Solving Polynomial Systems Symbolically and in Parallel

Marc Moreno Maza & Yuzhen Xie Ontario Research Center for Computer Algebra University of Western Ontario, London, Canada MITACS - CAIMS, June 18, 2006. Solving polynomial systems ...

$$\begin{cases} x^{2} + y + z = 1 \\ x + y^{2} + z = 1 \\ x + y + z^{2} = 1 \end{cases}$$

The output with phc the symb.-num. software of J. Verschelde:

solution 1 : start residual : 3.968E-12 #iterations : 1 success x : 9.99999695984909E-01 4.13938269379988E-07 y : 3.04015091103714E-07 -4.13938269379988E-07 z : 3.04015090976779E-07 -4.13938269379988E-07 == err : 2.154E-06 = rco : 1.197E-07 = res : 9.920E-13 = complex regular == start residual : 1.388E-16 #iterations : 1 solution 2 : success x : 4.14213562373095E-01 2.35098870164458E-38 v : 4.14213562373095E-01 -1.67507944992176E-37 z : 4.14213562373095E-01 1.29304378590452E-37 == err : 7.517E-16 = rco : 6.017E-02 = res : 5.551E-17 = real regular == solution 3 : start residual : 2.400E-12 #iterations : 1 success x : 1.80048038888678E-08 4.29782537417684E-07 v : 9.99999981995196E-01 -4.29782537417684E-07 z : 1.80048038262633E-08 4.29782537417684E-07 == err : 1.344E-06 = rco : 7.463E-08 = res : 5.995E-13 = complex regular ==

```
solution 4 : start residual : 9.614E-13 #iterations : 1 success
x : 1.00000024904061E+00 -3.93267692590196E-08
y : -2.49040612161639E-07 3.93267692590197E-08
z : -2.49040612108234E-07 3.93267692590197E-08
== err : 8.657E-07 = rco : 4.806E-08 = res : 2.400E-13 = complex regular ==
              start residual : 2.745E-12 #iterations : 1 success
solution 5 :
x : 3.58839953269127E-07 1.89357516639334E-07
v : 3.58839953269127E-07 1.89357516639334E-07
z : 9.99999641160047E-01 -1.89357516639334E-07
== err : 1.645E-06 = rco : 7.071E-08 = res : 6.863E-13 = complex regular ==
solution 6 :
              start residual : 1.744E-34 #iterations : 1 success
x : -2.41421356237309E+00 0.000000000000E+00
v : -2.41421356237309E+00 0.000000000000E+00
z : -2.41421356237309E+00 -1.00577224408752E-106
== err : 3.611E-35 = rco : 4.142E-01 = res : 6.868E-106 = real regular ==
              start residual : 1.112E-12 #iterations : 1 success
solution 7 :
x : -2.64786238552867E-07 -4.67724648385200E-08
y : -2.64786238552867E-07 -4.67724648385200E-08
z : 1.00000026478624E+00 4.67724648385200E-08
== err : 9.341E-07 = rco : 4.530E-08 = res : 2.779E-13 = complex regular ==
solution 8 :
              start residual : 2.045E-12 #iterations : 1 success
x : 1.42636460554469E-07 -3.16738323586431E-07
v : 9.99999857363539E-01 3.16738323586431E-07
z : 1.42636460467758E-07 -3.16738323586431E-07
== err : 1.378E-06 = rco : 7.656E-08 = res : 5.117E-13 = complex regular ==
A list of 8 solutions has been refined :
Number of regular solutions : 8.
Number of singular solutions : 0.
Number of real solutions
                          : 2.
Number of complex solutions : 6.
Number of clustered solutions : 0.
Number of failures
                          : 0.
```

```
3
```

Solving polynomial systems symbolically ...

$$\begin{cases} x^{2} + y + z = 1 \\ x + y^{2} + z = 1 \\ x + y + z^{2} = 1 \end{cases} \xrightarrow{\text{has Gröbner basis}} : \\ x + y + z^{2} = 1 \\ \end{cases}$$

$$\begin{cases} z^{6} - 4z^{4} + 4z^{3} - z^{2} = 0 \\ 2z^{2}y + z^{4} - z^{2} = 0 \\ y^{2} - y - z^{2} + z = 0 \\ x + y + z^{2} - 1 = 0 \end{cases} \xrightarrow{\text{and triangular decomposition}} : \\ x + y + z^{2} - 1 = 0 \\ \end{cases}$$

$$\begin{cases} z = 1 \\ y = 0 \\ x = 0 \\ x = 0 \\ \end{cases} \begin{cases} z = 0 \\ y = 1 \\ x = 0 \\ x = 1 \\ \end{bmatrix} \begin{cases} z = 0 \\ y = 0 \\ x = 1 \\ x = 1 \\ \end{bmatrix} \begin{cases} z^{2} + 2z - 1 = 0 \\ y = z \\ x = z \\ x = z \\ \end{cases}$$

An example of efficient parallelization

Consider a tridiagonal linear system of order n:

••• •••

$$a_{i-2}x_{i-2} + b_{i-1}x_{i-1} + c_ix_i = e_{i-1}$$
$$a_{i-1}x_{i-1} + b_ix_i + c_{i+1}x_{i+1} = e_i$$

$$a_i x_i + b_{i+1} x_{i+1} + c_{i+2} x_{i+2} = e_{i+1}$$

...

. . .

For every even *i* replacing x_i with $-\frac{e_i-c_{i+1}x_{i+1}-a_{i-1}x_{i-1}}{b_i}$ leads to another tridiagonal system of order n/2:

Observe that, on this example:

- the number of processors, here p = n, can be set such that
- the number of parallel steps, here $O(\log n)$, is known and small,
- processors activity (scheduling) is easy to organize,
- data-communication is not intensive.

Why solving non-linear systems is much more difficult?

Let $F \subset K[X]$ with $X = x_1 < \cdots < x_n$ and a coefficient field K. Let d be the maximum (total) degree of a monomial in F.

Let $V(F) \subset \overline{K}^n$ be the zero set of F, where \overline{K} is an algebraically closed field containing K. For instance K = Q and $\overline{K} = C$.

- V(F) may consist of components of **different dimension**: points, curves, surfaces, ...,
- Even if V(F) is finite, it may contain $O(d^n)$ points,
- The idea of *substitution* or *simplification* is much **more complicated** than in the linear case and leads to the notion of a *Gröbner basis*,
- Large intermediate data.

What is a Gröbner basis?

• Assume F is a linear system. Then, a solution of F is a **solved** system S for $x_1 < \cdots < x_n$ which reduces to 0 (i.e. cancels) all polynomials in F. Moreover, up to trivial transformations, the set S is unique.

• Now, assume that F is not linear. Then, a Gröbner basis of F is a system B which which reduces to 0 all polynomials in the ideal generated by F. Moreover, up to trivial transformations, the set B is unique.

$$\begin{cases} x^{2} + y + z = 1 \\ x + y^{2} + z = 1 \\ x + y + z^{2} = 1 \end{cases} \xrightarrow{\text{has Gröbner basis}} : \begin{cases} z^{6} - 4z^{4} + 4z^{3} - z^{2} = 0 \\ 2z^{2}y + z^{4} - z^{2} = 0 \\ y^{2} - y - z^{2} + z = 0 \\ x + y + z^{2} - 1 = 0 \end{cases}$$

Parallelizing the computation of Gröbner bases

```
Input: F \subset K[X] and an admissible monomial ordering \leq.
Output: G a reduced Gröbner basis w.r.t. \leq of the ideal \langle F \rangle
    generated by F.
  repeat
(S) B := MinimalAutoreducedSubset(F, \leq)
(R) A := S_Polynomials(F) \cup F;
          R := \operatorname{Reduce}(A, B, \leq)
(U) R := R \setminus \{0\}; F := F \cup R
  until R = \emptyset
  return B
```

(Bündgen, Göbel & W. Küchlin, 1994) (Chakrabarti & Yelick, 1993, 1994) (Attardi & Traverso, 1996) (Leykin, 2004)

To go further: triangular decompositions

• The zero set V(F) admits a decomposition (unique when minimal)

$$V(F) = V(F_1) \cup \cdots \cup V(F_e),$$

s.t. $F_1, \ldots, F_e \subset K[X]$ and every $V(F_i)$ cannot be decomposed further.

• Moreover, for each $V(F_i)$ the following holds, up to renumbering the variables. If $V(F_i)$ has dimension d, then there exist polynomials T_{d+1}, \ldots, T_n with respective main variables x_{d+1}, \ldots, x_n and respective corresponding leading coefficients h_{d+1}, \ldots, h_n such that

1.
$$h_{d+1}, \ldots, h_n$$
 are polynomials in $K[x_1, \ldots, x_d]$,

2.
$$\sqrt{\langle F_i \rangle} = \langle T_{d+1}, \dots, T_n \rangle : h^{\infty}$$
 where $h = h_{d+1} \cdots h_n$.

Up to technical details, this means that each $V(F_i)$ is the zero set of a polynomial system with a **triangular shape**, called a *regular chain*. Regular chains for the $V(F_i)$'s form a *triangular decomposition* of V(F).

The characteristic set method

Input: $F \subset K[X]$ and a variable ordering \leq .

Output: C an autoreduced characteristic set of F (in the sense of Wu).

```
repeat

(S) B := MinimalAutoreducedSubset(F, \leq)

(R) A := F \setminus B;

R := PseudoReduce(A, B, \leq)

(U) R := R \setminus \{0\}; F := F \cup R

until R = \emptyset

return B
```

- Repeated calls to this procedure computes a decomposition of V(F).
- Cannot start computing the 2nd component before the 1st is completed.
- (Ajwa, 1998), (Y.W. Wu, W.D. Liao, D.D. Liu & P.S. Wang, 2003) (Y.W. Wu, G.W. Yang, H. Yang, H.M. Zheng & D.D. Liu, 2005)

Triangular decompositions: a geometrical approach

$$\begin{cases} x^{2} + y + z = 1 \\ x + y^{2} + z = 1 \\ x + y^{2} + z = 1 \end{cases} \begin{cases} x^{2} + y + z = 1 \\ x + y^{2} + z = 1 \\ x + y + z^{2} = 1 \end{cases}$$

$$\begin{cases} x^2 + y + z = 1 \\ y^4 + (2z - 2)y^2 + y - z + z^2 = 0 \\ z^3 + z^2 - 3z = z \end{cases}$$

$$\begin{cases} x^{2} + y + z = 1 \\ x + y^{2} + z = 1 \\ x + y^{2} + z = 1 \end{cases} \begin{cases} x^{2} + y + z = 1 \\ x + y^{2} + z = 1 \\ x + y + z^{2} = 1 \end{cases}$$

$$\begin{cases} x^2 + y + z = 1 \\ y^4 + (2z - 2)y^2 + y - z + z^2 = 0 \\ z^3 + z^2 - 3z = -1 \end{cases} \begin{cases} x + y = 1 \\ y^2 - y = z = 0 \\ z^3 + z^2 - 3z = -1 \end{cases}$$

Triangular decompositions: a task manager algorithm

A task is any [F, T] where $F, T \subset K[X]$ with T regular chain. It is solved iff $F = \emptyset$ and unsolved otherwise.

Input: $F \subset K[X]$ and a variable ordering \leq .

Output: \mathcal{T} a triangular decomposition of V(F) by means of regular chains.

```
ToDo := [[F, \emptyset]; \mathcal{T} := []]
```

repeat

if $ToDo = \emptyset$ then break

S)
$$Tasks := Select(ToDo)$$

(R)
$$Results := LazySolve(Tasks)$$

 $\begin{array}{l} (\mathrm{U}) \ (ToDo,\mathcal{T}) := \mathrm{Update}(Results,ToDo,\mathcal{T}) \\ \mathbf{return} \ \mathcal{T} \end{array}$

LazySolve((F,T]) returns $[F_1,T_1],\ldots,[F_d,T_d]$ which are less unsolved and:

 $V(F) \cap W(T) \subseteq \cup_{i=1}^{d} Z(F_i, T_i) \subseteq V(F) \cap \overline{W(T)}.$

Difficulty 1: redundant and irregular tasks

The red and blue surfaces intersect on the line x - 1 = y = 0 contained in the green plane x = 1. With the other green plane z = 0, they intersect at $(2, 1, 0), (\frac{7}{4}, \frac{3}{2}, 0)$ but also at x - 1 = y = z = 0, which is redundant.

Initial task
$$[\{f_1, f_2, f_3\}, \emptyset]$$

$$f_1 = x - 2 + (y - 1)^2$$

$$f_2 = (x - 1)(y - 1) + (x - 2)y$$

$$f_3 = (x - 1)z$$

$$x - 1 + y^2 - 2y = 0$$

$$(2y - 1)x + 1 - 3y = 0$$

$$z = 0$$

$$z = 0$$

$$z = 0$$

$$y = 0$$

$$y = 0$$

$$y = 1$$

$$x = 2$$

$$x = 7$$

Difficulty 2: load balancing

• How do splits occur during decompositions? Gien a polynomial ideal \mathcal{I} and polynomials p, a, b, there are two rules:

- $\mathcal{I} \longmapsto (\mathcal{I} + p, \mathcal{I} : p^{\infty}).$
- $\mathcal{I} + \langle a b \rangle \longmapsto (\mathcal{I} + \langle a \rangle, \mathcal{I} + \langle b \rangle).$

• The second one is more likely to **split computations evenly**. But geometrically, it means that a component is **reducible**.

• Unfortunately, most polynomial systems $F \subseteq Q[X]$ (both in theory and practice) are **equiprojectable**, that is they can be represented by a single regular chain.

• However, for $F \subseteq Z/pZ[X]$ where p prime, the second rule is more likely to be used.

Key solutions

• We rely on the Triade algorithm (MMM, 2000) for computing triangular decompositions. In this case, LazySolve((F, T]) returns $[F_1, T_1], \ldots, [F_d, T_d]$ such that $F_i = \emptyset \iff |T_i| = |T|$ and thus, $F_i \neq \emptyset \iff |T_i| > |T|$. \Rightarrow We solve completely only in the cases where dimension does not drop

and solve lazily the other cases.

 \Rightarrow Computations in lower dimension are delayed toward the end of the solving process.

• For solving $F \subseteq Q[X]$ we use modular methods (Dahan, MMM, Schost, Wu, Xie, 2005)

- For p big enough, a triangular decomposition of V(F) can be reconstructed (= merged + lifted) from one of $V(F \mod p)$.
- The reconstruction is cheap (comparing to the decomposition phasis).
- This modular approach consumes less resources than the direct one.

A parallel scheme

Input: $F \subset K[X]$ and a variable ordering \leq .

Output: \mathcal{T} a triangular decomposition of V(F) by means of regular chains.

$$ToDo := [[F, \emptyset]; \mathcal{T} := []; d := n;$$

repeat

if $ToDo = \emptyset$ then break

(1) let V be all tasks which can produce solved tasks of diemnsion d

(2) if
$$V \neq \emptyset$$
 then

- lazy-solve these tasks
- update ToDo and ${\mathcal T}$

(3) if
$$V = \emptyset$$
 then $d := d - 1$ and go to (1) return \mathcal{T}

Target implementation

Current implementation

• In Aldor on a 4-processor machine using shared memory for data-communication.

• Only the output components are generated by decreasing order of dimension. (This does not hold yet for the intermediate components)

 \Rightarrow Hence, we do not implement yet the above parallel scheme, but only an approximation of it.

• Splitting (of the 2nd kind) relies only on the *D5 Principle* and univariate polynomial factorization.

• Each *LazySolve* requires to activate a process worker, which terminates after completing this computation.

 \Rightarrow Hence, we pay a severe penalty in data-communication and O/S calls w.r.t. our target implementation (work in progress).

Preliminay results

Work in progress and conclusions

• Combining the Triade algorithm and modular techniques, we have achieved successful coarse-grain parallelization of triangular decompositions based on geometrical information detected during the solving process.

- Future work:
 - Increasing the average number of working processors (by making use of multivariate factorization)
 - Reducing data-communicatio (with our target implementation scheme).
 - Making use of medium-grain parallelization (by parallelizing our GCDs/resultants).
- Parallelizing helps removing arbitrary choices.
- Modular methods increase opportunities for parallelism.