
Generic Programming Techniques in Aldor

Manuel Bronstein ?, Marc Moreno Maza, and Stephen M. Watt

Ontario Research Centre for Computer Algebra
University of Western Ontario

London Canada N6A 5B7

Abstract. Certain problems in mathematical computing present un-
usual challenges in structuring software libraries. Although generics, or
templates as they are sometimes called, have been in wide use now for
many years, new ways to use them to improve library architecture con-
tinue to be discovered. We find mathematical software to be particularly
useful in exploring these ideas because the domain is extremely rich while
being well-specified. In this paper we present two techniques for using
generics in mathematical computation: The first allows efficient formula-
tion of generic algorithms for modular computations. The second allows
mathematical domains to be endowed with additional algorithms after
they are defined and to have these algorithms used in generic libraries.

1 Introduction

Generics, that is modules with parametric polymorphism, are now widely ac-
cepted as a useful software structuring technique. Indeed, it could be argued
that every software library can be improved by presenting it in generic form.
There are certain difficulties, however, that arise in the construction and use of
generic libraries and this impedes there more widespread adoption. Two of the
important problems that arise are:

– expressing efficient algorithms while programming via parameterized generic
interfaces, and

– accessing specialized algorithms when they exist for particular cases of the
generic parameters.

In this paper we show how these problems are solved in the Aldor program-
ming language, using examples from the field of computer algebra. For the first
problem, we show how efficient generic algorithms may be obtained for generic
modular computation. For the second problem, we show how specialized algo-
rithms can be added as needed to parameter types using post facto domain
extensions, and illustrate this using an example from linear algebra.

? MB was a close colleague and collaborator in this work. Prior to his untimely death
in 2005 he was the leader of Projet Café at INRIA Sophia Antipolis.

2 Generic Modular Computation

We present a technique for generic modular computation to illustrate how gener-
icity, efficiency and adaptability may be combined. Modular arithmetic and com-
putations by homomorphic images are essential techniques in Computer Alge-
bra. The key ideas behind modular computations are generally quite simple, but
implementing them efficiently is often more tricky than the corresponding non-
modular algorithms. The main needs for successful implementation of these ideas
are efficient machine arithmetic interface and low-level data-structures (primi-
tive arrays, records) together with some control on memory management and
traffic.

Modular methods for polynomial and matrix computations use particular
coefficient rings, such as finite fields or residue class rings of Euclidean domains.
Moreover, two recipes are used in order to recover the “true” results from their
modular images: the Chinese Remaindering Theorem and the Hensel Lemma.
This suggests that, despite of the specialization involved in modular algorithms,
a certain level genericity is necessary in order to factorize code. For instance,
Kaltofen and Monagan in [3] have observed that one can design a generic mod-
ular algorithm for computing univariate polynomials over an Euclidean domain
satisfying some reasonable assumptions.

Input: E, Euclidean domain and f, g ∈ E[x] primitive.
Output: gcd(f, g).

b := gcd(lc(f), lc(g))
d := min(deg(f),deg(g))
(m, gm) := (1, 0)
repeat

choose a prime p not dividing m b
gp := b monicGcd(f mod p, g mod p) in E/〈p〉[x]
deg(gp) = 0 => return 1
deg(gp) < d => (m, gm, d) := (p, gp,deg(gp)) { previous unlucky }
deg(gp) > d => iterate { unlucky reduction }
w := combine(p, m)(gp, gm) ; w := symmetricMod(w,m p)
if w = gm then { stabilization }

h := pp(w)
if h | f and h | g then return h

(m, gm) := (m p,w)

The Euclidean domain E of the above algorithm, with Euclidean size δ, must
support the following:

1. a stream of unassociated primes p1, p2, p3, . . . , such that δ(p1) < δ(p1p2) <
δ(p1p2p3) < · · · .

2. a mapping scs from E × E \ {0} to E such that
Simplification. For any a ∈ E and any m ∈ E \ {0} we have:

a ≡ scs(a,m) mod m. (1)

Canonicity. For any m ∈ E \ {0}, any two elements a, b ∈ E, we have:

(a ≡ b mod m) ⇐⇒ (scs(a,m) = scs(b, m)). (2)

Recovery. All elements of a bounded degree are recovered by the simplifier
if the modulus is sufficiently large. That is, for any B > 0, there exists
M ∈ N such that

(∀(a,m) ∈ E × E \ {0})
{

δ(m) ≥ M(B)
δ(a) < B

⇒ scs(a,m) = a. (3)

We have implemented the above definition through the following four cate-
gories in the BasicMath [6] library in Aldor.

CanonicalSimplification: Category == CommutativeRing with {
mod: (%, %) -> %;
mod_-: (%, %) -> %;
mod_+: (%, %, %) -> %;
mod_-: (%, %, %) -> %;
mod_*: (%, %, %) -> %;
mod_^: (%, AldorInteger, %) -> %;
recipMod: (%, %) -> Partial(%);
invMod: (%, %) -> %;
if (% has EuclideanDomain) then symmetricMod: (%, %) -> %;

}

SourceOfPrimes: Category == CommutativeRing with {
prime?: % -> Partial(Boolean);
prime?: % -> Boolean;
getPrime: () -> Partial(%);
nextPrime: % -> Partial(%);
if (% has EuclideanDomain) then

getPrimeOfSize: MachineInteger -> Partial(%);
}

ResidueClassRing(R: CommutativeRing, p: R): Category ==
CommutativeRing with {

modularRep: R -> %;
canonicalPreImage: % -> R;
if (R has EuclideanDomain) then {

symmetricPreImage: % -> R;
}

}

ModularComputation: Category == CanonicalSimplification with {
residueClassRing: (p: %) -> ResidueClassRing(%, p);
if (% has EuclideanDomain) then {

combine: (%, %) -> (%, %) -> %;
if (% has IntegerCategory) then {

combine: (%, MachineInteger) -> (%, MachineInteger) -> %;
}

}
}

A ring R satisfying ModularComputation must implement an operation residue-
ClassRing, such that, given an element p ∈ R, this function implements R/pR.
It follows from the above categories that any Euclidean domain R satisfying
ModularComputation can implement the generic modular algorithm for uni-
variate polynomials over R. Actually, we have implemented this algorithm in a
package

GenericModularPolynomialGcdPackage(
R: Join(EuclideanDomain, SourceOfPrimes, ModularComputation),
U: UnivariatePolynomialCategory(R)): with {

modularGcd: (U, U) -> Partial(U);
}

For computing GCDs in Z/pZ[x][y], we have realized benchmarks between
our package and a non-modular implementation based on the sub-resultants.
The timings below are in ms.

dx, dy sub-resultants gen mod gcd
10 1600 30
12 4180 50
14 9230 60
16 18570 100
18 34970 130
20 59740 160
30 508440 560

Them for computing GCDs in Z[x], we have realized benchmarks between a
specialized implementation of the modular gcd algorithm to Z[x] and our generic
modular implementation instantiated at Z[x].

d spe mod gcd gen mod gcd
200 120 240
250 170 350
300 250 500
350 310 640
400 410 820
450 530 1050
500 700 1280

The ratio between the specialized modular gcd and optimized generic modular
gcd is satisfactory. Indeed, the specialized modular gcd uses an optimized CRT
for integers whereas the optimized generic modular gcd uses a generic CRT.

3 Specialized Algorithms

Another of the difficulties with generic programming is that there are often
specialized algorithms that apply over certain domains. In C++ this is handled
by template specialization and is resolved statically. However, in Aldor types
may be constructed dynamically so we need some other mechanism to access
specialized algorithms. Post facto extension, combined with conditional category
tests, allows generic code to use special purpose algorithms, when applicable,
without revising library components. We illustrate this point with an example
from linear algebra, presented in [7].

A linear algebra package can be defined generically over any commutative
ring. More efficient algorithms may be used, however, when the ring is known to
be an integral domain or a field. We may thus assemble these algorithms into a
package as follows:

LinearAlgebra(R:CommutativeRing, M:MatrixCategory R):
with {...} == add {

local Elim: LinearEliminationCategory(R, M) == {
R has Field =>

OrdinaryGaussElimination(R, M);
R has IntegralDomain =>

TwoStepFractionFreeGaussElimination(R,M);
DivisionFreeGaussElimination(R, M);

}

determinant(m:M):R == determinant(m)$Elim;
}

Certain coefficient rings may support efficient specialized algorithms. For ex-
ample, we may want to compute over the integers using Chinese remaindering.
However, we do not want to have to modify the LinearAlgebra package when-
ever a new method is incorporated into the library. We therefore define a category
that a ring can implement to provide linear algebra algorithms over itself:

LinearAlgebraRing: Category == with {
determinant: (M:MatrixCategory %) -> M -> %;
rank: (M:MatrixCategory %) -> M -> Integer;
...

}

We make one modification to the LinearAlgebra package to take advantage of
special-case algorithms carried in a LinearAlgebraRing view: we replace the
determinant function with the following version

determinant(m:M):R == {
if R has LinearAlgebraRing then

determinant(M)(a)$R;
else

determinant(m)$Elim;
}

When we have special algorithms for some domain, we extend the domain to
know about them:

extend Integer: LinearAlgebraRing == add {
determinant(M: MatrixCategory %)(m: M): % ==

ChineseRemainderingDeterminant(M, m);
rank(M: MatrixCategory %)(m: M): % ==

ChineseRemainderingRank(M, m);
...

}

Whenever we use the LinearAlgebra package, it will use the designated algo-
rithm even if the coefficient ring is determined dynamically.

The technique of using post facto extensions to endow domains with special-
case algorithms has been used in the in the construction of the

∑IT library [1].
The notion of rings knowing how to perform operations in structures over them-
selves has been explored earlier in relation to composing factorization algo-
rithms [2].

References

1. Bronstein, M.:
PIT : A strongly-typed embeddable computer algebra library, Proc.

DISCO’96, LNCS 1128 pp. 22-33, Springer Verlag.
2. Davenport, J., Gianni, P., Trager, B.: Scratchpad’s view of algebra II: a categor-

ical view of factorization, Proc. 1991 International Symposium on Symbolic and
Algebraic Computation, pp. 32–38, ACM Press.

3. Kaltofen, E., Monagan, M.: On the Genericity of the Modular Polynomial GCD
Algorithm, Proc. 1999 International Symposium on Symbolic and Algebraic Com-
putation, ACM Press.

4. Watt, S.M.: Aldor. In Grabmeier, J., Kaltofen, E., Weispfenning, V., eds.: Hand-
book of Computer Algebra, Springer Verlag (2003) 265–270

5. Aldor.org: Aldor user guide. http://www.aldor.org/AldorUserGuide (2003)
6. The Computational Mathematics Group: The BasicMath library. NAG Ltd, Ox-

ford, UK. http://www.nag.co.uk/projects/FRISCO.html (1998)
7. Watt, S.M.: Post facto Type Extensions for Mathematical Programming, Proc.

Domain-Specific Aspect langauges (SIGPLAN/SIGSOFT DSAL 2006), October
23, 2006, Portland OR, USA.

