: else
7. m+— (a+b)/2 res—1{
8
9

if p(m) =0 then res — {{m}} end if
{Next line ensures the roots are sorted increasingly}
10:  return RootlsolateAuxVCA(p,]a, m[) U res U
RootlsolateAuxVCA(p, m, b[)
11: end if

The main arguments for the correctness of Algorithm 1 are the following. Algorithm 3
computes a polynomial p whose positive real roots are in bijection with the real roots of p
which lie in ]a, b[. The application of Descartes’ rule of signs on p thus provides a bound on



Algorithm 3 BoundNumberRootsVCA(p, a, b))

Input: p € Qz] and a < b rational
Output: a bound on the number of roots of p in the interval |a, b|

1:pe (z+1)p (w) where d is the degree of p in x

xz+1
_ d i
2: denote p =), ,a;x
3: al,...,a) — the sequence obtained from ag,...,ap by removing zero coefficients
4: return the number of sign variations in the sequence al, ..., a|

the number of real roots of p which lie in ]a,b[. This bound is exact when equal to 0 or 1
[24, Theorem 1.2]. Since p is squarefree, the bound returned by Algorithm 3 will eventually
become 0 or 1, by [24, Theorem 2.5] so that the whole method terminates.

2.2 Regular chains

In this paper one only considers zerodimensional squarefree regular chains, abbreviated by
zs-rc. Roughly speaking, a zerodimensional regular chain is a triangular set? of polynomials,
with as many equations as variables, and which has a finite number of complex roots (and
consequently a finite number of real roots).

Zerodimensional regular chains are easier to understand and define than general regular
chains. Let z; < --- < zs be s variables. Let p € Q[z1,...,2,] be a non-constant poly-
nomial. We denote by mvar(p) the main variable (or largest variable) of p, by init(p) the
initial (or leading coefficient w.r.t. mvar(p)) of p, by mdeg(p) the degree of p in its main
variable and by sep(p) the separant of p, that is dp/dmvar(p). If T is a set of polynomials in
Q[z1,...,xs), (T') denotes the ideal generated by T and V (T') denotes the set of all complex
solutions of the system T = 0. For a given z;, T<,, (resp. T%;,) denotes the elements of T
whose main variable is less (resp. strictly greater) than ;.

Definition 2 Let T = {p1,...,ps} where each p; lies in Q[xy1,...,x5]. The set T is a
zerodimensional squarefree regular chain (or zs-rc) of Q[zy, ...,z if

o mvar(p;) =x; for1 <i<s
e init(p;) does not vanish on V({p1,...,pi—1}) for any 2 <i<s
e sep(p;) does not vanish on V({p1,...,pi}) for any 1 <i<s

Thanks to the first two conditions, it is easy to show that the system T = 0 has a
finite number of complex solutions, which is equal to the product of the main degrees of the
elements of T denoted DEG(T'). Moreover those solutions can be computed “incrementally”
using the following solving scheme. The number of complex roots of the univariate poly-
nomial p; is equal to its degree. For each root z{ of py, consider the polynomial py (29, z2)
which is univariate in x9. This polynomial has the same degree in x5 as py since the initial
of po does not vanish on the solutions of p; = 0. Thus, the number of complex roots of
pa (29, 22) is equal to the degree of po. Proceeding on the remaining variables, one concludes
that the number of complex solutions of T'= 0 is equal to DEG(T).

ftriangular set in the sense that each polynomial introduces exactly one more variable



The third condition, which forbids multiple roots, is the natural generalization of square-
free polynomials to regular chains. As for the algorithm RootlsolateVCA, this condition is
only required to make the isolation algorithms terminate.

In practice, the zs-rc¢ can be computed using the Triangularize algorithm [22] available
in the RegularChains library shipped with MAPLE.

Moreover, the regular chains are not built by checking the conditions of Definition 2 but
by using regularity tests of polynomials modulo ideals. A polynomial p is said to be regular
modulo an ideal [ if it is neither zero, nor a zero-divisor modulo I. If T is a regular chain,
p is said to be regular modulo the regular chain T if p is regular modulo (T"). Thus, the
following definition is equivalent to Definition 2.

Definition 3 Let T = {p1,...,ps} where each p; lies in Qxy1,...,x5]. The set T is a
zerodimensional squarefree regular chain (or zs-rc) of Qlz1,...,zs] if

o mvar(p;) =x; forany 1 <i<s
e init(p;) is reqular modulo the ideal (p1,...,pi—1) for any 2 <i<s
o sep(p;) is regular modulo the ideal (p1,...,p;) for any 1 <i<s

The expert reader has probably noticed that saturated ideals are not mentioned. Indeed,
this precision in not necessary in dimension zero. The next lemma makes the link between
the regularity property of a polynomial ¢ modulo a zs-rc and the fact that ¢ does not vanish
on the solutions of a zs-rc. It is implicitly used to check whether or not a polynomial
vanishes on a root of a regular chain in the CheckZeroDivisor algorithm.

Lemma 1 Let T be a zs-rc of Q[z1,...,xs] and ¢ a polynomial of Q[z1,...,xs]. Then q is
reqular modulo T iff ¢ does not vanish on any complex solution of T'.

2.3 Boxes

This section defines the boxes used for isolating solutions of zs-rc, as well as extra definitions
needed to specify the algorithms of Section 2.4.

Definition 4 An s-box (or box) B is a Cartesian product B = I X - - - X I where each I; is
either a rational open interval |a,b[ (a and b are rational) or a singleton {a} with a rational.
The width of B, denoted by |B|, is defined as the mazimum of the |I;| where |I;| = 0 if it is
a singleton and b — a if I; =|a, b[.

Algorithm 4 EvalBox(p, B)

Input: p € Qzy,...,x,] and B is a s-box
Output: a rational interval I such that p(v) € I for any v € B

Different variants for EvalBox(p, B) exist. A simple version of this algorithm consists in
using the three basic operations (x,—,+) defined in interval arithmetics after “expanding”
p into a sum of monomials.

Any variant for EvalBox(p, B) satisfying the following property can be used: the box
EvalBox(p, B) should tend to the singleton {p(zg)} when the width of B tend to zero (by
keeping the condition xg € B). This simply ensures that the interval EvalBox(p, B) should
shrink as the width of the box B decreases.



Definition 5 Let B = I} x --- X I; be an s-box and T = {p1,...,ps} be a zs-rc of
Qlz1,...,zs]. We say (B,T) satisfies the Dichotomy Condition (or DC) if

e one and only one real root of T lies in B
o if Iy =]a,b[ then p1(x1 = a) and p1(x1 = b) are nonzero and have opposite signs

o for each 2 < k < s if I, =]a,b| then the two intervals EvalBox(py(xr = a), B) and
EvalBox(py.(zx = b), B) do not meet 0 and have opposite signs.?

This last condition is the natural generalization of the condition p(a) and p(b) are
nonzero and have opposite sign, and p vanishes only once on the interval ]a,b[ in the
univariate case. Condition DC allows to refine a box very much like one refines the interval
la, b[ by dichotomy.

Please note that condition DC does not require anything when an I is a singleton. In
fact, if I; = a is a singleton, then one necessarily has p; (a) = 0 since one real root of T lies
in B. Equivalently, if I, = a is a singleton for some k, then p(z; = a) vanishes on the real
root of T lying in B.

Definition 6 Let V' be a finite set of t points of R®. A list By, ..., B; of s-bozes is called a
box-decomposition of V' if each point of V lies in exactly one B; and if B; N Bj = () when
1 #£ j. If T is a zs-re, we call box-decomposition of T a box-decomposition of the real roots
of T =0.

Definition 7 A task M = TASK(p, |a,b[, B,T) is defined as: T is a zs-rc of Q[z1,...,xs],
p is a polynomial in Qlxy,...,xs11], T U {p} is a zs-rc, B is an s-box, (B,T) satisfies
DC, and a < b are rational numbers. The solution of M denoted by Vi;(M) is defined as
V(T U{p}) N (Bx]a,b]) (i.e. the real solutions of T U {p} which prolong the real root in B
and whose component xs11 lies in |a,b[).

2.4 Algorithms

The main algorithm RealRootlsolate, which isolates the real roots of a zerodimensional
squarefree regular chain, is presented here. Only elements of proofs are given but focus has
been made on specifications. In this section, one assumes n > 1.

The algorithms presented here use the mechanism of exceptions which is available in
a lot of programming languages (Ada, C++, Common Lisp, Java and Maple). We find
it really appropriate in our case for the following reason. Doing computations using the
D5 principle [12] can be seen as doing computations as if one is computing over a field.
When a zero divisor is hit (leading to a splitting), one raises an exception exhibiting the
splitting. This exception can then be caught to restart computations. This shortens and
makes clearer¥ the algorithms presented here, although the reader needs to be familiar with
exceptions. Algorithm 5 is the only one which directly throws exceptions.

Algorithm 5 checks whether p is regular modulo T' or not. If p is regular modulo T,
the algorithm returns normally, otherwise an exception is raised. Algorithm 5 is called
whenever one wants to know if a polynomial vanishes on a real root z° of T isolated by a
box B. Indeed, if p is regular modulo 7', thanks to Lemma 1, p does not vanish on z°. This

8the sign of an interval not meeting zero is just the sign of any element of it
Ywithout using exceptions, splitting would have to be handled basically each time a function returns a
value



Algorithm 5 CheckZeroDivisor(p, T')

Input: T azs-rc Q[zy,...,25] and p € Q[aq, ...,z
Output: one of the two cases happens:

e p is regular modulo T and it terminates normally

e p is not regular modulo 7" and an exception is thrown exhibiting ¢ zs-rc Ty, ..., T}
such that

C2 Y.!_, DEG(T;) = DEG(T)

: Ty,...,T; < Regularize(p, T)

if p belongs to at least one (7;) then
throw exception(71,...,T})

end if

L

allows to refine the box B until EvalBox(p, B) does not contain 0, which gives us the sign
of p(z9).

The algorithm Regularize is not recalled here (see [22] for details) but its specification
is: if T is a zs-rc, Regularize(p, T') returns a list of zs-rc T1,...,T; such that for each Tj,
p either belongs to (T;) or is regular modulo T;. Moreover Ti,...,T; is (what we call) a
splitting of T', which in dimension 0 satisfies the two conditions C1 and C2 of the output
of Algorithm 5. Due to condition C2, splittings cannot occur indefinitely.

Algorithm 6 RefineBox(B,T')
Input: T is a zs-rc of Q[zy,.. .,
Output: an s-box B such that |B

B, T) satisfies DC and |B| > 0

] (
| <|B|/2, B C B and (B,T) satisfies the DC

Algorithm 6 is able to refine a box containing a real root by dividing its width by 2. It is
simply the generalization of the dichotomy process for splitting in two an isolating interval
of a real root of a function depending on one variable. The algorithm is not detailed here
for brevity. The main idea is to divide by two each interval I; of B = I; x --- x Iy which is
larger than |B|/2 while keeping the DC condition.

Algorithm 7 is a generalization of Algorithm 1 for a zs-rc. Line 1 isolates the real roots
of the univariate polynomial T;,. The variable toDo is a set of (T%,, (B,T<s,)) such that
each (B,T<,,) satisfies DC. It means that (B,T<,,) represents one (and only one) real
root of T<,,. The set T, simply is the set of polynomials which have not be solved yet.
Algorithm 7 calls Algorithm 8 (which allows to solve one new variable) until all variables
are solved. Note that Algorithm 7 could be followed by a refinement of each returned box
so that the width of each box is smaller than a given precision.

Also remark that any raised exception will hit Algorithm 7 since none of the algorithms
presented here catches any exception. It is however very easy to adjust Algorithm 7 so that
it would catch exceptions and recall itself on each regular chain returned by the splitting.
The recursion would eventually stop because of condition C2 of Algorithm 5 (i.e. splittings
cannot occur indefinitely).

Algorithm 8 finds the real roots of p (seen as univariate in z,41) that “prolong” the



Algorithm 7 RealRootlsolate(T")
Input: T is a zs-rc
Output: a box-decomposition By,..., By of T

1. I,...,I; — RootlsolateVCA(Ty, )

2: toDo — {(Tsa,, (i, T<ay ) hr<i<t

3: res «— ()

4: while toDo # () do

5. pick and remove a (T%,,, (B, T<y,)) from toDo
6:  Bi,...,Bj < SolveNewVar(T, . ,B,T<;,)

7 if Tij41 = Tp then

8: res «—resU{Bj{,..., B}

9: else

10: toDo «— toDo U {(T<Ii+1>(B;7T2$i+1))}1§jgt'
11:  end if

12: end while

13: return res

Algorithm 8 SolveNewVar(p, B, T)

Input: T is a zs-rc of Q[z1,...,zs], p € Q[x1,...,2541] and T U {p} is a regular chain
and (B,T) satisfies DC
Output: a box-decomposition of the roots (29, ...,2%, ;) of TU{p} such that (z9,...,29)
is the root of T" which lies in B
refine B into a box B’ such that 0 ¢ EvalBox(i,, B’)
compute a bound H on the roots of p(z9,..., 2% x411)
toDo — {TAsk(p,| — H,H[,B",T)}
res «— )
while toDo # () do
pick and remove a task M from toDo
for all e in SolveTask(M) do
if e is a box then res — resU {e}
else toDo «— toDo U {e}
end if
end for
: end while
: return res

= =




real root which lies in B. Line 1 always terminates. Indeed, 7, is regular modulo T', so
it does not vanish on any root of T. Thus, ultimately, B’ will be small enough so that
0 ¢ EvalBox(i,,T). Refining the box is needed to compute the bound H.

The bound H at line 2 can be computed in the following way. Denote p = Z?:o a;xt 11
and A; = EvalBox(a;, B’). Then take H = mezo(max|Ai\) where min |A;| (resp.
max |4;|) denotes the minimum (resp. maximum) of the modulus of the bounds of the
interval A;. The rest of the algorithm is based on Algorithm 9 which transforms tasks into
new tasks and boxes.

Algorithm 9 SolveTask(M)

Input: a task M = TASK(p,|a,b], B,T) where T is a zs-rc of Q[x1,...,x4]
Output: one of the following cases:

e () which means V;(M) =0

e a box B’ such that (B’,T U {p}) satisfies DC and B’ is a box-decomposition of
Vi(M), which means V;(M) is composed of only one point

two tasks M7 and My such that V;(M;) and V;(Mz) forms a partition of V(M)

two tasks M and My plus a box B’ such that (B’,TU{p}) satisfies DC and the
three sets V; (M), V;(Mz) and {2°} form a partition of V;(M), where 2° denotes
the only real root of T'U {p} which lies in B’

nsv, B’ «+ BoundNumberRoots(M)
if nsv =0 then
return ()
else if nsv =1 then
refine B’ until (B’ x]a,b[,T U {p}) satisfies DC
return {B’x]a,b[}
else
m < (a+b)/2 res—0 p —p(xsi1=m)
if p’ € (T') then res «— {B’ x {m}}
else CheckZeroDivisor(p', T)
end if
return res U {TASK(p, |a, m[, B',T), TASK(p, m,b[, B",T)}
: end if

e e
W e

Algorithm 9 is a generalization of Algorithm 2. The cases nsv = 0 or 1 are straightfor-
ward. When nsv > 1, one needs to split the interval |a,b] in two, yielding the two tasks
returned on line 12. Lines 8-11 corresponds to the lines 7-8 of Algorithm 2. Indeed, checking
if p(m) is zero is transformed into checking if p’ lies in (T") or is not a zero divisor modulo
T.

Algorithm 10 is a generalization of Algorithm 3. One discards the coefficients of p’ which
lie in (T") because they vanish on the real root v which is in B. One also ensures that the
other coefficients (the af) are not zero divisors, so they cannot vanish on v. Thus the loop
at lines 6-8 always terminates. Moreover, this guarantees that the number of sign variations
is correct. Please note that the sequence al, ..., a( is never empty. Indeed if all coefficients
of p were in (T'), then all coefficients of p would also lie in (T") (impossible since i, is regular



Algorithm 10 BoundNumberRoots(M)

Input: a task M = TASK(p, ]a,b], B,T) where T is a zs-rc of Q[x1, ...,z
Output: (nsv, B’) such that :

e B’ C B and (B',T) satisfies DC

e nsv is a bound on the cardinal of V;(M). The bound is exact if nsv =0 or 1.

—

P (Top1 +1)%p ($s+1 = %ﬂ)) with d = mdeg(p)

denote p = Y0 aat
a.,...,aq < the sequence obtained from ag, . .., ag by removing the a; belonging to (T')
for all ¢ do CheckZeroDivisor(a,T) end for
B — B
while there is an a} such that 0 € EvalBox(a}, B’) do

B’ = RefineBox(B’,T)
end while
return the number of sign variations of the sequence

EvalBox(a’, B'),EvalBox(a.,_, B’), ..., EvalBox(ay, B')

modulo 7).

2.5 Comparison with other methods

In the introduction we provided a comparison of our work with others. More technical
details are reported below.

[25, 26] give algorithmic methods (available in AXIOM) to manipulate real algebraic
numbers. These developments were designed for improving Cylindrical Algebraic Decom-
position (CAD) methods in AXIOM. Although [25] contains all the tools to solve our
problem, this paper focuses on the problem of manipulating real algebraic numbers. It
does not address directly the problem of isolating the real roots of a given zerodimensional
regular chain. [26] provides tools to perform univariate polynomial real root isolation by
using quasi Sylvester sequence which according to [26] can be faster than the techniques
based on the Descartes rules.

[9, 16] present algorithms for isolating real roots of univariate polynomials with algebraic
coefficients. Their algorithms require the ideal to be prime, and this condition is ensured
by performing univariate factorization [21] into irreducible factors for polynomials with
algebraic coefficients. Our method does not require such factorizations and only requires
the ideal to be squarefree. Thus, our method replaces a decomposition into prime ideals by
regularity tests which are often less costly.

[27] is based on Grobner basis computations and rational univariate representation.
Thus, [27] transforms the initial problem into the problem of isolating the real roots of a
univariate polynomial with rational number coefficients

[20] starts from a zerodimensional regular chain (although [20] uses the terminology of
characteristic sets) and proceeds variable by variable. Their technique is different from ours.
After isolating a real root say ! for p;(z1) = 0, they build two univariate polynomials p,(z2)

(the so-called upper bound polynomial) and p,(x2) (the so-called lower bound polynomial)

whose real roots will interleave nicely (see [20, Definition 2]) when the precision on 9 is



sufficiently low, yielding isolation intervals for the variable xs.

[35] uses a similar techniques as [20]. The main difference is that the authors use
explicitly interval arithmetic and contrarily to [20] where the algorithm may have to restart
from the beginning with a smaller precision (called ac) in some special cases, [35] uses a
refinement process (algorithm NSHR) until the real roots of the upper and lower bound
polynomial interleave sufficiently.

Such techniques are also used in [7], where the authors consider general zerodimensional
triangular systems (which may not be a regular chain) and treat multiple zeros directly.

Quoting the abstract of [23], the Authors use a powerful reduction strategy based on
univariate root finder using Bernstein basis representation and Descartes’ rule. Basically,
they reduce the problem to solving univariate polynomials by using the Bernstein basis
representation and optimizations based on convex hulls.

3 Implementation

3.1 The SemiAlgebraicSetTools package

The algorithm RealRootlsolate has been coded using exceptions in MAPLE in the module
SemiAlgebraicSetTools of the RegularChains library [17]. We present some implemen-
tation issues and optimizations integrated in our code.

Precision. The user can specify a positive precision so all isolation boxes have a width
smaller than the given precision. If an infinite precision is provided, then the algorithm
only isolates the real roots by refining the boxes the least possible. We take the precision
into account as soon as possible in the algorithm, meaning that each time an isolation box
is extending with a new variable, one refines the box.

Constraints. The user can restrict the solutions by imposing that some variables lie
in a prescribed interval. If the intervals are restrictive (i.e. smaller than the intervals
computed using bounds), this helps avoiding useless computations.

The CheckZeroDivisor algorithm is not directly called in our code. Indeed, regular-
ity test can be very expensive and should be avoided as much as possible. When a call
CheckZeroDivisor(p, T') returns, one knows that a box B isolating a real root of T' can al-
ways be refined until the interval EvalBox(p, B) does not meet zero. This is in fact the only
reason why we call CheckZeroDivisor. In order to avoid a regularity test, we first try to
refine B a few times to see if EvalBox(p, B) still meet zero. If it does not, we do not need
to check the regularity.

Refining boxes. In the MAPLE implementation, Algorithm 6 receives an extra param-
eter xx. In that case, the box is only refined for the variables smaller than zj (i.e. the vari-
ables z; with ¢ < k). This is useful for example at line 7 of Algorithm BoundNumberRoots.
Indeed, if mvar(a}) = xj holds, then it is not necessary to refine the complete box B’ to
ensure that EvalBox(a}, B’) does not meet 0.

Change of variables. By slightly modifying algorithms 8 and 9, we call algorithm 10
with a = 0 and b = 1. This allows to replace the costly operation

aTg41 + b>

1)¢ =
(xs41+1) p(zs+1 P

by substitutions of the form p(zs11 = Zs4+1/2), p(Ts41 = 1/Ts41) and p(Ts41 = Ts41 + 1)
which can be written very efficiently, the last one being based on fast Taylor shift [33].



Refining other branches. Due to the triangular structure of the root, many different
roots share a common part (meaning the values for the smaller variables are equal). When
one refines a root, we also refine other roots which share a common part to avoid unnecessary
computations.

Further refining. After being computed, an isolation box isolating a real root v can
be refined further using the MAPLE command RefineBox. To do so, exceptions has to be
caught. Our implementation associates a regular chain T to each box B encoding a real
root. Thus, if T is split into 771, ..., T after an exception, one replaces (B, T) by the right
(B, T;) which also defines the real root v as done in [26, page 528].

EvalPoly. For evaluating EvalBox(p, B), we first collect p using a Horner scheme. For
example, the polynomial p := z3z1 + 373 + 2223 + 23 + 21 + 1 is collected as 1 + (1 +
x1)T1 + (ac% + (3 + z122)x2)x2. This strategy seems to behave quite well on our examples.
The intuition for doing that is the following. Since x5 > x7 for our ordering, the interval of
B for the variable x5 tend to be in practice wider than that for the variable xy, since the
intervals for smaller variables tend to be more refined than those for higher variables. On
the example, the Horner collected form tends to decrease the exponentiations for xs.

3.2 Further development

Using fast polynomial arithmetic and modular methods. The current implementa-
tion of the CheckZeroDivisor algorithm can be improved in a significant manner. Indeed, the
modular algorithm for regularity test reported in [18] and implemented with the MODPN
library [19] outperform the regularity test used in CheckZeroDivisor by several orders of
magnitude.

Computing with algebraic numbers. Using the two algorithms RefineBox and
CheckZeroDivisor, one can easily encode algebraic numbers and check if a multivariate poly-
nomial cancels on some algebraic numbers. This allows computing with algebraic numbers,
very much as it is done in [25]. Moreover, inequations and inequalities could be included
with almost no work. Indeed they can be handled easily at the end of RealRootlsolate using
CheckZeroDivisor. They can also be treated inside the subalgorithms as soon as a box in
construction involves all the variables of an inequality or inequation, allowing to cut some
branches.

Floating-point computations. As suggested by Fabrice Rouillier (private commu-
nication), it would speed up the algorithm to use multiple-precision floating-point com-
putations with exact rounding (as provided by the MPFI library [28]) instead of rational
numbers.

Handling exceptions. Exceptions could be caught sooner so one does not lose the
computations already done.

Continuous fractions. Techniques bases on continuous fractions [2, 3] may also be
investigated.

Interval arithmetics. The algorithm EvalBox could certainly be improved by tech-
niques such as [6] where the polynomial to evaluate is factorized using greedy algorithms.

Newton method. Some tries were made to incorporate a Newton method for system
of polynomials in the RefineBox algorithm. Due to the triangular form of the system, the
jacobian is also triangular which eases the method. However, although the convergence was
really faster, it was not satisfactory because of the coefficient swell of the isolation intervals.
However, we believe the Newton method should be investigated more carefully.



4 Benchmarks

4.1 Description of the experimentation

The names of the examples used for benchmarking are listed in Figure 4.1. Most of them
are classical. The lhlp files tests are taken from [20]. The examples chemical-reaction,
geometric-constraints, neural-network, p3p-special and Takeuchi-Lu appear in [34]. The
nld-d-n and nql-n-d examples are described in Section 4.3. All examples can be found at
www.lifl.fr/~lemaire/BCLMO9/BCLMO9-systems. txt.

Benchmark results are given on Figure 4.1. They were run on an Intel(R) Pentium(R)
D CPU 3.00GHz with 2Gbytes of memory, using MAPLE 13 beta 64bits. Timings are
in seconds. Timeouts are indicated with the sign >, meaning that the computation was
aborted. The first column Sys denotes the name of the system. The second column v/e/s
stands for the number of variables/equations/real solutions.

The Maple command RootFinding|lsolate] isolates real roots within the times indicated
in the group of columns RF/Is. For multivariate systems, this command relies on Grébner
basis computations [15] and rational univariate representation [27]. In Column 1, the com-
mand used is RootFinding [Isolate](sys, variables, digits=10, output=interval). For Column 2
the same command is used but that the ordering of the variables has been reversed. We used
those two commands in case the variable ordering has an effect on the command RootFind-
ing[lsolate]. Note that the option digits=10 ensures that the ten first digits of the results
are correct which is not the same as guaranteeing a width less than 1e-10 for the isolation
boxes in RealRootlsolate. However, the difficulty for isolating the real roots is comparable
if the real roots are not too close to zero nor too big; this is the case for our test examples.

The other groups of columns correspond to three strategies for isolating real roots using
our algorithm RealRootlsolate. In each strategy, the initial system is first decomposed into
zerodimensional regular chains using the Triangularize command together with the option
radical="yes' ensuring those regular chains are squarefree. In order to keep things simple and
uniform, the option probability=xx of Triangularize is not used, even when it could be, that
is, for square systems generating radical ideals. Therefore the modular algorithm of [10] is
not applied even though it can solve all our examples that the non-modular algorithm of
Triangularize cannot.

Strategy 1. We build regular chains (column Tr) and call the RealRootlsolate algorithm
(column Is/10) on each regular chain with a precision of 1e-10.

Strategy 2. A variant of Strategy 1 where we compute strongly normalized regular
chains (column Tr/No) using the option normalized="strongly’ of Triangularize.

Strategy 3. Another variant of Strategy 1. We build regular chains (column Tr) and
call the RealRootlsolate algorithm on each regular chain with an infinite precision (column
Is/o0), in the sense that the width of the boxes are not constrained. Thus, only the isolation
is performed. Then we call the command RefineListBox to refine the list of boxes with a
precision of 1e-5 (column co/5). Then we refine again the boxes for a precision of 1e-10
(column 5/10).

4.2 Comparison of different strategies

Strategies 1 and 2 are comparable. Strongly normalized regular chains take more time to
be computed, since normalization is a post-processing for the command Triangularize. The
isolation time is roughly the same in general for both types of regular chains. For the nld-d-
n (except nld-9-3) family of examples, normalization helps the isolation process. However,
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for some other examples, such as 5-body-homog, p3p-special and Rose, normalization make
things worse.

Compared to Strategy 1, Strategy 3 shows two things. First, it is usually faster to isolate
solutions with an infinite precision rather than with a small precision. Secondly, it shows
that the overall times for Strategies 1 and 3 are comparable.

4.3 Comparison with RootFinding

The RootFinding[lsolate] is obviously a lot faster on many examples. One should keep in
mind that this command calls internal routines written in C that have been developed
intensively for years. However, the RootFinding[lsolate] has difficulties on some systems
such as the ngl-n-d and nld-d-n ones.

The nql-n-d (for non quasi linear) example is very specific and was suggested by Fabrice
Rouillier. It is defined by n equations in n variables 2§ —2 = 0, xf +x?/2 —x;-1 =0for2 <
1 < n for some even degree d. This system is already a zs-rc. The algorithm RealRootlsolate
solves it easily since the degrees are distributed evenly among the equations. On the other
hand, the RootFinding[lsolate] needs to build a rational univariate representation which we
believe has a very large degree roughly equal to d" (that is about one million when d = 4
and n = 10).

A similar example is simple-ngl-n-d defined by 2§ —2 =0, 2¢ —x;_1 =0 for 2 <i < n.
The degree of the rational univariate representation is also roughly d™. For the example
simple-ngl-20-30, d” is around 102%°.

The second family of systems which causes difficulties to RootFinding[lsolate] are the nld-
d-n (for non leading linear) defined by n equations of the form x4 -+ +x;_1 +x§i +xi1+
<o tax,—1=0for1 <i<n. Onthose systems the computations performed by Triangularize
tend to split into many branches, even though the equiprojectable decomposition consists
of a few components (generally 2). For System nld-9-3, the command Triangularize (used
without normalization option) produces 16 components where the largest coefficient has size
20 digits. The command EquiprojectableDecomposition (which requires the use normalized
regular chains) produces 3 components for nld-9-3, where most coefficients have more than
1,000 digits. Since nld-9-3 has 729 complex solutions, this suggests that the univariate
polynomial in the rational univariate representation has degree 729 and coefficients with
size at least 1,000 digits. This makes it difficult to isolate the real roots of such polynomial.
Therefore, the nld-d-n examples show that splitting can help solving some problems.

5 Conclusion

We presented a generalization of the Vincent-Collins-Akritas Algorithm for zerodimensional
squarefree regular chains, and its implementation in MAPLE. Each box isolating a root can
be refined arbitrarily after being computed. This allows manipulating algebraic numbers
(encoded by a isolation box and a regular chain) very much like in [25]. Many improvements
of the algorithm RealRootlsolate are possible and should be investigated. Among them, we
believe that writing a C library to perform the isolation would improve a lot the timings.
Yet for non-equiprojectable varieties, our algorithm and its MAPLE implementation show
favorable performances.
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