Optimizing Computer Programs: A Killer App for
Scientific Computing?

Marc Moreno Maza

University of Western Ontario, Canada

Chongging Institute of Green and Intelligent Technology
Chinese Academy of Sciences
July 9, 2015

tures

IC

Canada in 4 p

High-performance computing and symbolic computation

Research themes

e Symbolic computation: computing exact solutions of algebraic
problems on computers with applications to mathematical sciences
and engineering.

o High-performance computing: making best use of modern computer
architectures, in particular hardware accelerators (multi-core
processors, graphics processing units).

Research projects

@ The RegularChains library: solving systems of algebraic equations and
integrated into the computer algebra system MAPLE.

e The Basic Polynomial Algebra Subroutimes (BPAS) and CUDA
Modular Polynomial (CUMODP) libraries: hardware accelerator
support for symbolic computation.

@ The Meta_Fork compilation framework: a programming environment
for hardware accelerators, supported by IBM TORONTO LABS..

Current students and alumni

Current students

Parisa Alvandi, Ning Xie, Xiaohui Chen, Li Zhang, Haowei Chen, Yiming
Guan, Davood Mohajerani, Steven Thornton and Robert Moir.

Alumni

Moshin Ali (ANU, Australia) Jinlong Cai (Microsoft), Changbo Chen
(CIGIT), Sardar Anisula Haque (CiTi) Zunaid Haque (IBM) Frangois
Lemaire (U. Lille 1, France) Xin Li (U. Carlos Ill, Spain) Wei Pan (Intel)
Paul Vrbik (U. Newcastle, Australia) Yuzhen Xie (COT) ...

Solving polynomial systems symbolically

3 solsions e sysam

a & moreno {5) @ s ved 26 Jon. 09:44 [T

omat_Table D plot i Tools Window Help

R := PolynomialRing([X, y, z]); F == [S*XA2 + 2¥X*ZA2 + 5¥yA6 + 15*yAd + 5*zA2 - 15*yAS5 - 5*yA3 |,
polynomial_ring
[5x3+2x22+5)°+15)" +52-15)°—5)°] 1)
RealTriangularize(F, R, output = record);
5x°+272x+5)°+15) =5y —15)°+57° =0
6 5 4 4 3 2 (2)
25y =75y 4+ 75y —z —25y°+252 <0
5x+2°=0
6 _ 5 4 3_ .4 2 _
25y" =75y’ +75y —=25y" -z +252°=0 =0 =0 XE5-0 i
4
64 7' — 1600 22 + 25 > 0 y-1-0 y-0 y-1-0
z#0 z=0 z=0 z-5=0
z—5#0
z+5#0
X+5=0 X+5=0 X+5=0 S5x+7°=0
y=0 qy—1=0 1 y=0 , 2y—1=0
z=5=0 z+5=0 z+5=0 64 7' —16002° +25=0
I \»Z
= (= |C] = & (@8 Untted (%~ Serve...) | Tianguar decamposi..] a LI

Figure: The RegularChains solver designed in our UWO lab can compute the real
solutions of any polynomial system exactly.

Our polynomial system solver is at the core of MAPLE

Other Editor’s Choice

Click thumbnail to display details

Polynomial System
Solving in Maple 16

Author: Maplesoft

Maple Document

Figure: Maplesoft, the company developing MAPLE, demonstrates the

RegularChains solver designed in our UWO lab, in order to advertise MAPLE.

High-performance computing: models of computation

Let K be the maximum number of thread
blocks along an anti-chain of the

B Arere thread-block DAG representing the program
s P. Then the running time Tp of the
o l!\\\ + Annstucion program P satisfies:
- EE) .
e O1C (& Tp < (N(P)/K + L(P)) C(P),
o I ﬁ) where C(P) is the maximum running time of

local operations by a thread among all the
thread-blocks, N(P) is the number of
thread-blocks and L(P) is the span of P.

Our UWO lab develops mathematical models to make efficient use of
hardware acceleration technology, such as GPUs and multi-core processors.

High-performance computing: parallel program translation

int main(){
int sum_a=0, sum_b=0;
int al 5 1 = {0,1,2,3,4};
int b[6 1 = {0,1,2,3,4};
#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section

for(int i=0; i<5; i++)
sum_a += al i];
}

#pragma omp section

for(int i=0; i<5; i++)
sum_b += b[i 1;

}ror

int main()

{

}

int sum_a=0, sum_b=0;
int a[5 1 = {0,1,2,3,4};
int b[5 1 = {0,1,2,3,4};

meta_fork shared(sum_a){
for(int i=0; i<5; i++)
sum_a += al i];

}

meta_fork shared(sum_b){
for(int i=0; i<5; i++)
sum_b += b[i 1;

}

meta_join;

void fork_funcO(int* sum_a,int* a)

{

}

void fork_funcl(int* sum_b,int* b)

{

}

{

for(int i=0; i<5; i++)
(¥sum_a) += a[i 1;

for(int i=0; i<5; i++)
(xsum_b) += b[i];

int main()
int sum_a=0, sum_b=0;
int al 51 = {0,1,2,3,4};
int b[5 1 = {0,1,2,3,4};

}

cilk_spawn fork_funcO(&sum_a,a);
cilk_spawn fork_funcl(&sum_b,b);

cilk_sync;

Our lab develops a compilation platform for translating parallel
programs from one language to another; above we translate from
OpenMP to CilkPlus through MetaFork.

High-performance computing: automatic parallelization

Serial dense univariate polynomial multiplication

. . . .

for(i=0; i<=n; i++){ . ® © %
for(j=0; j<=n; j++)

cli+j] += alil * b[jl; « o & ¥

’ I e © © ©

GPU-like multi-threaded dense univariate polynomial multiplication

meta_for (b=0; b<= 2 n / B; b++) {

IR
for (u=0; u<=min(B-1, 2%n - B * b); u++) { L
p=D>bx*B+u; i BRI
for (t=max(0,n-p); t<=min(n,2%n-p) ;t++) S _ R
clpl = clp] + alt+p-n] * bln-tl; P
} 0 ! 0 ! 0]]
b: 0 o0 ! ! 2 3
} s 0 0 0 @ 1 1 1

We use symbolic computation to automatically translate serial programs to GPU-like programs.

Research projects with publicly available software

4

Basic Polynomial Algebra Subprograms e

www.bpaslib.org

CU I« =D PEW X

DA ular olynomial

-

www.cumodp.org

1

’,Mel'TarE

www.metafork.org

www.regularchains.org

www.bpaslib.org
www.metafork.org
www.cumodp.org
www.regularchains.org

Application to mathematical sciences and engineering

[) www.maplesoft.com/compa ations/articles/view aspxSID= ef-fema Qv

New Maplesoft project for Toyota leverages symbolic computation in control systems engineering

Maplesoft February 4, 2013 Related Products
Follows of highly model sil ification tools using Any Maple
Any MapleSim

Waterloo, Canada; 4 February 2013: Maplesoft today announced that its ongoing partnership with Toyota Motor

Engineering & Manufacturing North America, Inc. has been expanded to include a new project. This project will see the

leading car manufacturer use new symbolic computation methods in robust control design, with a strong focus on methods

for linear, nonlinear, and parametric systems. Maplesoft technology is rooted in strong symbolic computation techniques, N
making it an appropriate choice for Toyota.

The main goal of the new Symbolic Control project is
ground-breaking research that leads to the implementation
of symbolic design and analysis methods for linear,
nonlinear, and parametric robust control. The new
research wil allow developers to consider system

nor in and parametric
uncertainties in the design process. As a result, Toyota
expects to shorten time while

high quality results.

This new project follows the completion of another

il project for Toyota, which saw high-
end research and implementation of new methods for
model simplification and preprocessing of high level
acausal dynamical models. Simplification enables the

ge conversion of high-level descriptive models into smaller

executable models for faster execution and provides for better analysis, higher efficiency, and more accurate simulation.
Model simplification allows engineers to focus on describing the physical properties of the system in an equation-based
manner. It also makes use of the power of mathematical equations to better manage models, so engineers obtain the
optimal results faster.

Figure: Toyota engineers use our software to design control systems

Plan

@ Optimizing Computer Programs

© GPGPUs and CUDA

@ Performance Measures of CUDA Kernels
@ Generating Parametric CUDA Kernels
@ Experimentation

© Conclusion

omputer Pro

Plan

@ Optimizing Computer Programs

Optimizing Computer Programs

The CPU-Memory Gap

The increasing gap between DRAM, disk, and CPU
speeds.

100,000,000 * —
10,000,000 o
1,000,000

100,000
2 —%— DRAM access time

10,000
—&— SRAM access time

i —%— CPU cycle fi
100 gycle tire

10
1

—+— Disk seek time

1980 1985 1990 1995 2000

Once upon a time, everything was slow in a computer.

Optimizing Computer Programs

10,000

1,000

Power Density 100
(W/em2)

Pentium®

processors
486

'00

The second space race . ..

Optimizing Computer Programs
F g F g

An inefficient program

A = (double *)malloc(sizeof (double)*x*y) ;
B = (double *)malloc(sizeof (double)*x*z) ;
C = (double *)malloc(sizeof (double)*y*z) ;

for (i = 0; i < x; i++)
for (j = 0; j <vy; j++)
for (k = 0; k < z; kt++)
Alil[j] += Blil[kx] + C[k][j]l;

Optimizing Computer Programs

A better program

A
B
C

Cx

(double *)malloc(sizeof (double)*x*y) ;
(double *)malloc(sizeof (double)*x*z) ;
(double *)malloc(sizeof (double)*y*z) ;
= (double *)malloc(sizeof (double)*y*z);

for(j =0; j < y; j++)

for(k=0; k < z; k++)
Cx[j1[x] = C[k][j]

for (i = 0; i < x; i++)

for (j = 0; j <y; j++)
for (k = 0; k < z; k++)
ATil[j] += BLil[k] = Cx[jl[k];

Optimizing Computer Programs
S g F g

An inefficient program

A
B
C

Cx

(double *)malloc(sizeof (double)*x*y) ;
(double *)malloc(sizeof (double)*x*z) ;
(double *)malloc(sizeof (double)*y*z) ;
= (double *)malloc(sizeof (double)*y*z);

for(j =0; j < y; j++)

for(k=0; k < z; k++)
Cx[j1[x] = C[k][j]

for (i = 0; i < x; i++)

for (j = 0; j <y; j++)
for (k = 0; k < z; k++)
ATil[j] += BLil[k] = Cx[jl[k];

Optimizing Computer Pro

A better program

= (double *)malloc(sizeof (double)*x*y);
(double *)malloc(sizeof (double)*x*z) ;
(double *)malloc(sizeof (double)*y*z);
Cx = (double *)malloc(sizeof (double)*y*z) ;

Q W =
n

for(j =0; j < y; j++)
for(k=0; k < z; k++)
Cx[j1[k] = Clk][jl;

for(j =0; j < y; j++)
for(k=0; k < z; k++)
IND(Cx,j,k,z) = IND(C,k,j,y);
for (i = 0; i < x; i += BLOCK_X)
for (j = 0; j <y; j += BLOCK_Y)
for (k = 0; k < z; k += BLOCK_Z)
for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)
for (jO = j; jO < min(j + BLOCK_Y, y); jO++)
for (k0 = k; kO < min(k + BLOCK_Z, z); kO++)
A[i0][jO] += B[i0] [k0] * Cx[j][k0];

Optimizing Computer Pro

An inefficient program

= (double *)malloc(sizeof (double)*x*y);
(double *)malloc(sizeof (double)*x*z) ;
(double *)malloc(sizeof (double)*y*z);
Cx = (double *)malloc(sizeof (double)*y*z) ;

Q W =
n

for(j =0; j < y; j++)
for(k=0; k < z; k++)
Cx[j1[k] = Clk][jl;

for(j =0; j < y; j++)
for(k=0; k < z; k++)
IND(Cx,j,k,z) = IND(C,k,j,y);
for (i = 0; i < x; i += BLOCK_X)
for (j = 0; j <y; j += BLOCK_Y)
for (k = 0; k < z; k += BLOCK_Z)
for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)
for (jO = j; jO < min(j + BLOCK_Y, y); jO++)
for (k0 = k; kO < min(k + BLOCK_Z, z); kO++)
A[i0][jO] += B[i0] [k0] * Cx[j][k0];

A nearly optimal program for parallel dense matrix multiplication

void parallel_dandc(int i0, int il, int jO, int j1, int kO, int k1, int* A, int lda, int* B, int 1ldb, int* C, int ldc,

{

-

int di = i1 - i0;

int dj = j1 - jO;

int dk = k1 - kO;

if (di >= dj && di >= dk && di >= X) {
int mi = i0 + di / 2;

cilk_spawn parallel_dandc(iO, mi, jO, ji1, kO, ki, A, lda, B, 1db, C, 1ldc,X);
parallel_dandc(mi, i1, jO, j1, k0, k1, A, lda, B, 1ldb, C, 1ldc,X);

cilk_sync;

else if (dj >= dk && dj >= X) {

int mj = jO +dj / 2;
cilk_spawn parallel_dandc(i0O, i1, jO, mj, kO, k1, A, lda, B, 1db, C, 1ldc,X);
parallel_dandc(iO, i1, mj, ji1, kO, k1, A, 1lda, B, 1ldb, C, 1ldc,X);
cilk_sync;
} else if (dk >= X) {

int mk = k0 + dk / 2;
parallel_dandc(iO, i1, jO, j1, kO, mk, A, lda, B, 1ldb, C, 1dc,X);
parallel_dandc(iO, i1, jO, ji, mk, k1, A, 1lda, B, 1db, C, 1dc,X);

} else {
mm_loop_serial2(C, kO, k1, A, i0, i1, B, jO, ji, lda) ;
/* for (int i = i0; i < il; ++i)
for (int j = jO; j < ji; ++j)
for (int k = k0; k < ki; ++k)
Cli * 1dc + jl += A[i * 1da + k] * B[k * 1db + jl;*/

GPGPUs and CUDA

Plan

© GPGPUs and CUDA

GPGPUs and CUDA

CUDA design goals

Enable heterogeneous systems (i.e., CPU+GPU)

Scale to 100's of cores, 1000's of parallel threads

Use C/C++ with minimal extensions

Let programmers focus on parallel algorithms (well, that's the
intention)

Cores | 128 SP Cores

SM

omw | oea | omw | oe | omaw | omw | ouw | oma |

THHHE

GPGPUs and CUDA

Heterogeneous programming

@ A CUDA program is a serial program with parallel kernels, all in C.
@ The serial C code executes in a host (= CPU) thread

@ The parallel kernel C code executes in many device threads across
multiple GPU processing elements, called streaming processors (SP).

Parallel Kernel
KernelA (args);

Parallel Kernel
KernelB (args);

GPGPUs and CUDA

Vector addition on GPU (1/4)

Device Code
// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global wvoid vecAdd(flocat* A, float* B, float* C)
{
int i = threadIdx.x + blockDim.x * blockIdx.x;
C[i] = A[i] + B[i];

int main()

{
// Run grid of N/256 blocks of 256 threads each
vecAdd<<< N/256, 256>>>(d A, d B, d C);

GPGPUs and CUDA

Vector addition on GPU (2/4)

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global void vecAdd(float* A, float* B, float* C)
{
int 1 = threadIdx.x + blockDim.x * blockIdx.x;
C[i] = A[i] + B[i];

Host Code
int main ()
{
// Run grid of N/256 blocks of 256 threads each
vecAdd<<< N/256, 256>>>(d A, d B, d C);

GPGPUs and CUDA

Vector addition on GPU (3/4)

// allocate and initialize host (CPU) memory
float *h A = ., *h B= .; *h C = .. (empty)

// allocate device (GPU) memory

float *d A, *d B, *d C;

cudaMalloc((void**) &d A, N * sizeof(float));
cudaMalloc((void**) &d B, N * sizeof(float));
cudaMalloc((void**) &d C, N * sizeof(float));

// copy host memory to device

cudaMemcpy (d A, h A, N * sizeof(float),
cudaMemcpyHostToDevice)) ;

cudaMemcpy (d B, h B, N * sizeof (float),
cudaMemcpyHostToDevice)) ;

// execute grid of N/256 blocks of 256 threads
vecAdd<<<N/256, 256>>>(d A, d B, d C);

GPGPUs and CUDA

Vector addition on GPU (4/4)

// execute grid of N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d_A, d B, d C);

// copy result back to host memory

cudaMemcpy(h_C, d C, N * sizeof(float),
cudaMemcpyDeviceToHost)) ;

// do something with the result.

// free device (GPU) memory
cudaFree (d_A) ;
cudaFree (d_B) ;
cudaFree (d_C) ;

GPGPUs and CUDA

Blocks run on multiprocessors

Kernel launched by host

Device processor array

GPGPUs and CUDA

Streaming processors and multiprocessors

Streaming Processor Streaming Multiprocessor

Threadblock

Thread
Per-block

Memory

Memory

GPGPUs and CUDA

Blocks run on multiprocessors: four principles

Hardware allocates resources to blocks and schedules threads.

Kernel launched by host

Device processor array

@ Expose as much parallelism as possible
@ Optimize memory usage for maximum bandwidth
© Maximize occupancy to hide latency

@ Optimize instruction usage for maximum throughput

Performance Measures of CUDA Kernels

Plan

@ Performance Measures of CUDA Kernels

Performance Measures of CUDA Kernels

Characteristics of the abstract many-core machines

Global Memory unbounded
VAN
[w r ﬁ ﬁ w r l
‘ Private Memory Z ’ Private Memory Z ‘
A A A A
Core | |Core Core\ Core| | Core [Core]
Core| | Core Core | | Core
Athread-block | |Core Athread-block

Streaming Multiprocessor 1| Streaming Multiprocessor 2 Ce
Infinite SMs

Figure: A many-core machine

@ Global memory has high latency and low throughput while private
memories have low latency and high throughput.

Performance Measures of CUDA Kernels

Characteristics of the abstract many-core machines

0 Akernel
[Athread-block
é Athread

Step 1 e Aninstruction

Step 2

Figure: Sketch of a many-core machine program

Performance Measures of CUDA Kernels

Parameters and complexity measures in the MCM model

Machine parameters
@ Z: Private memory size of any SM,

@ U: Data transfer time.

Program parameters
@ /: number of threads per thread-block,
e number of data words read/written per thread,

Complexity measures

e The work accounts for the total amount of local operations (ALU
and private memory accesses)

@ The span accounts for the maximum number of local operations
along a path in the DAG representing the program

@ The parallelism overhead for the total amount of data transfer.

Performance Measures of CUDA Kernels

Fast Fourier Transform

Let f be a vector with coefficients in a field (either a prime field like Z/pZ
or C) and size n, which is a power of 2. Let w be a n-th primitive root of

unity.
The n-point Discrete Fourier Transform (DFT) at w is the linear map
defined by x —— DFT,, x with

DFT, = [w”]o<i, j<n-

We are interested in comparing popular algorithms for computing DFTs on
many-core architectures:

o Cooley & Tukey FFT algorithm,
e Stockham FFT algorithm.

Performance Measures of CUDA Kernels

Fast Fourier Transforms: Cooley & Tukey vs Stockham

The work, span and parallelism overhead ratios between Cooley & Tukey's
and Stockham’s FFT algorithms are, respectively,

W 4n (47 logy(n) £ + 34 logy(n) £ logs(£))

W 172n logy(n) £ + n + 48 £2 ’
Set 34 logy(n) logy(¢) + 47 logy(n)
Ssh 43 logy(n) + 16 logy(£)
Oce 8n(4logy(n) + £ logy(f) — logy(£) — 15)
Osn 20n logy(n) +5n —4¢ ’

where £ is the number of threads per thread-block.

@ Both the work and span of the algorithm of Cooley & Tukey are
increased by ©(log,(¢)) factor w.r.t their counterparts in Stockham

algorithm.

Performance Measures of CUDA Kernels

Fast Fourier Transforms: Cooley & Tukey vs Stockham

The ratio R = T¢¢/Tsp of the estimated running times (using our
Graham-Brent theorem) on ©(%) SMs is *:
R~ logy(n)(2U £ + 34 logy(¢) +2U)
5 logy(n) (U +2logy(£))
when n escapes to infinity. This latter ratio is greater than 1 if and only if
> 1.

n | Cooley & Tukey | Stockham
oM 0.583296 0.666496
215 0.826784 0.7624
216 1.19542 0.929632
217 2.07514 1.24928
218 4.66762 1.86458
219 9.11498 3.04365
220 16.8699 5.38781

Table: Running time (secs) with input size n on GeForce GTX 670.

1¢ is the number of threads per thread-block.

Performance Measures of CUDA Kernels

A popular performance counter: occupancy

Kernel launched by host

msor array

e The occupancy of an SM is Ayarp/Myarp, Where Agarp and Moy
are respectively the number of active warps and maximum number of
running warps per SM.

@ warps require resources (registers, shared memory, thread slots) to run

® Ayarp is bounded over by Myock £, where Mo is the maximum
number of active blocks.

@ Hence a small value for £ may limit occupancy,

@ but larger ¢ will reduce the amount of registers and shared memory
available per thread; this will limit data reuse within a thread-block.

Performance Measures of CUDA Kernels

The need for parametric CUDA kernels

Overall, both theoretical models and empirical performance counters
suggest:

@ Generating kernel code, where ¢ and other parameters are an input
arguments.

@ Once the machine parameters (like Swarp, Mwarp, Mblock, Z are

known, optimize at run-time the values of those program parameters
(like £).

Generating Parametric CUDA Kernels

Plan

@ Generating Parametric CUDA Kernels

Generating Parametric CUDA Kernels

Automatic parallelization: plain multiplication

Serial dense univariate polynomial multiplication

for(i=0; i<=n; i++){

cl[i] = 0; c[i+n] = O; e e

for(j=0; j<=n; j++) « © ®© ®
cli+j]l += alil * b[jl; "

} -f - L -

Dependence analysis suggests to set t(i,j) =n — j and p(4,j) =i+ J.
Synchronous parallel dense univariate polynomial multiplication
for (p=0, p<=2*n, p++) c[pl=0;
for (t=0, t=n, t++)

meta_for (p=n-t; p<=2*n -t; p++)
clp] = clp] + alt+p-n] * bln-t]; ’ e

Generating Parametric CUDA Kernels

Generating parametric code & use of tiling techniques (1/2)

meta_for (p=0; p<=2#*n; p++){ « » 3 3
c[pl=0; ¢ B % @
for (t=max(0,n-p); t<= min(n,2*n-p | S
Clpl = Clp] + Alt+p-nl * Bln-tl; ‘. |
}

Improving the parallelization

Make the maximum number of thread-blocks a parameter V.

We group the virtual processors (or threads) into 1D blocks, each of
size B. Each thread is known by its block number b and a local
coordinate w in its block.

Blocks represent good units of work which have good locality
property. The total number of blocks may exceed N so blocks are
processed in a cyclic manner; the cycle index is s.

We have: 0<r<N—-1,b=sN+r, 0<u<B, p=0bB +u.

1etric CUDA Kernels

Generating parametric code: using tiles (2/2)

Let us generate CUDA-like code. Hence we do not need to worry about
scheduling the blocks and we just schedule the threads within each block.
Thus we only consider the following relations on the left to which we apply
our QE tools (in order to get rid off 4, j) leading to the relations on the right

o<n
0<i<n B>0
0<j<n n>0
t=n—j 0<b<2n/B (1)
p=i+j 0<u<B
0<b 0<u<2n-— Bb
o<u<B p=>bB+u,
p=0B+u,

from where we derive the following program:

for (p=0; p<=2#*n; p++) c[p]=0;
meta_for (b=0; b<= 2 n / B; b++) {
meta_for (u=0; u<=min(B-1, 2%n - B * b); u++) {
p=bx*xB+u;
for (t=max(0,n-p); t<=min(n,2*n-p) ;t++)
clpl = clpl + alt+p—n] * bln-t];

Generating Parametric CUDA Kernels

Generation of parametric parallel programs

Summary

e Given a parallel algorithm (e.g. divide-and-conquer matrix multiplication)
expressed in METAFORK with program parameters like B,
@ given a type of hardware accelerators, like GRGPUs, characterized by
machine parameters, like Z, M,
@ we can:
@ automatically generate code that depends on the machine and program
parameters Z, M, ..., B, by means of symbolic computation,
@ specialize the machine parameters for a specific accelerator of the above

type
@ optimize the program parameters by means of numerical computation.

Note

The symbolic computation part, which is a special form of quantifier
elimination (QE) (Changbo Chen & M3, ISSAC 2014 & CASC 2015) is
performed by our RegularChains library in MAPLE available at

www.regularchains.org

www.regularchains.org

Experimentation

Plan

@ Experimentation

Experimentation

A complete example: Jacobi

for (int t = 0; t < T; ++t) {
for (dnt i = 1; i < N-1; ++i)
bli] = (ali-1] + al[il] + ali+1]) / 3;

for (int i = 1; i < N-1; ++1i)
alil = b[il;

Original C code.

A complete example: Jacobi

int ub_v = (N - 2) / B;

meta_schedule {
for (int t = 0; t < T; ++t) {
meta_for (int v = 0; v < ub_v; v++) {

meta_for (int u = 0; u < B; u++) {
int p=v *B +u+1;
int y =p - 1;
int z = p + 1;
blp]l = (aly]l + alpl + alz]l) / 3;

¥
meta_for (int v = 0; v < ub_v; v++) {
meta_for (int u = 0; u < B; u++) {
int w=v * B+ u+ 1;
[wl = blwl;

}

METAFORK code obtained via quantifier elimination.

A complete example: Jacobi

#include "jacobi_kernel.hu"
__global__ void kernelO(int *a, int *b, int N,
int T, int ub_v, int B, int c0)

{
int bO = blockIdx.x;
int t0 = threadIdx.x;
int private_p;
int private_y;
int private_z;
extern __shared__ int shared_a[l;
#define floord(n,d) (((n)<0) 7 -((-(m)+(d)-1)/(d)) : (m)/(d)
for (int cl = b0; cl < ub_v; cl += 32768) {
if (1t0) {
shared_al[(B)] = al(cl + 1) * (B)];
shared_al[(B) + 1] = al(cl + 1) * (B) + 1];
}
if (N >=t0 + (B) * cl + 1)
shared_a[t0] = a[t0 + (B) * c1];
__syncthreads();
for (int c2 = t0; c2 < B; c2 += 512) {
private_p = ((((c1) * (B)) + (c2)) + 1);
private_y = (private_p - 1);
private_z = (private_p + 1);
blprivate_p] = (((shared_alprivate_y - (B) * c1] +
shared_alprivate_p - (B) * c1]) +
shared_alprivate_z - (B) * c1]) / 3);
}
__syncthreads();
¥
}

CUDA kernel corresponding to the first loop nest.

Experimentation

Preliminary implementation

PPCG
T N
Dependence |
Analysis
> +
Affine
. _Transform)
ScheduleTi ree
e At e N
Constant - CUDA Post-
Tiling Code l Processing
Generator
\ J . J
PN
CUDA CUDA
+ +
Constant Parametric
Tiling Tiling

Figure: Components of METAFORK-to-CUDA generator of parametric code.

Experimentation

Reversing an array

Speedup (kernel) Input size

Block size 2% 2% 2% 226 277

8 1.695 | 1.689 | 1.610 | 1.616 | 1.623
16 3.267 | 3.330 | 3.120 | 3.125 | 3.130
32 6.289 | 6.513 | 6.389 | 6.432 | 6.276
64 11.385 | 11.745 | 11.792 | 11.811 | 11.776
128 16.116 | 17.191 | 17.976 | 18.202 | 18.333
256 14.464 | 17.108 | 17.614 | 19.704 | 20.264
512 13.956 | 14.216 | 16.002 | 17.171 | 18.249

Table: Reversing a one-dimensional array by METAFORK.

Speedup (kernel) Input size
Block size 2% | 2% | 225 | 226 | o%
32 7.844 | 8.202 | 8.225 | 8.024 | 8.140

Table: Reversing a one-dimensional array by PPCG.

Experimentation

Matrix transpose

Speedup (kernel) Input size
Block size 212 213 ol
8*8 17.940 | 19.138 | 20.896
8 * 16 12.384 | 14.857 | 17.571
16 * 4 16.792 | 20.275 | 32.335
16 * 8 19.107 | 21.365 | 29.859
16 * 16 10.665 | 13.888 | 18.729
16 * 32 4930 | 6.047 | 7.713
32 %4 19.257 | 22.397 | 30.549
32*8 15.947 | 17.402 | 25.209
32 * 16 10.509 | 12.114 | 15.011
Table: Matrix transpose by METAFORK.
Speedup (kernel) Input size
Block size 212 213 211
16 * 32 50.060 | 63.102 | 104.787

Table: Matrix transpose by PPCG.

Experimentation

Matrix addition

Speedup (kernel) Input size
Block size 212 213
4*4 14.419 | 14.870
4*8 33.103 | 32.679
4%*16 35.432 | 33.270
4%*32 20.202 | 18.445
8*38 44.995 | 44.860
8 *16 42.257 | 35.772
16 * 4 43.960 | 47.065
16 * 8 44.841 | 53.761
16 * 16 43.847 | 33.112
16 * 32 15.238 | 8.927
32*4 54.460 | 49.150
32*%8 44.505 | 39.024
32*16 30.300 | 18.571

Table: Matrix addition by METAFORK.

Speedup (kernel) Input size
Block size 212 213
16 * 32 5.651 | 5.018

Table: Matrix addition by PPCG.

Experimentation

Matrix multiplication

Speedup (kernel) Input size

Block size oM 212
4*4 22.180550 | 25.989502
4%*%8 39.404386 | 51.298267
4*16 73.658984 | 95.768978
4 * 32 43.123198 54.494699
8*4 34.486799 | 44.828359
8*8 111.695654 | 142.638582
8* 16 128.915358 | 166.739415
8 * 32 69.528568 | 89.975465
16 * 4 50.311660 | 64.348409
16 * 8 101.053287 | 130.995876
16 * 16 110.964165 | 144.353908
16 * 32 69.064474 | 90.188780

Table: Matrix multiplication by METAFORK.

Speedup (kernel) Input size
Block size 21T 212
16 * 32 218.668 | 284.659

Table: Matrix multiplication by PPCG.

Plan

© Conclusion

Conclusion

Concluding remarks

Observations
@ Most computer programs that we write are far to make an efficient use
of the targeted hardware
@ CUDA has brought supercomputing to the desktop computer, but is
hard to optimize even to expert programmers.
o High-level models for accelerator programming, like OpenACC, OpenCL
and METAFORK are an important research direction.

Project

o METAFORK-to-CUDA generates kernels depending on program
parameters (like number of threads per block) and machine parameters
(like shared memory size) are allowed.

@ This is feasible thanks to techniques from symbolic computation.

@ Machine parameters and program parameters can be respectively
determined and optimized, once the generated code is installed on the
target machine.

@ The optimization part can be done from numerical computation.

Conclusion

Our project web sites

2l A
‘ -w

Basic Polynomial Algebra Subprograms e

www.bpaslib.org

CU I« =D PEW X

DA ular olynomial

-

www.cumodp.org

1

’,Mel'TarE

www.metafork.org

www.regularchains.org

www.bpaslib.org
www.metafork.org
www.cumodp.org
www.regularchains.org

	Optimizing Computer Programs
	GPGPUs and CUDA
	Performance Measures of CUDA Kernels
	Generating Parametric CUDA Kernels
	Experimentation
	Conclusion

