
Solving Polynomial Systems

Symbolically and in Parallel

Marc Moreno Maza & Yuzhen Xie

Ontario Research Center for Computer Algebra

University of Western Ontario, London, Canada

MITACS - CAIMS, June 18, 2006.

1

Solving polynomial systems . . .















x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

The output with phc the symb.-num. software of J. Verschelde:

solution 1 : start residual : 3.968E-12 #iterations : 1 success

x : 9.99999695984909E-01 4.13938269379988E-07

y : 3.04015091103714E-07 -4.13938269379988E-07

z : 3.04015090976779E-07 -4.13938269379988E-07

== err : 2.154E-06 = rco : 1.197E-07 = res : 9.920E-13 = complex regular ==

solution 2 : start residual : 1.388E-16 #iterations : 1 success

x : 4.14213562373095E-01 2.35098870164458E-38

y : 4.14213562373095E-01 -1.67507944992176E-37

z : 4.14213562373095E-01 1.29304378590452E-37

== err : 7.517E-16 = rco : 6.017E-02 = res : 5.551E-17 = real regular ==

solution 3 : start residual : 2.400E-12 #iterations : 1 success

x : 1.80048038888678E-08 4.29782537417684E-07

y : 9.99999981995196E-01 -4.29782537417684E-07

z : 1.80048038262633E-08 4.29782537417684E-07

== err : 1.344E-06 = rco : 7.463E-08 = res : 5.995E-13 = complex regular ==

2

solution 4 : start residual : 9.614E-13 #iterations : 1 success

x : 1.00000024904061E+00 -3.93267692590196E-08

y : -2.49040612161639E-07 3.93267692590197E-08

z : -2.49040612108234E-07 3.93267692590197E-08

== err : 8.657E-07 = rco : 4.806E-08 = res : 2.400E-13 = complex regular ==

solution 5 : start residual : 2.745E-12 #iterations : 1 success

x : 3.58839953269127E-07 1.89357516639334E-07

y : 3.58839953269127E-07 1.89357516639334E-07

z : 9.99999641160047E-01 -1.89357516639334E-07

== err : 1.645E-06 = rco : 7.071E-08 = res : 6.863E-13 = complex regular ==

solution 6 : start residual : 1.744E-34 #iterations : 1 success

x : -2.41421356237309E+00 0.00000000000000E+00

y : -2.41421356237309E+00 0.00000000000000E+00

z : -2.41421356237309E+00 -1.00577224408752E-106

== err : 3.611E-35 = rco : 4.142E-01 = res : 6.868E-106 = real regular ==

solution 7 : start residual : 1.112E-12 #iterations : 1 success

x : -2.64786238552867E-07 -4.67724648385200E-08

y : -2.64786238552867E-07 -4.67724648385200E-08

z : 1.00000026478624E+00 4.67724648385200E-08

== err : 9.341E-07 = rco : 4.530E-08 = res : 2.779E-13 = complex regular ==

solution 8 : start residual : 2.045E-12 #iterations : 1 success

x : 1.42636460554469E-07 -3.16738323586431E-07

y : 9.99999857363539E-01 3.16738323586431E-07

z : 1.42636460467758E-07 -3.16738323586431E-07

== err : 1.378E-06 = rco : 7.656E-08 = res : 5.117E-13 = complex regular ==

===

A list of 8 solutions has been refined :

Number of regular solutions : 8.

Number of singular solutions : 0.

Number of real solutions : 2.

Number of complex solutions : 6.

Number of clustered solutions : 0.

Number of failures : 0.

3

Solving polynomial systems symbolically . . .















x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

has Gröbner basis :



























z6 − 4z4 + 4z3 − z2 = 0

2z2y + z4 − z2 = 0

y2 − y − z2 + z = 0

x + y + z2 − 1 = 0

and triangular decomposition :















z = 1

y = 0

x = 0

⋃















z = 0

y = 1

x = 0

⋃















z = 0

y = 0

x = 1

⋃















z2 + 2z − 1 = 0

y = z

x = z

4

Processor P0

x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

Processor P1

z = 1

y = 0

x = 0

Processor P2

z = 0

y = 1

x = 0

Processor P3

z = 0

y = 0

x = 1

Processor P4

z2 + 2z − 1 = 0

y = z

x = z

5

An example of efficient parallelization

Consider a tridiagonal linear system of order n:

· · · · · · · · · · · ·

ai−2xi−2 + bi−1xi−1 + cixi = ei−1

ai−1xi−1 + bixi + ci+1xi+1 = ei

aixi + bi+1xi+1 + ci+2xi+2 = ei+1

· · · · · · · · · · · ·

For every even i replacing xi with − ei−ci+1xi+1−ai−1xi−1

bi

leads to another

tridiagonal system of order n/2:

· · · · · · · · · · · ·

Ai−3xi−3 + Bi−1xi−1 + Ci+1xi+1 = Ei−1

Ai−1xi−1 + Bi+1xi+1 + Ci+3xi+3 = Ei+1

· · · · · · · · · · · ·

6

Observe that, on this example:

• the number of processors, here p = n, can be set such that

• the number of parallel steps, here O(logn), is known and small,

• processors activity (scheduling) is easy to organize,

• data-communication is not intensive.

7

Why solving non-linear systems is much more difficult?

Let F ⊂ K[X] with X = x1 < · · · < xn and a coefficient field K. Let d be

the maximum (total) degree of a monomial in F .

Let V (F) ⊂ K
n

be the zero set of F , where K is an algebraically closed

field containing K. For instance K = Q and K = C.

• V (F) may consist of components of different dimension: points,

curves, surfaces, . . . ,

• Even if V (F) is finite, it may contain O(dn) points,

• The idea of substitution or simplification is much more complicated

than in the linear case and leads to the notion of a Gröbner basis,

• Large intermediate data.

8

What is a Gröbner basis?

• Assume F is a linear system. Then, a solution of F is a solved system S

for x1 < · · · < xn which reduces to 0 (i.e. cancels) all polynomials in F .

Moreover, up to trivial transformations, the set S is unique.

• Now, assume that F is not linear. Then, a Gröbner basis of F is a

system B which which reduces to 0 all polynomials in the ideal generated

by F . Moreover, up to trivial transformations, the set B is unique.















x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

has Gröbner basis :



























z6 − 4z4 + 4z3 − z2 = 0

2z2y + z4 − z2 = 0

y2 − y − z2 + z = 0

x + y + z2 − 1 = 0

9

Parallelizing the computation of Gröbner bases

Input: F ⊂ K[X] and an admissible monomial ordering ≤.

Output: G a reduced Gröbner basis w.r.t. ≤ of the ideal 〈F 〉

generated by F .

repeat

(S) B := MinimalAutoreducedSubset(F, ≤)

(R) A := S Polynomials(F)∪F ;

R := Reduce(A, B, ≤)

(U) R := R \ {0}; F := F ∪R

until R = ∅

return B

(Bündgen, Göbel & W. Küchlin, 1994) (Chakrabarti & Yelick, 1993, 1994)

(Attardi & Traverso, 1996) (Leykin, 2004)

10

To go further: triangular decompositions

• The zero set V (F) admits a decomposition (unique when minimal)

V (F) = V (F1)∪ · · · ∪V (Fe),

s.t. F1, . . . , Fe ⊂ K[X] and every V (Fi) cannot be decomposed further.

• Moreover, for each V (Fi) the following holds, up to renumbering the

variables. If V (Fi) has dimension d, then there exist polynomials

Td+1, . . . , Tn with respective main variables xd+1, . . . , xn and respective

corresponding leading coefficients hd+1, . . . , hn such that

1. hd+1, . . . , hn are polynomials in K[x1, . . . , xd],

2.
√

〈Fi〉 = 〈Td+1, . . . , Tn〉 : h∞ where h = hd+1 · · ·hn.

Up to technical details, this means that each V (Fi) is the zero set of a

polynomial system with a triangular shape, called a regular chain.

Regular chains for the V (Fi)’s form a triangular decomposition of V (F).

11

The characteristic set method

Input: F ⊂ K[X] and a variable ordering ≤.

Output: C an autoreduced characteristic set of F (in the sense of Wu).

repeat

(S) B := MinimalAutoreducedSubset(F, ≤)

(R) A := F \ B;

R := PseudoReduce(A, B, ≤)

(U) R := R \ {0}; F := F ∪R

until R = ∅

return B

• Repeated calls to this procedure computes a decomposition of V (F).

• Cannot start computing the 2nd component before the 1st is completed.

• (Ajwa, 1998), (Y.W. Wu, W.D. Liao, D.D. Liu & P.S. Wang, 2003)

(Y.W. Wu, G.W. Yang, H. Yang, H.M. Zheng & D.D. Liu, 2005)

12

Triangular decompositions: a geometrical approach

{

x2 + y + z = 1







x2 + y + z = 1

x + y2 + z = 1















x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

13

{

x2 + y + z = 1







x + y2 + z = 1

y4 + (2z − 2)y2 + y − z + z2 = 0







x + y =

y2 − y = z =






2x + z2 = 2y + z2 =

z3 + z2 − 3z =

n

x2 + y + z = 1

8

<

:

x2 + y + z = 1

x + y2 + z = 1

8

>

>

<

>

>

:

x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

n

x2 + y + z = 1

8

<

:

x + y2 + z = 1

y4 + (2z − 2)y2 + y − z + z2 = 0

8

<

:

x + y = 1

y2
− y = z = 0

8

<

:

2x + z2 = 2y + z2 = 1

z3 + z2
− 3z = −1

Triangular decompositions: a task manager algorithm

A task is any [F, T] where F, T ⊂ K[X] with T regular chain. It is solved

iff F = ∅ and unsolved otherwise.

Input: F ⊂ K[X] and a variable ordering ≤.

Output: T a triangular decomposition of V (F) by means of regular chains.

ToDo := [[F, ∅]; T := []

repeat

if ToDo = ∅ then break

(S) Tasks := Select(ToDo)

(R) Results := LazySolve(Tasks)

(U) (ToDo, T) := Update(Results, ToDo, T)

return T

LazySolve((F, T]) returns [F1, T1], . . . , [Fd, Td] which are less unsolved and:

V (F) ∩ W (T) ⊆ ∪d

i=1Z(Fi, Ti) ⊆ V (F) ∩ W (T).

16

Difficulty 1: redundant and irregular tasks

x

4

4

2

2

−2−4

0

y

5

5

31

3

0−1−3

1

−5
−1

−2

−3

−4

−5

The red and blue surfaces intersect on the line x − 1 = y = 0 contained in

the green plane x = 1. With the other green plane z = 0, they intersect at

(2, 1, 0), (7

4
, 3

2
, 0) but also at x − 1 = y = z = 0, which is redundant.

17

Initial task [{f1, f2, f3}, ∅]

f1 = x − 2 + (y − 1)2

f2 = (x − 1)(y − 1) + (x − 2)y

f3 = (x − 1)z

y = 0

x = 1

x − 1 + y2
− 2y = 0

(2y − 1)x + 1 − 3y = 0

z = 0

z = 0

y = 0

x = 1

z = 0

y = 1

x = 2

z = 0

2y = 3

4x = 7

18

Difficulty 2: load balancing

• How do splits occur during decompositions? Gien a polynomial ideal I

and polynomials p, a, b, there are two rules:

• I 7−→ (I + p, I : p∞).

• I + 〈a b〉 7−→ (I + 〈a〉, I + 〈b〉).

• The second one is more likely to split computations evenly. But

geometrically, it means that a component is reducible.

• Unfortunately, most polynomial systems F ⊆ Q[X] (both in theory and

practice) are equiprojectable, that is they can be represented by a single

regular chain.

• However, for F ⊆ Z/pZ[X] where p prime, the second rule is more likely

to be used.

19

Key solutions

• We rely on the Triade algorithm (MMM, 2000) for computing triangular

decompositions. In this case, LazySolve((F, T]) returns [F1, T1], . . . , [Fd, Td]

such that Fi = ∅ ⇐⇒ |Ti| = |T | and thus, Fi 6= ∅ ⇐⇒ |Ti| > |T |.

⇒ We solve completely only in the cases where dimension does not drop

and solve lazily the other cases.

⇒ Computations in lower dimension are delayed toward the end

of the solving process.

• For solving F ⊆ Q[X] we use modular methods (Dahan, MMM, Schost,

Wu, Xie, 2005)

- For p big enough, a triangular decomposition of V (F) can be

reconstructed (= merged + lifted) from one of V (F mod p).

- The reconstruction is cheap (comparing to the decomposition phasis).

- This modular approach consumes less resources than the direct one.

20

A parallel scheme

Input: F ⊂ K[X] and a variable ordering ≤.

Output: T a triangular decomposition of V (F) by means of regular

chains.

ToDo := [[F, ∅]; T := []; d := n;

repeat

if ToDo = ∅ then break

(1) let V be all tasks which can produce solved tasks of diemnsion d

(2) if V 6= ∅ then

- lazy-solve these tasks

- update ToDo and T

- go to (1)

(3) if V = ∅ then d := d − 1 and go to (1)

return T

21

Target implementation

Process Manager
{task table: tasks, task id − process worker}

Process Worker 2
{local task table: tasks}

Process Worker 1
{local task table: tasks}

... ...

Create process
Exchange data

22

Current implementation

• In Aldor on a 4-processor machine using shared memory for

data-communication.

• Only the output components are generated by decreasing order of

dimension. (This does not hold yet for the intermediate components)

⇒ Hence, we do not implement yet the above parallel scheme, but only an

approximation of it.

• Splitting (of the 2nd kind) relies only on the D5 Principle and univariate

polynomial factorization.

• Each LazySolve requires to activate a process worker, which terminates

after completing this computation.

⇒ Hence, we pay a severe penalty in data-communication and O/S calls

w.r.t. our target implementation (work in progress).

23

Preliminay results

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 50 100 150 200 250

[N
um

be
r

of
 W

or
ke

rs
]

Uteshev-Bikker: Time [s]

Number of Workers vs Time [s]
Average

24

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140 160 180

[N
um

be
r

of
 W

or
ke

rs
]

gametwo5: Time [s]

Number of Workers vs Time [s]
Average

25

Work in progress and conclusions

• Combining the Triade algorithm and modular techniques, we have

achieved successful coarse-grain parallelization of triangular

decompositions based on geometrical information detected during the

solving process.

• Future work:

- Increasing the average number of working processors (by making use of

multivariate factorization)

- Reducing data-communicatio (with our target implementation

scheme).

- Making use of medium-grain parallelization (by parallelizing our

GCDs/resultants).

• Parallelizing helps removing arbitrary choices.

• Modular methods increase opportunities for parallelism.

26

