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Abstract

The theorems that we present in this paper are very important to prove the correct-
ness of triangular decomposition algorithms. The most important of them are not new
but their proofs are. We illustrate how they articulate with the D% principle.

Introduction

This paper presents the proofs of theorems which constitute the basis of the triangular
systems theory: the equidimensionality (or unmixedness) theorem for which we give two
formulations (Theorems 1.1 and 1.6) and Lazard’s lemma (Theorem 2.1). The first section
of this paper is devoted to the proof of the equidimensionality theorem. Our proof is original
since it covers in the same time the ideals generated by triangular systems saturated by
the set of the initials of the system (i.e. of the form (A) : IF°) and those saturated by
the set of the separants of the system (i.e. of the form (A):S%°). The former type of
ideal naturally arises in polynomial problems while the latter one naturally arises in the
differential context. Our proof shows also the key role of Macaulay’s unmixedness theorem
[24, chapter VII, paragraph 8, Theorem 26]. Its importance in the context of triangular
systems was first demonstrated by Morrison in [14] and published in [15]. In her papers,
Morrison aimed at completing the proof of Lazard’s lemma provided in [3, Lemma 2]. Thus
Morrison only considered the case of the ideals of the form (A) : SG°, which are the ideals
w.r.t. which Lazard’s lemma applies. The case of the ideals of the form (A): I was
addressed in [2]. The proof of [2, Theorem 5.1] involves the same gap as that given in [3,
Lemma 2]. It was fixed in [1]. The proof provided in [1] does not explicitly use Macaulay’s
theorem but relies on the properties of regular sequences in Cohen—Macaulay rings, which
are the rings in which Macaulay’s theorem applies.

What is this gap in the proofs mentioned above 7 Among all the indeterminates the
elements of a triangular system A depend on, denote %4, ... ,t,, the ones which are not main
indeterminates. The proofs given in [2, Theorem 5.1] and in [3, Lemma 2| rely implicitly
on the assumption that the non zero polynomials which only depend on t¢4,... ,t,, are not
zero divisors modulo the ideal defined by A. This assumption is indeed true but certainly
deserves a specific proof.

In the case of the ideals of the form (A):I%°, let’s mention the equidimensionality result
of [19] which is not sufficient since it does not solve the problem of the embedded associated



prime ideals of (A4):I3°. In the case of the ideals of the form (A): S, there is a simple proof
(16, 4] which unfortunately does not seem to generalize to the ideals of the form (A) : IF.

The second section of this paper is devoted to the proof of Lazard’s lemma. This lemma
was communicated by Lazard to the first author a few days before his PhD defense in
1994, with a sketch of proof. The proof given here is very close to the original one. As
stated above, Lazard’s lemma was first published in [3] but its first complete proof is due
to Morrison [14, 15]. Among the few other proofs published afterwards, let’s mention the
ones given in [18, 4, 8, 17].

In the remaining sections, we show how the equidimensionality theorem and Lazard’s
lemma apply to the so called “regular chains” [11, 9, 23, 2]. We last recall a few basic
algorithms which carry out a generalization of the “D®” principle [6] for regular chains and
which implictly rely on the equidimensionality theorem. Historically, the “D>®” principle
suggests to compute modulo zero dimensional ideals presented by triangular systems as if
these ideals were prime (whenever a zero divisor is exhibited, the ideal is split). It is its
generalization to non zero dimensional ideals which requires the equidimensionality theorem.

Throughout this paper, K denotes a commutative field of characteristic zero.

1 The equidimensionality theorem

In the polynomial ring R = K|[z1,... ,%n,t1,... ,tm], we consider a polynomial system
A ={p1,...,pn}. We assume that deg(p;, z;) > 0 and deg(p;, zx) = 0forall1 < i <mn
and 7 < k < n ie. that A is a triangular system w.r.t. to at least one ordering such that
1 < --- < o, and that the z indeterminates are precisely the main indeterminates of the
elements of A. The initial of a polynomial p; is the leading coefficient of p;, viewed as a
univariate polynomial in z;. The separant of p; is the polynomial dp;/0x;.

In the following, h denotes either the product of the initials of all the elements of A or
the product of the separants of all the elements of A.

We are concerned by the properties of the ideal 2 = (A) : h°° which is the set of all
the polynomials f € R such that, for some nonnegative integer » and some A1,... , A, € R
we have h" f = Aip1 +--- 4+ A\ pr. When h is the product of the initials of the elements
of A, the ideal 2 is often denoted (A) : I° in the literature. When h is the product of the
separants, the ideal 2 is often denoted (A) : STP.

In general, the ideal 2 may be the trivial ideal R (take A = {z1, 1 z2}). We assume
this is not the case.

Denote Ry = K(t1,... ,tm)[Z1,... ,Zn] the polynomial ring obtained by “moving the ¢
indeterminates in the base field” of R and 2 the ideal (A) : h°° in the ring Ry. Denote
M the multiplicative family generated by the nonzero elements of Klti,... ,t,] so that
Ry = M 'R. The elements of Ry/%ly, which is isomorphic to (M/2) 1(R/2l), have the
form a/b where a € R/ and b € M /2. In this section, we prove the following theorem.

Theorem 1.1. An element a € R/ is zero (respectively regular') if and only if every
element a/b € Ry /Uy is zero (respectively regular).

regular = not a zero divisor.



Proposition 1.2. To prove Theorem 1.1, it is sufficient to prove that every element of M /2
is reqular.

Proof. This is a very classical proposition. If every element of M/ is regular then Ry /%y, is
a subring of the total ring of fractions of R/2 [24, chapter IV, paragraph 9]. The proposition
then follows [24, chapter I, paragraph 19, Corollary 1]. O

Let us recall the Lasker—Noether theorem [24, chapter IV, Theorems 4 and 6).

Theorem 1.3. (Lasker-Noether theorem,)

In a noetherian ring, every ideal is a finite intersection of primary ideals. Every repre-
sentation of an ideal 2 as an intersection of primary ideals can be minimized by removing on
the one hand the redundant primary ideals and by grouping on the other hand the primary
ideals whose intersection is itself primary. The so obtained minimal primary decomposition
of A is not uniquely defined. However, the number of its components and the radicals of its
components (the so called “associated prime ideals” of ) are uniquely defined.

All the rings considered in this section are noetherian.

Proposition 1.4. To prove Theorem 1.1, it is sufficient to prove that no associated prime
ideal of A meets M.

Proof. According to [24, chapter IV, paragraph 6, Corollary 3], if M does not meet any
associated prime ideal of 2 then every element of M /2 is regular. Theorem 1.1 then follows
from Proposition 1.2. O

Recall the definition of the dimension of an ideal.

Definition 1.5. The dimension dimp of a prime ideal p of a polynomial ring R with co-
efficients in a field K is the transcendence degree of the fraction field of R/p over K. The
dimension dim®B of an ideal B of R is the maximum of the dimensions of the associated
prime ideals of 8.

The rest of this section is completely dedicated to the proof of the following theorem
which admits Theorem 1.1 as a corollary. This reformulation of Theorem 1.1 is often
convenient for writing proofs.

Theorem 1.6. The associated prime ideals of A have dimension m and do not meet M.

In order to apply Macaulay’s unmixedness theorem, one needs to get rid of the saturation
by h. For this, one may use the Rabinowitsch trick [20, section 16.5]. One introduces some
new indeterminate z, 1 and a new polynomial p,+1 = hz,1 — 1. One denotes A’ the
triangular system of R’ = R[z,.1] obtained by adjoining p,+1 to A. One denotes 2’ the
ideal (A’) of R'. Consider the two following canonical ring homomorphisms:

R—25 h'R~R'/(pny1) +—— R



The isomorphism h™'R ~ R'/(pn1) is classical [7, Exercise 2.2, page 79]: every element
of R corresponds to itself, z,, 11 corresponds to A~ !. If B is an ideal of R, one denotes h~ 1B
or (¢B) the ideal of h~ ! R generated by #%B. If B’ is an ideal of R’ then 78’ is an ideal of

TR = R'/(Pn+1)-

Lemma 1.7. The ideal ' is proper. If ¢\ N---Nq. is a minimal primary decomposition
of A then ¢~ (mq}) N---N @~ (nql) is a minimal primary decomposition of 2.

Proof. We use the notations of extensions and contractions defined in [24, chapter IV,
paragraph 8], w.r.t. the ring homomorphism ¢ so that (¢2) = 2A¢. The ideal 72’ is equal
to the ideal ¢ since both ideals admit a same generating family: A. By [24, chapter IV,
Theorem 15 (a)] we have 2 = 2°° since A = A : h°°. Therefore, since 2 is assumed to be
proper, so are 2¢ and 2.

Consider now a minimal primary decomposition g} N--- N g} of A'. According to [24,
chapter IV, paragraph 5, Remark concerning passage to a residue class ring], mq} N---Nng..
is a minimal primary decomposition of 72" = A¢. Since A = A, by [24, chapter IV,
Theorem 15 (b) and a comment just above this theorem]|, the associated prime ideals of 2
do not meet M. By [24, chapter IV, Theorem 17] the intersection ¢! (wq})N---N¢~1(mq.)
is a minimal primary decomposition of 2. U

Proposition 1.8. To prove Theorem 1.6, it is sufficient to prove that the associated prime
ideals of A' have dimension m and do not meet M.

Proof. Let p’ be an associated prime ideal of 2’ and p = ¢~ !(7p') the corresponding
associated prime ideal of 2 according to Lemma 1.7. Let a be an element of the subring R
of R'. Then a € p' if and only if a/1 € 7p’ and a/1 € 7p’ if and only if a € p. Therefore,
if p’ does not meet M then p does not either and dimp > m. If moreover dimp’ =

m then z1,... ,z, must depend algebraically on t1,... ,%, modulo p’ hence they depend
algebraically on t1,...,%, modulo p and dimp < m. Combining both inequalities, one
concludes that dimp = m. O

One distinguishes two sorts of prime ideals associated to an ideal 2A: the isolated or
minimal ones and the embedded or imbedded ones. An embedded associated prime ideal
of 2 is an associated prime of 2 which contains another associated prime ideal of . In
the context of polynomial rings, its algebraic variety is included (embedded) in that of
the associated prime ideal that it contains. One thus sees that, at least in the context
of polynomial rings, it is much easier to get informations on the minimal associated prime
ideals (they correspond to the irreducible components of the algebraic variety of the ideal [24,
chapter VII, paragraph 3, Corollary 3 to Hilbert’s Nullstellensatz]) than on the embedded
associated prime ideals, which have no such simple geometric meaning (see however [7,
section 3.8] for a geometric interpretation of embedded primes). In our case, the problem
of the minimal associated prime ideals is easily solved by Lemma 1.10. The problem of the
embedded associated prime ideals is solved by a difficult theorem: Macaulay’s unmixedness
theorem. Recall Krull’s principal ideal theorem [24, chapter VII, Theorem 22].



Theorem 1.9. (principal ideal theorem)
If a proper ideal 2 of a ring R = K|x1,... ,z,] admits a generating family formed of k
elements (1 < k <n) then dimA > n — k.

Let us come back to our study of the ideal 2’ of R'.

Lemma 1.10. The dimension of A" is m. Moreover, none of the m—dimensional associated
prime ideal of A' meets M.

Proof. Consider an associated prime ideal p’ of 2.

First consider the case of h being the product of the initials of the elements of A. Then
none of these initials belongs to p’ (otherwise p’, which contains hz,.1 — 1 would also
contain 1). Thus z1,...,Z,41 are algebraically dependent on ti,... ¢, over K in R'/p’
(the polynomials of A’ cannot degenerate at all).

Consider now the case of h being the product of the separants of the elements of A. Let
P = aq wg +---4+aj 24+ ag be any element of A’. Since its separant sy = daqg xg_l 4+ taq
does not belong to p’, at least one of the coefficients ag, ... ,a; does not belong to it. Thus
Z1,...,Tn41 are algebraically dependent on ¢1,... ,t, over K in R'/p’ (the polynomials of
A’ cannot completely degenerate).

In both cases, z1,... ,Z,41 are algebraically dependent on t1,... ,t, over K in R'/p’.
One then concludes, first that dimp’ < m hence dim2' < m, second that if dimp’ = m
then p’ " M = (. The ideal 2’ admits a basis made of n + 1 elements in a polynomial
ring in n + m + 1 indeterminates. According to the principal ideal theorem, dim®2l' > m.
Combining both inequalities, one concludes that dim2l’ = m. U

Let us recall Macaulay’s unmixedness theorem [24, chapter VII, Theorem 26].

Theorem 1.11. (Macaulay’s unmizedness theorem)

If a proper ideal A of a polynomial ring R = K[z1,... ,x,] admits a basis made of
k elements (1 < k < n) and if dimQA = n — k then all its associated prime ideals have
dimension n — k.

The following proposition, combined to Proposition 1.8, concludes the proof of Theo-
rem 1.6 hence that of Theorem 1.1.

Proposition 1.12. The associated prime ideals of A' have dimension m and do not meet M.

Proof. The ideal 2’ admits a basis made of n+ 1 elements in a polynomial ring in n+m + 1
indeterminates. According to Lemma 1.10, its dimension is m. According to Macaulay’s
unmixedness theorem, all its associated prime ideals have dimension m. According to
Lemma 1.10 again, none of these prime ideals meets M. O

Let us state a few easy corollaries to Theorem 1.1.
Corollary 1.13. The minimal primary decomposition of U is uniquely defined.

Proof. By Theorem 1.6, the ideal 2 has no embedded associated prime ideal. The corollary
then follows [24, chapter IV, paragraph 5, Theorem 8]. O



Corollary 1.14. Theorems 1.1 and 1.6 hold if A is replaced by any ideal (A): S where
S is any subset of R containing h, provided that (A) : S* is proper.

Proof. The ideal (A) : S°° is the intersection of the primary components of (A) : A% which
do not meet the multiplicative family generated by S. Since the primary components of
(A) : A do not meet M, the primary components of (A) : S°° do not meet M either
and, Theorem 1.6 holds for this ideal also. Theorem 1.1 follows from Theorem 1.6 and
Proposition 1.4. O

Corollary 1.15. Ewvery regular element of R/ is invertible.

Proof. Still a well known theorem. By Theorem 1.6, the ideal 2y has dimension zero. By [24,
chapter VII, paragraph 7], the associated prime ideals of 2 are maximal. The ideal % is
thus contained in finitely many prime ideals. There is a bijection [24, chapter III, Theorem
7] between the ideals of Ry which contain 2(y and the ideals of Ry/%ly. This bijection maps
prime ideals to prime ideals [24, chapter III, Theorem 11]. The ring Ry/?y thus involves
only finitely many prime ideals pi,... ,p, which are the associated primes of (0). Assume
a € Ry/Up is regular. By [24, chapter IV, paragraph 6, Corollary 3], the element a belongs
to none of the ideals py,... ,p,. The ideal generated by a must contain 1 since it would
otherwise have associated prime ideals all different from pi,... ,p, and there are no such
prime ideals. Thus there exists some a € Ry/%2 such that aa = 1 and a is invertible. [

Corollary 1.16. Let 1 <i < n be an index. Denote A; = {p1,...,pi}. If h is the product
of the initials of A, denote h; the product of the initials of the elements of A; otherwise,
denote h; the product of the separants of the elements of A;. Denote A; = (A;) : h{°. Let
a € R be any polynomial. If a is regular in R;/; then a is reqular in R/2.

Proof. Denote Ry; = K(t1,...,tm)[Z1,-..,2;] and Ao; = (4;) : h{® in Rp;. Assume a is
regular in R;/2;. Then, by Theorem 1.1 and Corollary 1.15, there exists some a € Ry ; such
that aa — 1 € p;. Since Ry; C Ry and 2g; C g, we have aa — 1 € 2p and a is invertible

in Ry/p. By Theorem 1.1 again, a is regular in R/%. O

2 Lazard’s lemma

In this section, we keep the notations of section 1 but we restrict ourselves to the case of h
being the product of the separants of the elements of A. The ideal 2 = (A) : h* is often
denoted (A) : S9° in the literature. It is assumed to be proper.

Theorem 2.1. (Lazard’s lemma)
The ideal A is radical.
The minimal prime ideals of 2 have dimension m and do not meet M.

Before proceeding, let us consider the basic case of a system A made of a single poly-
nomial p; = #; (z1 — 1)® (z1 — 2). Then the separant h = t1 (z1 — 1)? (421 — 7) involves as
a factor the polynomial ¢; which does not depend on z; and the multiple factor (z; — 1)



of pi1. The ideal U is generated by (z1 — 2) and satisfies Theorem 2.1. Observe that the
theorem would not hold in the case of h being the product of the initials of A only. In that
case, the ideal 2, which would be generated by (z1 — 1) (1 — 2) would not be radical.

The second statement of Lazard’s lemma follows from Theorem 1.6. One just needs to
prove that 2l is radical i.e. that R/ does not involve any nilpotent? element.

Proposition 2.2. To prove Theorem 2.1, it is sufficient to prove that 2y is radical.

Proof. Assume 2 is radical. Then Ry/%y does not involve any nilpotent element [24,
chapter IV, Theorem 10 and Corollary] hence R/2 does not either by Theorem 1.1 and A
is radical. O

In the rest of this section, we prove that 2 is radical by proving that Ry /% is isomorphic
to a direct product of fields. Since a direct product of fields does not involve any nilpotent
element, the ideal 2l is radical and the proof of Lazard’s lemma is complete.

Indeed, if Ry, ..., R; are rings then one denotes S = Ry X - -+ X Ry, their direct product.
Elements of S are tuples with £ components. Given any two elements a = (aq,... ,ax) and
b= (b1,...,b;) of S one defines a + b as (a1 + b1,... ,ar +b;) and ab as (a1 by,... ,ax by).
In the ring S, zero is equal to (0,...,0) and one is equal to (1,...,1). If the rings R; do not
involve any nilpotent element then S does not either. This is the case in particular when
the rings R; are fields. See [24, chapter III, paragraph 13| for an equivalent formulation
based on direct sums. The following theorem is a generalization of the Chinese Remainder
Theorem. See [24, chapter III, paragraph 13, Theorem 32] or [7, Exercise 2.6, page 79].

Theorem 2.3. (Chinese Remainder Theorem)
If Ai,... A are ideals of R such that A; +A; = R whenever ¢ # j then the ring
R/ M-+~ NAy) is isomorphic to the direct product (R/2A1) X -+ x (R/Uy).

The proposition below concludes the proof of Theorem 2.1. The scheme of its proof is
the original scheme of proof communicated by Daniel Lazard.

Proposition 2.4. The ring Ry /%y is isomorphic to a direct product of fields.

Proof. The ring Ry/%y can be constructed incrementally. It is isomorphic to the ring S,
defined by:
S():K(tl,... ,tm), Si:Si_l[.%i]/(pi):Sioo.

The proof is an induction on n.

The basis n = 0 is trivial.

Assume S, 1 is a direct product of fields K1 x --- X K,. Then S,, is isomorphic to the
direct product of the rings Kj[z,]/(pn) : s5° for all 1 < j < r. In the formula above one
assimilates the polynomials p, and s, with their images by the canonical ring homomor-
phisms, noticing that the image of the separant of p, in each Kj[z,] is the separant of the
image of p,, in this ring.

2 A nilpotent element of a ring R is a nonzero element of R a power of which is zero.



Therefore, in each Kj[z,], the ideal (py) : s5° is generated by the product of the simple
irreducible factors of p,. It is thus the intersection of the maximal ideals m, generated
by these factors. According to the Chinese Remainder Theorem, each Kj[z,]/(pn) : s3°
is isomorphic to the direct product of the fields Kj;[z,]/m,. Since direct products are
associative, the ring S, itself is a direct product of fields. O

Corollary 2.5. Theorem 2.1 holds if 2 is replaced by any ideal (A) : S°° where S is any
subset of R containing the separants of the elements of A, provided that (A): S is proper.

Proof. The ideal (A): S* is the intersection of the primary components of 20 which do not
meet the multiplicative family generated by S. Since 2l is radical, its primary components
are prime ideals [24, chapter IV, Theorem 5]. Thus the primary components of (A): S are
prime ideals and (A) : S*° is radical. The dimension properties shared by all the associated
prime ideals of 2 also hold for all the associated prime ideals of (A) : S°°. O

3 Regular chains

We consider the polynomial ring R = K|[z1,... ,Zn,t1,... ,tm]. We assume that the m +n
indeterminates are ordered according to some total ordering &. Let p be any polynomial
of R\ K. The greatest indeterminate w.r.t. & among the indeterminates p depends on is
called the main indeterminate of p. We consider a triangular system A = {p1,... ,pp} of R
i.e. a polynomial system whose elements have distinct main indeterminates. Renaming
the indeterminates if necessary, we assume that the main indeterminate of p; is z; for each
1 <4 < n. The multiplicative family M, the initials and the separants of the elements of A
are then defined as in section 1.

Fix some 1 < ¢ < n. Denote A; the system {pi,...,p;}. Denote h; the product of the
initials of the elements of A;. Denote R; the ring K[t1,... ,tm,1,... ,2;]. Denote Ry ;
the ring K (t1,... ,tm)[Z1,... ,2;]. Denote 2; the ideal (4;) : h{® of R and o ; the ideal
(A;)  h© of Ry ;. Denote Ry = Ry, and A = 2,,.

Definition 3.1. The system A is a regular chain if, for each 2 <4 < n, the initial of p; is
regular in the ring R;_1/2;_1. Assume A is a regular chain. Then A is said to be squarefree
if, for each 1 <4 < n, the separant of p; is regular in R;/2;.

The above definition is not exactly the same as that of [2, Definition 4.1] but they are
strictly equivalent. The difference is that, in [2], the ¢ indeterminates greater than z; would
have been withdrawn from the rings R;_; and R;. This change is not important for the
elements of A; do not depend on the ¢ indeterminates greater than z; and, by [24, chapter I,
paragraph 16, Theorem 6], if R is a ring, a is one of its elements and z is an indeterminate
over it then a is zero (respectively regular) if and only if it is zero (respectively regular) in
the ring R[z]. The following results are corollaries to Theorems 1.1 and 2.1.

Corollary 3.2. The system A is a regular chain if, for each 2 < i < n, the initial of p; is
invertible in the ring Ro;—1/%Uoi—1. Assume A is a regular chain. Then A is squarefree if,
for each 1 < i < n, the separant of p; is invertible in Ry ;/Uo ;.



Proof. 1t is an immediate corollary of Theorem 1.1 (enlarging the set of the ¢ indeterminates
with the z indeterminates which are not needed). O

Corollary 3.3. Assume A is a squarefree reqular chain. Then U is radical. Its minimal
prime ideals have dimension m and do not meet M.

Proof. By Corollary 1.16 and the definition of squarefreeness, the separants of the elements
of A are regular in R/2. The corollary follows from Corollary 2.5. O

3.1 Splittings

In this section, we provide two propositions which permit to justify many algorithms carry-
ing out the “D5” principle for triangular systems [6]. We keep the notations of section 3 and
we assume that A is a regular chain. Let 1 <4 < n be an index. Assume that there exists a
factorization p; = be in (Ro;—1/2pi—1)[x;] such that 0 < deg(b, z;), deg(c, z;) < deg(pi, z;)-
For each 1 < j < n, denote B; = A; if j < i otherwise denote B; = (4;\{p;})U{b}. Denote
B = By,. For each 1 < j < n, denote h;; the product of the initials of the elements of B;
and B; the ideal (B;):hj5 of R and By,; the ideal (Bj):hy5 of Ro ;. Replacing b by c in the
formulas, define C' and for each 1 < j < n, define Cj, h.;, €; and €y ; Denote By = By,
and (’:() = CO,n-

Proposition 3.4. The triangular sets B and C' are reqular chains. For each 1 < j <n we
have 2; C B and 2; C ;.

Proof. We focus on the set B. The arguments for C are similar. Since 0 < deg(b,z;) <
deg(p;, z;), the set B is triangular. For each 1 < j < i we have A; = B thus A; = B, and B
is a regular chain up to index ¢ — 1. In the ring Ry ;_1, the initial of p; is the product of the
initials of b and ¢. Since A is a regular chain, the initial of p; is invertible in Ry ;—1/%0i—1-
Therefore, the initial of b is invertible in Ry ;_1/%0—1. By Corollary 3.2, the set B is a
regular chain up to index ¢ and 2; C B;. Let i < j < n be an index. We have 2[; C B;.
Thus the initial of p;, which is invertible in Ry j_1 /% j—1, is also invertible in Ry j_1 /% j_1-
By Corollary 3.2, the set B is a regular chain up to any index and 2; C ;. O

We have proved that 2 C B N €. In general the equality does not hold because of
possible common factors of b and ¢. In the particular case of squarefree regular chains, b
and ¢ have no common factors and the equality holds, the following proposition shows.

Proposition 3.5. Assume A is squarefree. Then so are B, C and we have A = B N €.
Moreover, the sets of the minimal prime ideals of B and € form a partition of the set of
the minimal prime ideals of 2.

Proof. First we prove that B and C are squarefree regular chains. As in the above proof,
we focus on B. By Proposition 3.4, the set B is a regular chain. Assume A is squarefree.
Let 1 < j < i be an index. Since A; = Bj, the separant of p; is regular in R;/%8; and B is a
squarefree regular chain up to index i — 1. Denote s;, s; and s, the separants of p;, b and c.
We have s; = sy c+ s.b. Let us prove that s, is regular in R;/%B;. Since A is squarefree, s;



is invertible in Ry ;/?o ;. By Proposition 3.4, for each 1 < j < n we have A; C B, thus s;
is also invertible in Ry ;/%B¢ ;. Then, using the fact that b € B; we see that s, ¢, hence s,
is invertible in Ry ;/%B¢ ;. By Corollary 3.2, the set B is a squarefree regular chain up to
index 4. Let 4 < 7 < n be an index. Using again the fact that 2; C B;, we see that the
separant of p; is regular in R;/%;. Thus B is a squarefree regular chain up to any index.

Similar statements prove that C is a squarefree regular chain.

By Corollary 3.3, the ideals 8 and € are radical. They are equal to the intersections
of their minimal prime ideals by [24, chapter IV, Theorem 5]. To conclude the proof of
the proposition, it is thus sufficient to prove that the sets of the minimal prime ideals of B
and € form a partition of the set of the minimal prime ideals of 2. Denote V, V}, and V,
the sets of zeros of 2y, By and € in the algebraic closure of K(t1,...,t,). Since these
ideals have dimension zero, these sets are finite. The minimal prime ideals of 2, 8 and €
have dimension m and do not meet M. Therefore, by [24, chapter IV, Theorem 15(d)], the
ring homomorphism R — Ry provides a bijection between the minimal prime ideals of 2
(respectively 9B, €) and those of 2, (respectively By, €) hence, using [24, chapter VII,
paragraph 3, Corollary 2], a bijection between the minimal prime ideals of 2 (respectively
B, €) and the elements of V' (respectively V3, V). It is thus sufficient to prove that V;
and V. form a partition of V. The cardinal |[V| of V is the product H?:l deg(p;, x;)-
Similar statements hold for Vj and V.. Since deg(pi, z;) = deg(b, z;) + deg(c, zi) we see
first that |V| = |V,| +|V¢|. Second, we have V,, C V and V, C V. Third, V,NV, is empty for
a common zero of B and € would annihilate s; = sy ¢ + s. b which is invertible. Therefore
V =V, UV,, the sets V}, and V, form a partition of V' and the proposition is proved. O

3.2 The D’ principle for triangular systems

In this section, we provide the scheme of many algorithms carrying out the “D>” principle
for triangular systems. More efficient algorithms can be found in [13, 12]. See also [22, 21, 5].
The triangular set A is assumed to be a regular chain.

Definition 3.6. For every a € R we define the pseudoremainder of a by A as
prem(a, A) = prem(... prem(prem(a, pn, ¥n), Pn-1, Tn-1) ... , P1, T1)-

The pseudoremainder algorithm is based on [24, chapter I, paragraph 16, Theorem 9.
It is defined in [10, volume 2, page 407]. The next proposition is proved in [2, Theorem 6.1].

Proposition 3.7. For every a € R we have a € A if and only if prem(a, A) = 0.

The parameter a of algebraic_inverse denotes an element of R. The function returns an
inverse of a in Ry /2 or fails. If it succeeds then a is proved invertible in Ry /2(; hence regular
in R/ by Theorem 1.1. The function thus implicitly relies on the equidimensionnality
theorem. If it fails by encountering a zero divisor, it exhibits a nontrivial factorization of
some element p; of A. The exhibited factorization might allow some calling function to
split A as two regular chains by using Proposition 3.4. Observe that the function may fail
even if g is regular in R/ for it checks the regularity of many different elements of R /.
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function algebraic_inverse (a, A)
begin
if a € K(t1,... ,ty) then
if @ # 0 then
1/a
else
the inverse computation fails (inversion of zero)
endif
else
let z; be the main indeterminate of a
(u1, ug, us) := extended_Euclid (a, p;, x;, A)
if ug # 1 then
the inverse computation fails (inversion of a zero divisor): ug is a factor of p;
else
U1
endif
endif
end

Here is the generalization of the extended Euclidean algorithm called by algebraic_inverse.
The main indeterminate of the two polynomials a and b is z;. The polynomials a and b
are viewed as polynomials in (Rp;—1/%0,—1)[z;]- The function fails or returns a triple
U = (u1, ug, u3) of elements of (Ro;—1/%0—1)[x;] satisfying a Bézout identity in the ring
(Ro,i—1/o,i—1)[z;] i-e. arelation u; a+ug b = uz. A proof that U satisfies a Bézout identity
can be designed by using the two following loop invariants (i.e. properties which hold each
time the loop condition is evaluated). These loop invariants are natural generalizations of
the very classical loop invariants of the basic extended Euclidean algorithm:

e uiat+usb=usand via+vob=1v3in (R(),i_1/9[(),i_1)[l‘i] ;

e the set of the common divisors of ug and vs is equal to the set of the common divisors
of a and b.

Observe that the second invariant is stated without using the word “gcd” which would be
controversial in this context for the ring (Ro;—1/0,—1)[z;] is not a UFD. A definition of
the ged in this context is however provided in [13]. Observe that the function needs to
recognize zero in Ry ;_1/p;—1 in order to evaluate the loop condition and to determine the
degree of us after the loop execution. This is achieved by Proposition 3.7. The function also
needs to check the regularity of the leading coefficient of vz before performing the Euclidean
division. This can be achieved using algebraic_inverse.

function eztended_FEuclid (a, b, x;, A)

begin
U:=(1,0,a)
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V:=1(0,1,0b)
while v3 # 0 do

q := the quotient of the Euclidean division of u3 by w3 in (R ;—1/%0—1)[%]
T:=V

Vi=U-qV
U:=T
done

c

:= the coefficient of =

deg(us,z;)

i m usg

return algebraic_inverse (¢, A) U

end
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