
Models of Computation for Graphics Processing
Units

Marc Moreno Maza

University of Western Ontario

November 5, 2017



Contents

Overview

Models of computation for algorithm analysis
Parallel random access machine (PRAM) model
Fork-join model
Threaded many-core memory (TMM) model
The Many-core-Machine (MCM) model

Models of computation for program analysis
The Memory-level and Thread-level Parallelism (MWP-CWP) Model

Handling machine and program parameters



Plan

Overview

Models of computation for algorithm analysis

Models of computation for program analysis

Handling machine and program parameters



Models of computation for GPUs

Background
▸ Analyzing, optimizing GPU code amd knowing what to expect is
hard and tiem consuming, even for experts.

▸ This, among other reasons, stimulates the developemnt of tools
generating GPU code from annoated C/C++ code

▸ Thus, tools for annalyzing for both algorithms and code targeting
GPUs are needed.

Program models vs algorithm models
▸ Program models (like the MWP-CWP model) require the availability
of machine-like code while algorithm models (like TMM, MCM) do
not.

▸ On the other hand, program models give performance estimates
(running time, memory consumption, etc.) which are more precise
than those provided by algorithm models.



Challenges in designing a model of computation

Theoretical aspects
▸ GPU-like architectures introduces many machine parameters (like
memory sizes, number of cores), and too many could lead to
intractable calculations.

▸ GPU-like code depends also on program parameters (like number of
threads per thread-block) which specify how the work is divided
among the computing resources.

Practical aspects
▸ C-to-CUDA type of tools need to treat program parameters
unknown symbols for portability and performenace reasons

▸ Analyzing parametric programs (with unknown machine and
program parameters) require symbolic computation.



Plan

Overview

Models of computation for algorithm analysis
Parallel random access machine (PRAM) model
Fork-join model
Threaded many-core memory (TMM) model
The Many-core-Machine (MCM) model

Models of computation for program analysis

Handling machine and program parameters



The PRAM Model: basics

Architecture
The Parallel Random Access Machine is a natural generalization of RAM.
It is also an idealization of a shared memory machine. Its features are as
follows.

▸ It holds an unbounded collection of RAM processors P0,P1,P2, . . .
without tapes.

▸ It holds an unbounded collection of shared memory cells
M[0],M[1],M[2], . . .

▸ Each processor Pi has its own (unbounded) local memory (register
set) and Pi knows its index i .

▸ Each processor Pi can access any shared memory cell M[j] in unit
time, unless there is a conflict (see further).



The PRAM Model: basics



The PRAM Model: basics

Program execution
▸ The input of a PRAM program consists of n items stored in

M[0], . . . ,M[n − 1].
▸ The output of a PRAM program consists of n′ items stored in n′
memory cells, say M[n], . . . ,M[n + n′ − 1].

● A PRAM instruction executes in a 3-phase cycle:
1. Read (if needed) from a shared memory cell,
2. Compute locally (if needed),
3. Write in a shared memory cell (if needed).

▸ All processors execute their 3-phase cycles synchronously.
▸ Special assumptions have to be made in order to resolve shared
memory access conflicts.

▸ The only way processors can exchange data is by writing into and
reading from memory cells.



The PRAM Model: complexity measures

Summary of main assumptions
▸ Inputs/Outputs are placed in the global memory
▸ Memory cell stores an arbitrarily large integer
▸ Each instruction takes unit time
▸ Instructions are synchronized across the processors

PRAM complexity measures
time: time taken by the longest running processor

space: number of memory cells accessed
proc: maximum number of active processors



The PRAM Model: code example

Computing the maximum of n numbers in O(1)
Input: n integer numbers stored in M[1], . . . ,M[n], where n ≥ 2.

Output: The maximum of those numbers, written at M[n + 1].
Program: Active Proocessors P[1], ...,P[n^2];

// id the index of one of the active processor
if (id <= n)

M[n + id] := true;
i := ((id -1) mod n) + 1;
j := ((id -1) quo n) + 1;
if (M[i] < M[j])

M[n + i] := false;
if (M[n + i] = true)

M[n+1] := M[i];



The PRAM Model: remarks

Advantages
The PRAM Model is attractive for designing parallel algorithms:

▸ It is natural: the number of operations executed per one cycle on p
processors is at most p.

▸ It is strong: any processor can read or write any shared memory cell
in unit time.

▸ It is simple: ignoring any communication or synchronization
overhead.

Limitations towards GPU implementation
The PRAM model:

▸ treats uniformly all costs (computations, memory accesses)
▸ Is based on a single parallelism scheme whereas CUDA combines
SIMD and the fork-join model



Hybrid CPU-GPU system

Figure: Overview of a hybrid CPU-GPU system



Fork-join model
This model has become popular with the development of the concurrency
platform CilkPlus, targeting multi-core architectures.

▸ The work T1 is the total time to execute the entire program on one
processor.

▸ The span T∞ is the longest time to execute along any path in the
DAG.

▸ We recall that the Graham-Brent theorem states that the running
time TP on P processors satisfies TP ≤ T1/P +T∞. A refinement of
this theorem captures scheduling and synchronization costs, that is,
TP ≤ T1/P + 2δT̂∞, where δ is a constant and T̂∞ is the burdened
span.

Figure: An example of computation DAG: 4-th Fibonacci number



Threaded many-core memory (TMM) model

Ma, Agrawal and Chamberlain (2014) introduce the TMM model which
retains many important characteristics of GPU-type architectures.

Description
L Time for a global memory access
P Number of processors (cores)
C Memory access width
Z Size of fast private memory per core group
Q Number of cores per core group
X Hardware limit on number of threads per core

Table: Machine parameters of the TMM model

▸ In TMM analysis, the running time of algorithm is estimated by
choosing the maximum quantity among the work, span and amount
of memory accesses. No Graham-Brent theorem-like is provided.

▸ Such running time estimates depend on the machine parameters.



The MCM model

(S. A, Haque, N, Xie, M., 2013) proposes a many-core machine (MCM)
model which aims at

▸ tuning program parameters to minimize parallelism overheads of
algorithms targeting GPU-like architectures as well as

▸ comparing different algorithms independently of the value of
machine parameters of the targeted hardware device.

In the design of this model, we insist on the following features:
▸ Two-level DAG programs
▸ Parallelism overhead
▸ A Graham-Brent theorem



Characteristics of the abstract many-core machines (1/2)

Figure: A many-core machine

▸ It has a global memory with high latency, while private memories
have low latency.



Characteristics of the abstract many-core machines (2/2)

Figure: Overview of a many-core machine program, also called kernel DAG



Machine parameters and complexity measures

Machine parameters
▸ Z : Private memory size of any SM
▸ U: Data transfer time

Complexity measures
▸ work W (P) is the total work of all its kernels;
▸ span S(P) is the longest path, counting the weight (span) of each
vertex (kernel), in the kernel DAG;

▸ parallelism overhead O(P) is the total parallelism overhead (i.e.
data transfer time) of all its kernels.



Characteristic quantities of the thread-block DAG

A Graham-Brent Theorem
N(P): number of vertices in the thread-block DAG of P,
L(P): critical path length (where length of a path is the number of
edges in that path) in the thread-block DAG of P.
Let K be the maximum number of thread-blocks along an anti-chain

TP ≤ (N(P)/K + L(P))C(P) (1)



Plan

Overview

Models of computation for algorithm analysis

Models of computation for program analysis
The Memory-level and Thread-level Parallelism (MWP-CWP) Model

Handling machine and program parameters



Motivations
Limitations of previous works

▸ The PRAM-like models (TMM, MCM) support mainly worst-case
analysis of algorithms targeting GPUs

▸ In fact those models compute Texec as max(Tlocal,Tmem or
Tlocal +Tmem.

▸ As for programs, metrics like occupancy are not sufficient to improve
running time since they focus on a precise feature.

Goals
The MWP-CWP model (Sunpyo Hong & Hyesoon Kim, ISCA 2009)

▸ aims at estimating Texec as

Texec = Tcomp +Tmem −Toverlap

▸ determining Toverlap requires to understand whether computations
hide memory latency or not

▸ thus requires hardware characteristics and instruction counts, thus
access to the IR of a program.



Main observation of MWP-CWP

As we know, memory accesses can be overlapped between warps

Performance can be predicted by knowing the amount of memory-level
parallelism.



Memory Warp Parallelism (MWP)

MPW is the maximum number of warps that can overlap memory
accesses.

▸ Here, we MWP = 4.
▸ MWP is determined by #Active SMs, #Active warps, Bandwidth,
Types of memory accesses (Coalesced, Uncoalesced)



Computation Warp Parallelism (CWP)

CWP is the number of warps that execute instructions during one
memory access period plus one.

Here, we CWP = 4.



Estimating the number of cycles of a kernel (1/2)

MWP ≤ CWP

▸ Computation cycles are hidden by memory waiting periods
▸ Overall performance is dominated by the memory cycles



Estimating the number of cycles of a kernel (2/2)

MWP > CWP

▸ Memory accesses are mostly hidden due to high MWP
▸ Overall performance is dominated by the computation cycles

See also (Jaewoong Sim & Aniruddha Dasgupta & Hyesoon Kim &
Richard Vuduc, PPoPP 12)



Determining MWP and CWP



Concluding remarks

▸ First analytic model that estimates the execution cycles for GPU
▸ Experimentally, quite successful
▸ But, of course, requires PTX-like code and the actual hardware
characteristics.



Plan

Overview

Models of computation for algorithm analysis

Models of computation for program analysis

Handling machine and program parameters



Parametric kernels

Parametric kernels
▸ In C-to-CUDA code generation, treating machine and program
parameters improves portability and provides opportunities for better
performance

▸ To do, we use an intermediate (high-level) language called
MetaFork.

Optimizing parametric kernels
▸ It is desirable to optimize such parametric programs depending on
the possible values of the machine and program parameters

▸ This generates a case discussion where each leaf consists of
parametric program together with semi-algebraic constraints.



Generating parametric CUDA kernels through MetaFork permits to treat
hardware and program parameters as symbols.

OpenMP:
#pragma omp target map(from: d[0:N]) map(to: c[0:N])
#pragma omp teams num_teams(T) thread_limit(B)
#pragma omp distribute parallel for schedule (static, 1)

for (int i = 0; i < N-2; ++i)
d[i+1] = (c[i] + c[i+1] + c[i+2]) / 3;

OpenMP CUDA

MetaFork

MetaFork:
int ub_v = (N - 2) / B;
meta_schedule {

for (int t = 0; t < T; ++t) {
meta_for (int v = 0; v < ub_v; v++)

meta_for (int u = 0; u < B; u++) {
int p = v * B + u;
d[p+1] = (c[p] + c[p+1] + c[p+2])/3;

}
}

}

CUDA:
__global__ void kernel0(int *c, int *d, int N, int tmp5, int
tmp14, int tmp3, int tmp10) {
int b0 = blockIdx.x;
int t0 = threadIdx.x;
int private_tmp11;
int private_tmp13;
int private_tmp4;
int private_tmp9;
int private_tmp8;
int private_tmp1;
int private_i;
for (int c0 = b0; c0 < tmp5; c0 += 32768) {

for (private_tmp11 = (t0); private_tmp11 < (tmp10);
private_tmp11 += (tmp14)) {

for (private_tmp13 = 0; private_tmp13 < 1; private_tmp13
+= 1) {

private_tmp4 = ((c0) * (tmp3)) + 0;
private_tmp9 = (private_tmp11 * 1) + 0;
private_tmp8 = (private_tmp13 * 1) + private_tmp9;
private_tmp1 = (private_tmp8 * 1) + private_tmp4;
private_i = (private_tmp1 * 1) + 0;
d[private_i + 1] = (((c[private_i] + c[private_i + 1])

+ c[private_i + 2]) / 3);
}

}
__syncthreads();
}
}



Combining the LLVM infrastructure and the computer algebra system
Maple, we implemented an algorithm optimizing programs depending on
symbolic hardware and program parameters.

First case

{
2sB + 2 ≤ ZB
9 ≤ RB

Second case

{
2B + 2 ≤ ZB < 2sB + 2
9 ≤ RB

Third case

{
ZB < 2B + 2
9 ≤ RB

for (int t = 0; t < T; ++t)
meta_schedule cache(a) {
meta_for (int i = 0; i < dim; i++)
meta_for (int j = 0; j < B; j++)
for (int k = 0; k < s; ++k) {
int p = j+(i*s+k)*B;
int t16 = p+1;
int t15 = p+2;
int p1 = t16;
int p2 = t15;
int np = N+p;
int np1 = N+t16;
int np2 = N+t15;
if (t % 2)
a[p1] = (a[np]+a[np1]+a[np2])/3;

else
a[np1] = (a[p]+a[p1]+a[p2])/3;

}
}

for (int t = 0; t < T; ++t)
meta_schedule cache(a) {
meta_for (int i = 0; i < dim; i++)
meta_for (int j = 0; j < B; j++) {
int p = i*B+j;
int t20 = p+1;
int t19 = p+2;
int p1 = t20;
int p2 = t19;
int np = N+p;
int np2 = N+t19;
int np1 = N+t20;
if (t % 2)
a[p1] = (a[np]+a[np1]+a[np2])/3;

else
a[np1] = (a[p]+a[p1]+a[p2])/3;

}
}

for (int t = 0; t < T; ++t)
meta_schedule {
meta_for (int i = 0; i < dim; i++)
meta_for (int j = 0; j < B; j++) {
int p = j+i*B;
int t16 = p+1;
int t15 = p+2;
int p1 = t16;
int p2 = t15;
int np = N+p;
int np1 = N+t16;
int np2 = N+t15;
if (t % 2)
a[p1] = (a[np]+a[np1]+a[np2])/3;

else
a[np1] = (a[p]+a[p1]+a[p2])/3;

}
}



Machine and program parameters

We use the same machine parameters as the MWP-CWP model
▸ RB register per threads
▸ ZB shared mem per block
▸ TB maximum number of threads per block
▸ BSM, maximum number of blocks per SM
▸ WSM, maximum number of warps per SM
▸ SM, the number of SMs on the device.
▸ U time for one memory transaction between global and local
memories.

Our usual program parameters are
▸ s the number of coefficients computed by one thread
▸ B0,B1, . . . thread-block dimension size



Optimizing parametric kernels

Estimating computing resources
▸ As in the MWP-CWP model, we need to estimate register pressure
and shared memory usage

▸ The presence of symbolic parameters make the second one harder to
estimate

Estimating register pressure
▸ It cam be estimated by an IR (say LLVM IR) of the current

MetaFork being optimized
▸ Indeed, the number of registers required by a warp can be
determined, even with parameters around and the result remains
numerical.



Estimating shared memory usage
▸ Consider an array reference a[i] where i is a polynomial expression
in the program parameters, loop counters and possibly other
“intermediate variables”

▸ Techniques from quantifier elimination (QE) can determine the
range of values of i.

▸ In most practical cases, efficient algorithms avoid the recourse to a
general QE engine.

meta_for (int i = 0; i < n_block; i++)
meta_for (int j = 0; j < n_thread; j++)

for (int k = 0; k < s; ++k)
{

int x = i * n_thread * s + k * n_thread + j;
int y = N - 1 - x;
c[y] = a[x];

}
}

The value range of x is
|i n_thread s, i n_thread s + (s - 1) n_thread + n_thread - 1

and the difference between end-points is n_thread s.



Concluding remarks

▸

▸ It follows from the above discussion that metrics like occupancy can
be determined even in the presence of parameters

▸ Determining MWP and CWP in the presence of parameters is work
in progress

▸ See the demo of Haoze Yuan at the CASCON EXPO after this
workshop!



Research projects with publicly available software

www.bpaslib.org www.metafork.org

www.cumodp.org www.regularchains.org

Current students
PDF & MSc: Masoud Ataei,

PhD: Mohammadali Asadi, Egor Chesakov, Ruijuan Jing, Steven
Thornton, Davood Mohajerani, Robert Moir, Mehdi
Samadieh

MSc: Alexander Brandt, Colin Costello, Yiming Guan, Delaram
TalaAshrafi, Amha Tsegaye, Linxiao Wang,

Undergrad: Haoyu Gu, Yuchen Wang

www.bpaslib.org
www.metafork.org
www.cumodp.org
www.regularchains.org

	Overview
	Models of computation for algorithm analysis
	Parallel random access machine (PRAM) model
	Fork-join model
	Threaded many-core memory (TMM) model
	The Many-core-Machine (MCM) model

	Models of computation for program analysis
	The Memory-level and Thread-level Parallelism (MWP-CWP) Model

	Handling machine and program parameters

