Computing the Integer Points of a Polyhedron Complexity Estimates

Rui-Juan Jing^{1,2} and Marc Moreno Maza^{2,3}

¹Key Laboratoty of Mathematics Mechnization, Academy of Mathematics and Systems Science, Chinese of Academy of Sciences ²University of Western Ontario, London, Ontario ³IBM Center for Advanced Studies, Markham, Ontario

CASC 2017, September 19

Recall the algorithm

Complexity

Experiments

Application

Summary

1. Data dependence analysis and scheduling of for-loop nests of computer programs,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 2. support for decision problems in Presburger arithmetic,
- 3. manipulation of \mathbb{Z} -polyhedra.

Algorithm

IntegerSolve(K) relies on three sub-procedures.

Procedure 1: IntegerNormalize($Ax \le b$):

Solve the equation systems and remove the redundant inequalities;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Algorithm

IntegerSolve(K) relies on three sub-procedures.

Procedure 1: IntegerNormalize($Ax \le b$):

Solve the equation systems and remove the redundant inequalities;

Procedure 2: DarkShadow($Mt \le v$)

Any integer point in the dark shadow can be lifted to an integer point of the original polyhedron (represented by $(Mt \le v)$)

IntegerSolve(K) relies on three sub-procedures.

Procedure 1: IntegerNormalize($Ax \le b$):

Solve the equation systems and remove the redundant inequalities;

Procedure 2: DarkShadow($Mt \le v$)

Any integer point in the dark shadow can be lifted to an integer point of the original polyhedron (represented by $(Mt \le v)$)

Procedure 3: GreyShadow($Mt \le v$)

Output the grey shadow parts of polyhedron represented by $Mt \leq v$, each integer point in every grey shadow part corresponding to one integer point satisfying $Mt \leq v$ and the number of variables to be dealt with is less than the length of t.

Recall the algorithm

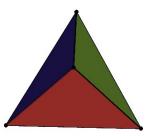
Complexity

Experiments

Application

Summary

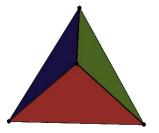
K: polyhedron in \mathbb{R}^d , defined by *m* inequalities



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

K: polyhedron in \mathbb{R}^d , defined by *m* inequalities

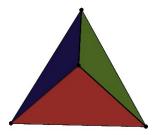
K is full-dimentional \leftrightarrow $\mathbf{Ax} \leq \mathbf{b}$ ($\mathbf{Ax} \leq \mathbf{b}$ has no implicit equations.)



K: polyhedron in \mathbb{R}^d , defined by *m* inequalities

 $K \text{ is full-dimentional } \leftrightarrow \mathbf{A}\mathbf{x} \le \mathbf{b}$ $(\mathbf{A}\mathbf{x} \le \mathbf{b} \text{ has no implicit equations.})$

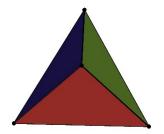
 $\begin{array}{l} k \text{-dimentional face of } \mathcal{K} & \leftrightarrow \\ \left\{ \begin{array}{l} \mathbf{A}_{I_k} \mathbf{x} = \mathbf{b}_{I_k}, \\ \mathbf{A}_{I \smallsetminus I_k} \leq \mathbf{b}_{I \land I_k} \end{array} \right. \\ \left(I = \{1, \ldots, m\}, \ I_k \subset I \text{ with } d - k \text{ elements.} \right) \end{array}$



K: polyhedron in \mathbb{R}^d , defined by *m* inequalities

K is full-dimentional \leftrightarrow $\mathbf{Ax} \leq \mathbf{b}$ ($\mathbf{Ax} \leq \mathbf{b}$ has no implicit equations.)

k-dimentional face of $K \iff \begin{cases} \mathbf{A}_{I_k} \mathbf{x} = \mathbf{b}_{I_k}, \\ \mathbf{A}_{I \smallsetminus I_k} \le \mathbf{b}_{I \smallsetminus I_k} \end{cases}$ ($I = \{1, \dots, m\}, I_k \subset I \text{ with } d - k \text{ elements.} \end{cases}$



Lemma

Let $f_{d,m,k}$ be the number of k-dimensional faces of K. Then, we have

$$f_{d,m,k} \leq \binom{m}{d-k}.$$

Therefore, we have $f_{d,m,0} + f_{d,m,1} + \cdots + f_{d,m,d-1} \leq m^d$.

Proposition

$$\begin{cases} \mathbf{A}_{l_k} \mathbf{x} = \mathbf{b}_{l_k}, & \xrightarrow{\text{IntegerNormalize}} \mathbf{M} \mathbf{t} \leq \mathbf{v} \\ \mathbf{A}_{l \sim l_k} \mathbf{x} \leq \mathbf{b}_{l \sim l_k}, & \xrightarrow{} \mathbf{M} \mathbf{t} \leq \mathbf{v} \\ \|\mathbf{M}, \mathbf{v}\|_{\infty} \leq (k+1)^{\frac{k+1}{2}} L^{k+1}. \end{cases}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Proposition

$$\begin{cases} \mathbf{A}_{I_k} \mathbf{x} = \mathbf{b}_{I_k}, \\ \mathbf{A}_{I \setminus I_k} \mathbf{x} \le \mathbf{b}_{I \setminus I_k} \end{cases} \xrightarrow{\text{IntegerNormalize}} \mathbf{M} \mathbf{t} \le \mathbf{v} \\ \|\mathbf{M}, \mathbf{v}\|_{\infty} \le (k+1)^{\frac{k+1}{2}} L^{k+1}. \end{cases}$$

Notation

Given a linear program with total bit size H and with d variables LP(d, H): the number of bit operations required for solving it. Karmarkar's algorithm: $LP(d, H) \in O(d^{3.5}H^2 \cdot \log H \cdot \log \log H)$.

Proposition

$$\begin{cases} \mathbf{A}_{I_k} \mathbf{x} = \mathbf{b}_{I_k}, & \text{IntegerNormalize} \\ \mathbf{A}_{I \setminus I_k} \mathbf{x} \le \mathbf{b}_{I \setminus I_k} & \xrightarrow{} \mathbf{Mt} \le \mathbf{v} \\ & \|\mathbf{M}, \mathbf{v}\|_{\infty} \le (k+1)^{\frac{k+1}{2}} L^{k+1}. \end{cases}$$

Notation

Given a linear program with total bit size H and with d variables LP(d, H): the number of bit operations required for solving it. Karmarkar's algorithm: $LP(d, H) \in O(d^{3.5}H^2 \cdot \log H \cdot \log \log H)$.

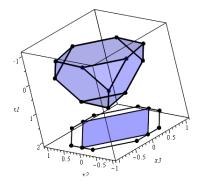
Proposition

Given a polyhedron K in \mathbb{R}^d , which is defined by m inequalities and with coefficient maximum bit size h, one can perform Fourier-Motzkin elimination within $O(d^2 m^{2d} LP(d, 2^d h d^2 m^d))$ bit operations.

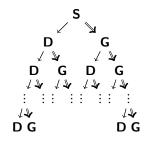
Complexity of our algorithm

Hypothesis

During the execution of the function call IntegerSolve(K), for any polyhedral set K', input of a recursive call, each facet of the dark shadow of K' is parallel to some facet of the real shadow of K'.

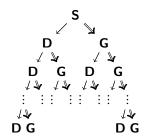


Complexity-our algorithm



・ロト ・四ト ・ヨト ・ヨト

Complexity-our algorithm



number of pathes T:

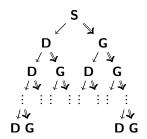
$$T \le m^{d^2} d^{3d^3} L^{3d^3}$$

coefficient bound M in any node in a path:

 $M \le d^{3d^2} d^{4d^3} L^{6d^3}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Complexity-our algorithm



number of pathes T:

$$T \le m^{d^2} d^{3d^3} L^{3d^3}$$

coefficient bound M in any node in a path:

$$M \le d^{3d^2} d^{4d^3} L^{6d^3}$$

Theorem

Under our Hypothesis, the function call IntegerSolve(K) runs within $O(m^{2d^2}d^{4d^3}L^{4d^3}LP(d, m^d d^4(\log d + \log L)))$ bit operations.

・ロト ・ 日・ ・ 田・ ・ 日・ うらぐ

Recall the algorithm

Complexity

Experiments

Application

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Experiments

IntegerSolve is implemented in the Polyhedra library and available from www.regularchains.org

Example	т	d	L	$m_{ m o}$	$L_{ m o}$?Hyp	^t H	^t P
Tetrahedron	4	3	1	1	1	yes	0.695	0.697
TruncatedTetrahedron	8	3	1	1	1	yes	1.461	1.468
Presburger 4	3	4	5	2	12	yes	0.706	0.871
Presburger 6	4	5	89	6	35	yes	0.893	0.746
Bounded 7	8	3	19	3	190	no	138.448	239.637
Bounded 8	4	3	25	5	67	yes	6.462	3.821
Bounded 9	6	3	18	6	74	no	23.574	16.763
Unbounded 2	3	4	10	61	2255	no	0.547	0.600
Unbounded 5	5	4	8	1	8	no	1.321	1.319
Unbounded 6	10	4	8	1	8	no	1.494	1.479
P91	12	3	96	5	96	no	19.318	15.458
Sys ₁	6	3	15	2	67	yes	2.413	1.915
Sys ₃	8	3	1	1	1	yes	1.481	1.479
Automatic	8	2	999	1	999	yes	0.552	0.549
Automatic2	6	4	1	1	2	yes	1.115	1.113

Table: Implementation

Recall the algorithm

Complexity

Experiments

Application

Summary

Application

Solve integer programming:

$$\min_{\text{lex}}(x_1,\ldots,x_d)$$

$$\mathbf{Ax} \leq \mathbf{b},$$

$$\mathbf{x} \in \mathbb{Z}^d$$

Example

Problem:

$$\min_{lex}(x_3, x_2, x_1) 3x_1 - 2x_2 + x_3 \le 7 -2x_1 + 2x_2 - x_3 \le 12 -4x_1 + x_2 + 3x_3 \le 15 -x_2 \le -25 x_1, x_2, x_3 \in \mathbb{Z}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Application

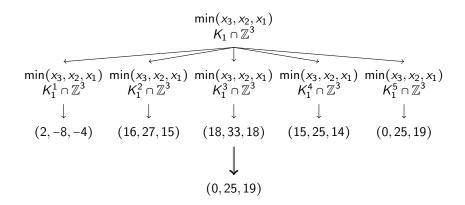
Example
Input:
$$K_1: \begin{cases} 3x_1 - 2x_2 + x_3 \le 7\\ -2x_1 + 2x_2 - x_3 \le 12\\ -4x_1 + x_2 + 3x_3 \le 15\\ -x_2 \le -25 \end{cases}$$
, assume $x_1 > x_2 > x_3$.

Output: $K_1^1, K_1^2, K_1^3, K_1^4, K_1^5$ given by:

$$\begin{cases} 3x_1 - 2x_2 + x_3 \le 7 \\ -2x_1 + 2x_2 - x_3 \le 12 \\ -4x_1 + x_2 + 3x_3 \le 15 \\ 2x_2 - x_3 \le 48 \\ -5x_2 + 13x_3 \le 67 \\ -x_2 \le -25 \\ 2 \le x_3 \le 17 \end{cases}, \begin{cases} x_1 = 15 \\ x_2 = 27 \\ x_3 = 16 \end{cases}, \begin{cases} x_1 = 18 \\ x_2 = 33 \\ x_3 = 18 \\ x_3 = 18 \end{cases}, \begin{cases} x_1 = 14 \\ x_2 = 25 \\ x_3 = 15 \\ x_3 = 15 \\ -25 \le t \le -16. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Application



Recall the algorithm

Complexity

Experiments

Application

Summary

Assuming that each facet of the dark shadow of a polyhedron is parallel to some facet of its real shadow, we prove that our algorithm runs in time single exponential in the dimension d of the ambient space.

- Assuming that each facet of the dark shadow of a polyhedron is parallel to some facet of its real shadow, we prove that our algorithm runs in time single exponential in the dimension d of the ambient space.
- This assumption is almost always verified in practice, in particular for problems coming from computer program analysis.

- Assuming that each facet of the dark shadow of a polyhedron is parallel to some facet of its real shadow, we prove that our algorithm runs in time single exponential in the dimension d of the ambient space.
- This assumption is almost always verified in practice, in particular for problems coming from computer program analysis.
- Taking advantage of the good structure of the simpler polyhedra, we give an application to solve the lexicographic minimum of some variable orders.

- Assuming that each facet of the dark shadow of a polyhedron is parallel to some facet of its real shadow, we prove that our algorithm runs in time single exponential in the dimension d of the ambient space.
- This assumption is almost always verified in practice, in particular for problems coming from computer program analysis.
- Taking advantage of the good structure of the simpler polyhedra, we give an application to solve the lexicographic minimum of some variable orders.

Works in progress

- A CilkPlus version of the Polyhedra library
- Parametric integer programming (PIP) in support of automatic parallelization.