
Computing the Integer Points of a Polyhedron
Complexity Estimates

Rui-Juan Jing1,2 and Marc Moreno Maza2,3

1Key Laboratoty of Mathematics Mechnization,
Academy of Mathematics and Systems Science,

Chinese of Academy of Sciences
2University of Western Ontario, London, Ontario

3IBM Center for Advanced Studies, Markham, Ontario

CASC 2017, September 19



Plan

Recall the algorithm

Complexity

Experiments

Application

Summary



Motivations

1. Data dependence analysis and scheduling of for-loop nests of
computer programs,

2. support for decision problems in Presburger arithmetic,

3. manipulation of Z-polyhedra.



Algorithm

IntegerSolve(K ) relies on three sub-procedures.

Procedure 1: IntegerNormalize(Ax ≤ b):
Solve the equation systems and remove the redundant inequalities;

Procedure 2: DarkShadow(Mt ≤ v)
Any integer point in the dark shadow can be lifted to an integer point of
the original polyhedron (represented by (Mt ≤ v))

Procedure 3: GreyShadow(Mt ≤ v)
Output the grey shadow parts of polyhedron represented by Mt ≤ v, each
integer point in every grey shadow part corresponding to one integer
point satisfying Mt ≤ v and the number of variables to be dealt with is
less than the length of t.



Algorithm

IntegerSolve(K ) relies on three sub-procedures.

Procedure 1: IntegerNormalize(Ax ≤ b):
Solve the equation systems and remove the redundant inequalities;

Procedure 2: DarkShadow(Mt ≤ v)
Any integer point in the dark shadow can be lifted to an integer point of
the original polyhedron (represented by (Mt ≤ v))

Procedure 3: GreyShadow(Mt ≤ v)
Output the grey shadow parts of polyhedron represented by Mt ≤ v, each
integer point in every grey shadow part corresponding to one integer
point satisfying Mt ≤ v and the number of variables to be dealt with is
less than the length of t.



Algorithm

IntegerSolve(K ) relies on three sub-procedures.

Procedure 1: IntegerNormalize(Ax ≤ b):
Solve the equation systems and remove the redundant inequalities;

Procedure 2: DarkShadow(Mt ≤ v)
Any integer point in the dark shadow can be lifted to an integer point of
the original polyhedron (represented by (Mt ≤ v))

Procedure 3: GreyShadow(Mt ≤ v)
Output the grey shadow parts of polyhedron represented by Mt ≤ v, each
integer point in every grey shadow part corresponding to one integer
point satisfying Mt ≤ v and the number of variables to be dealt with is
less than the length of t.



Plan

Recall the algorithm

Complexity

Experiments

Application

Summary



Complexity-FM elimination

K ∶ polyhedron in Rd , defined by m inequalities

K is full-dimentional ↔ Ax ≤ b
(Ax ≤ b has no implicit equations.)

k-dimentional face of K ↔ {
AIkx = bIk ,

AI∖Ik ≤ bI∖Ik
(I = {1, . . . ,m}, Ik ⊂ I with d − k elements.)

Lemma
Let fd,m,k be the number of k-dimensional faces of K . Then, we have

fd,m,k ≤ (
m

d − k
).

Therefore, we have fd,m,0 + fd,m,1 +⋯ + fd,m,d−1 ≤ md .



Complexity-FM elimination

K ∶ polyhedron in Rd , defined by m inequalities

K is full-dimentional ↔ Ax ≤ b
(Ax ≤ b has no implicit equations.)

k-dimentional face of K ↔ {
AIkx = bIk ,

AI∖Ik ≤ bI∖Ik
(I = {1, . . . ,m}, Ik ⊂ I with d − k elements.)

Lemma
Let fd,m,k be the number of k-dimensional faces of K . Then, we have

fd,m,k ≤ (
m

d − k
).

Therefore, we have fd,m,0 + fd,m,1 +⋯ + fd,m,d−1 ≤ md .



Complexity-FM elimination

K ∶ polyhedron in Rd , defined by m inequalities

K is full-dimentional ↔ Ax ≤ b
(Ax ≤ b has no implicit equations.)

k-dimentional face of K ↔ {
AIkx = bIk ,

AI∖Ik ≤ bI∖Ik
(I = {1, . . . ,m}, Ik ⊂ I with d − k elements.)

Lemma
Let fd,m,k be the number of k-dimensional faces of K . Then, we have

fd,m,k ≤ (
m

d − k
).

Therefore, we have fd,m,0 + fd,m,1 +⋯ + fd,m,d−1 ≤ md .



Complexity-FM elimination

K ∶ polyhedron in Rd , defined by m inequalities

K is full-dimentional ↔ Ax ≤ b
(Ax ≤ b has no implicit equations.)

k-dimentional face of K ↔ {
AIkx = bIk ,

AI∖Ik ≤ bI∖Ik
(I = {1, . . . ,m}, Ik ⊂ I with d − k elements.)

Lemma
Let fd,m,k be the number of k-dimensional faces of K . Then, we have

fd,m,k ≤ (
m

d − k
).

Therefore, we have fd,m,0 + fd,m,1 +⋯ + fd,m,d−1 ≤ md .



Complexity-FM elimination

Proposition

{
AIkx = bIk ,

AI∖Ikx ≤ bI∖Ik

IntegerNormalize
ÐÐÐÐÐÐÐÐ→ Mt ≤ v

∥M,v∥∞ ≤ (k + 1)
k+1
2 Lk+1.

Notation
Given a linear program with total bit size H and with d variables
LP(d ,H): the number of bit operations required for solving it.
Karmarkar’s algorithm: LP(d ,H) ∈ O(d3.5H2 ⋅ logH ⋅ log logH).

Proposition
Given a polyhedron K in Rd , which is defined by m inequalities and with
coefficient maximum bit size h, one can perform Fourier-Motzkin
elimination within O(d2m2d LP(d ,2dhd2md)) bit operations.



Complexity-FM elimination

Proposition

{
AIkx = bIk ,

AI∖Ikx ≤ bI∖Ik

IntegerNormalize
ÐÐÐÐÐÐÐÐ→ Mt ≤ v

∥M,v∥∞ ≤ (k + 1)
k+1
2 Lk+1.

Notation
Given a linear program with total bit size H and with d variables
LP(d ,H): the number of bit operations required for solving it.
Karmarkar’s algorithm: LP(d ,H) ∈ O(d3.5H2 ⋅ logH ⋅ log logH).

Proposition
Given a polyhedron K in Rd , which is defined by m inequalities and with
coefficient maximum bit size h, one can perform Fourier-Motzkin
elimination within O(d2m2d LP(d ,2dhd2md)) bit operations.



Complexity-FM elimination

Proposition

{
AIkx = bIk ,

AI∖Ikx ≤ bI∖Ik

IntegerNormalize
ÐÐÐÐÐÐÐÐ→ Mt ≤ v

∥M,v∥∞ ≤ (k + 1)
k+1
2 Lk+1.

Notation
Given a linear program with total bit size H and with d variables
LP(d ,H): the number of bit operations required for solving it.
Karmarkar’s algorithm: LP(d ,H) ∈ O(d3.5H2 ⋅ logH ⋅ log logH).

Proposition
Given a polyhedron K in Rd , which is defined by m inequalities and with
coefficient maximum bit size h, one can perform Fourier-Motzkin
elimination within O(d2m2d LP(d ,2dhd2md)) bit operations.



Complexity of our algorithm

Hypothesis
During the execution of the function call IntegerSolve(K), for any
polyhedral set K ′, input of a recursive call, each facet of the dark shadow
of K ′ is parallel to some facet of the real shadow of K ′.



Complexity-our algorithm

S

D

D

⋮

D G

⋮

G

⋮ ⋮

G

D

⋮ ⋮

G

⋮ ⋮

D G

▸ number of pathes T :

T ≤ md2

d3d3

L3d
3

▸ coefficient bound M in any node in a path:

M ≤ d3d2

d4d3

L6d
3

Theorem
Under our Hypothesis, the function call IntegerSolve(K) runs within

O(m2d2

d4d3

L4d
3

LP(d ,mdd4(log d + logL))) bit operations.



Complexity-our algorithm

S

D

D

⋮

D G

⋮

G

⋮ ⋮

G

D

⋮ ⋮

G

⋮ ⋮

D G

▸ number of pathes T :

T ≤ md2

d3d3

L3d
3

▸ coefficient bound M in any node in a path:

M ≤ d3d2

d4d3

L6d
3

Theorem
Under our Hypothesis, the function call IntegerSolve(K) runs within

O(m2d2

d4d3

L4d
3

LP(d ,mdd4(log d + logL))) bit operations.



Complexity-our algorithm

S

D

D

⋮

D G

⋮

G

⋮ ⋮

G

D

⋮ ⋮

G

⋮ ⋮

D G

▸ number of pathes T :

T ≤ md2

d3d3

L3d
3

▸ coefficient bound M in any node in a path:

M ≤ d3d2

d4d3

L6d
3

Theorem
Under our Hypothesis, the function call IntegerSolve(K) runs within

O(m2d2

d4d3

L4d
3

LP(d ,mdd4(log d + logL))) bit operations.



Plan

Recall the algorithm

Complexity

Experiments

Application

Summary



Experiments

IntegerSolve is implemented in the Polyhedra library and available from
www.regularchains.org

Example m d L mo Lo ?Hyp tH tP
Tetrahedron 4 3 1 1 1 yes 0.695 0.697
TruncatedTetrahedron 8 3 1 1 1 yes 1.461 1.468
Presburger 4 3 4 5 2 12 yes 0.706 0.871
Presburger 6 4 5 89 6 35 yes 0.893 0.746
Bounded 7 8 3 19 3 190 no 138.448 239.637
Bounded 8 4 3 25 5 67 yes 6.462 3.821
Bounded 9 6 3 18 6 74 no 23.574 16.763
Unbounded 2 3 4 10 61 2255 no 0.547 0.600
Unbounded 5 5 4 8 1 8 no 1.321 1.319
Unbounded 6 10 4 8 1 8 no 1.494 1.479
P91 12 3 96 5 96 no 19.318 15.458
Sys1 6 3 15 2 67 yes 2.413 1.915
Sys3 8 3 1 1 1 yes 1.481 1.479
Automatic 8 2 999 1 999 yes 0.552 0.549
Automatic2 6 4 1 1 2 yes 1.115 1.113

Table: Implementation



Plan

Recall the algorithm

Complexity

Experiments

Application

Summary



Application

Solve integer programming:

minlex(x1, . . . , xd)
Ax ≤ b,
x ∈ Zd

Example
Problem:

minlex(x3, x2, x1)
3x1 − 2x2 + x3 ≤ 7

−2x1 + 2x2 − x3 ≤ 12

−4x1 + x2 + 3x3 ≤ 15

−x2 ≤ −25

x1, x2, x3 ∈ Z



Application

Example

Input: K1 ∶

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3x1 − 2x2 + x3 ≤ 7

−2x1 + 2x2 − x3 ≤ 12

−4x1 + x2 + 3x3 ≤ 15

−x2 ≤ −25

, assume x1 > x2 > x3.

Output: K 1
1 ,K

2
1 ,K

3
1 ,K

4
1 ,K

5
1 given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

3x1 − 2x2 + x3 ≤ 7

−2x1 + 2x2 − x3 ≤ 12

−4x1 + x2 + 3x3 ≤ 15

2x2 − x3 ≤ 48

−5x2 + 13x3 ≤ 67

−x2 ≤ −25

2 ≤ x3 ≤ 17

,

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

x1 = 15

x2 = 27

x3 = 16

,

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

x1 = 18

x2 = 33

x3 = 18

,

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

x1 = 14

x2 = 25

x3 = 15

,

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

x1 = 19

x2 = 50 + t

x3 = 50 + 2t

−25 ≤t ≤ −16.



Application

min(x3, x2, x1)
K1 ∩Z3

min(x3, x2, x1)
K 1
1 ∩Z3

min(x3, x2, x1)
K 2
1 ∩Z3

min(x3, x2, x1)
K 3
1 ∩Z3

min(x3, x2, x1)
K 4
1 ∩Z3

min(x3, x2, x1)
K 5
1 ∩Z3

(2,−8,−4) (16,27,15) (18,33,18) (15,25,14) (0,25,19)

(0,25,19)



Plan

Recall the algorithm

Complexity

Experiments

Application

Summary



Summary

▸ Assuming that each facet of the dark shadow of a polyhedron is
parallel to some facet of its real shadow, we prove that our
algorithm runs in time single exponential in the dimension d of the
ambient space.

▸ This assumption is almost always verified in practice, in particular
for problems coming from computer program analysis.

▸ Taking advantage of the good structure of the simpler polyhedra, we
give an application to solve the lexicographic minimum of some
variable orders.

Works in progress

▸ A CilkPlus version of the Polyhedra library

▸ Parametric integer programming (PIP) in support of automatic
parallelization.



Summary

▸ Assuming that each facet of the dark shadow of a polyhedron is
parallel to some facet of its real shadow, we prove that our
algorithm runs in time single exponential in the dimension d of the
ambient space.

▸ This assumption is almost always verified in practice, in particular
for problems coming from computer program analysis.

▸ Taking advantage of the good structure of the simpler polyhedra, we
give an application to solve the lexicographic minimum of some
variable orders.

Works in progress

▸ A CilkPlus version of the Polyhedra library

▸ Parametric integer programming (PIP) in support of automatic
parallelization.



Summary

▸ Assuming that each facet of the dark shadow of a polyhedron is
parallel to some facet of its real shadow, we prove that our
algorithm runs in time single exponential in the dimension d of the
ambient space.

▸ This assumption is almost always verified in practice, in particular
for problems coming from computer program analysis.

▸ Taking advantage of the good structure of the simpler polyhedra, we
give an application to solve the lexicographic minimum of some
variable orders.

Works in progress

▸ A CilkPlus version of the Polyhedra library

▸ Parametric integer programming (PIP) in support of automatic
parallelization.



Summary

▸ Assuming that each facet of the dark shadow of a polyhedron is
parallel to some facet of its real shadow, we prove that our
algorithm runs in time single exponential in the dimension d of the
ambient space.

▸ This assumption is almost always verified in practice, in particular
for problems coming from computer program analysis.

▸ Taking advantage of the good structure of the simpler polyhedra, we
give an application to solve the lexicographic minimum of some
variable orders.

Works in progress

▸ A CilkPlus version of the Polyhedra library

▸ Parametric integer programming (PIP) in support of automatic
parallelization.


	Recall the algorithm
	Complexity
	Experiments
	Application
	Summary

