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Motivations

1. Data dependence analysis and scheduling of for-loop nests of
computer programs,

2. support for decision problems in Presburger arithmetic,

3. manipulation of Z-polyhedra.



Algorithm

IntegerSolve(K ) relies on three sub-procedures.

Procedure 1: IntegerNormalize(Ax ≤ b):
Solve the equation systems and remove the redundant inequalities;

Procedure 2: DarkShadow(Mt ≤ v)
Any integer point in the dark shadow can be lifted to an integer point of
the original polyhedron (represented by (Mt ≤ v))

Procedure 3: GreyShadow(Mt ≤ v)
Output the grey shadow parts of polyhedron represented by Mt ≤ v, each
integer point in every grey shadow part corresponding to one integer
point satisfying Mt ≤ v and the number of variables to be dealt with is
less than the length of t.
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Complexity-FM elimination

K ∶ polyhedron in Rd , defined by m inequalities

K is full-dimentional ↔ Ax ≤ b
(Ax ≤ b has no implicit equations.)

k-dimentional face of K ↔ {
AIkx = bIk ,

AI∖Ik ≤ bI∖Ik
(I = {1, . . . ,m}, Ik ⊂ I with d − k elements.)

Lemma
Let fd,m,k be the number of k-dimensional faces of K . Then, we have

fd,m,k ≤ (
m

d − k
).

Therefore, we have fd,m,0 + fd,m,1 +⋯ + fd,m,d−1 ≤ md .
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Complexity-FM elimination

Proposition

{
AIkx = bIk ,

AI∖Ikx ≤ bI∖Ik

IntegerNormalize
ÐÐÐÐÐÐÐÐ→ Mt ≤ v

∥M,v∥∞ ≤ (k + 1)
k+1
2 Lk+1.

Notation
Given a linear program with total bit size H and with d variables
LP(d ,H): the number of bit operations required for solving it.
Karmarkar’s algorithm: LP(d ,H) ∈ O(d3.5H2 ⋅ logH ⋅ log logH).

Proposition
Given a polyhedron K in Rd , which is defined by m inequalities and with
coefficient maximum bit size h, one can perform Fourier-Motzkin
elimination within O(d2m2d LP(d ,2dhd2md)) bit operations.
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Complexity of our algorithm

Hypothesis
During the execution of the function call IntegerSolve(K), for any
polyhedral set K ′, input of a recursive call, each facet of the dark shadow
of K ′ is parallel to some facet of the real shadow of K ′.



Complexity-our algorithm
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3

LP(d ,mdd4(log d + logL))) bit operations.
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Experiments

IntegerSolve is implemented in the Polyhedra library and available from
www.regularchains.org

Example m d L mo Lo ?Hyp tH tP
Tetrahedron 4 3 1 1 1 yes 0.695 0.697
TruncatedTetrahedron 8 3 1 1 1 yes 1.461 1.468
Presburger 4 3 4 5 2 12 yes 0.706 0.871
Presburger 6 4 5 89 6 35 yes 0.893 0.746
Bounded 7 8 3 19 3 190 no 138.448 239.637
Bounded 8 4 3 25 5 67 yes 6.462 3.821
Bounded 9 6 3 18 6 74 no 23.574 16.763
Unbounded 2 3 4 10 61 2255 no 0.547 0.600
Unbounded 5 5 4 8 1 8 no 1.321 1.319
Unbounded 6 10 4 8 1 8 no 1.494 1.479
P91 12 3 96 5 96 no 19.318 15.458
Sys1 6 3 15 2 67 yes 2.413 1.915
Sys3 8 3 1 1 1 yes 1.481 1.479
Automatic 8 2 999 1 999 yes 0.552 0.549
Automatic2 6 4 1 1 2 yes 1.115 1.113

Table: Implementation
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Application

Solve integer programming:

minlex(x1, . . . , xd)
Ax ≤ b,
x ∈ Zd

Example
Problem:

minlex(x3, x2, x1)
3x1 − 2x2 + x3 ≤ 7

−2x1 + 2x2 − x3 ≤ 12

−4x1 + x2 + 3x3 ≤ 15

−x2 ≤ −25

x1, x2, x3 ∈ Z



Application

Example

Input: K1 ∶

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3x1 − 2x2 + x3 ≤ 7

−2x1 + 2x2 − x3 ≤ 12

−4x1 + x2 + 3x3 ≤ 15

−x2 ≤ −25

, assume x1 > x2 > x3.

Output: K 1
1 ,K

2
1 ,K

3
1 ,K

4
1 ,K

5
1 given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

3x1 − 2x2 + x3 ≤ 7

−2x1 + 2x2 − x3 ≤ 12

−4x1 + x2 + 3x3 ≤ 15

2x2 − x3 ≤ 48

−5x2 + 13x3 ≤ 67

−x2 ≤ −25

2 ≤ x3 ≤ 17

,

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

x1 = 15

x2 = 27

x3 = 16

,

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

x1 = 18

x2 = 33

x3 = 18

,

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

x1 = 14

x2 = 25

x3 = 15

,

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

x1 = 19

x2 = 50 + t

x3 = 50 + 2t

−25 ≤t ≤ −16.



Application

min(x3, x2, x1)
K1 ∩Z3

min(x3, x2, x1)
K 1
1 ∩Z3

min(x3, x2, x1)
K 2
1 ∩Z3

min(x3, x2, x1)
K 3
1 ∩Z3

min(x3, x2, x1)
K 4
1 ∩Z3

min(x3, x2, x1)
K 5
1 ∩Z3

(2,−8,−4) (16,27,15) (18,33,18) (15,25,14) (0,25,19)

(0,25,19)
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Summary

▸ Assuming that each facet of the dark shadow of a polyhedron is
parallel to some facet of its real shadow, we prove that our
algorithm runs in time single exponential in the dimension d of the
ambient space.

▸ This assumption is almost always verified in practice, in particular
for problems coming from computer program analysis.

▸ Taking advantage of the good structure of the simpler polyhedra, we
give an application to solve the lexicographic minimum of some
variable orders.

Works in progress

▸ A CilkPlus version of the Polyhedra library

▸ Parametric integer programming (PIP) in support of automatic
parallelization.
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