
Optimizing Computer Programs: A Killer App for
Scientific Computing?

Marc Moreno Maza

University of Western Ontario, Canada

Chongqing Institute of Green and Intelligent Technology
Chinese Academy of Sciences

July 9, 2015

Canada in 4 pictures

High-performance computing and symbolic computation

Research themes

Symbolic computation: computing exact solutions of algebraic
problems on computers with applications to mathematical sciences
and engineering.

High-performance computing: making best use of modern computer
architectures, in particular hardware accelerators (multi-core
processors, graphics processing units).

Research projects

The RegularChains library: solving systems of algebraic equations and
integrated into the computer algebra system Maple.

The Basic Polynomial Algebra Subroutimes (BPAS) and CUDA
Modular Polynomial (CUMODP) libraries: hardware accelerator
support for symbolic computation.

The Meta Fork compilation framework: a programming environment
for hardware accelerators, supported by IBM Toronto Labs..

Current students and alumni

Current students

Parisa Alvandi, Ning Xie, Xiaohui Chen, Li Zhang, Haowei Chen, Yiming
Guan, Davood Mohajerani, Steven Thornton and Robert Moir.

Alumni

Moshin Ali (ANU, Australia) Jinlong Cai (Microsoft), Changbo Chen
(CIGIT), Sardar Anisula Haque (CiTi) Zunaid Haque (IBM) François
Lemaire (U. Lille 1, France) Xin Li (U. Carlos III, Spain) Wei Pan (Intel)
Paul Vrbik (U. Newcastle, Australia) Yuzhen Xie (COT) . . .

Solving polynomial systems symbolically

Figure: The RegularChains solver designed in our UWO lab can compute the real
solutions of any polynomial system exactly.

Our polynomial system solver is at the core of Maple

Figure: Maplesoft, the company developing Maple, demonstrates the
RegularChains solver designed in our UWO lab, in order to advertise Maple.

High-performance computing: models of computation

Let K be the maximum number of thread
blocks along an anti-chain of the
thread-block DAG representing the program
P. Then the running time TP of the
program P satisfies:

TP ≤ (N(P)/K + L(P))C(P),

where C(P) is the maximum running time of

local operations by a thread among all the

thread-blocks, N(P) is the number of

thread-blocks and L(P) is the span of P.

Our UWO lab develops mathematical models to make efficient use of
hardware acceleration technology, such as GPUs and multi-core processors.

High-performance computing: parallel program translation

int main(){

int sum_a=0, sum_b=0;

int a[5] = {0,1,2,3,4};

int b[5] = {0,1,2,3,4};

#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
{

for(int i=0; i<5; i++)

sum_a += a[i];

}

#pragma omp section
{

for(int i=0; i<5; i++)

sum_b += b[i];

} } }

}

int main()

{

int sum_a=0, sum_b=0;

int a[5] = {0,1,2,3,4};

int b[5] = {0,1,2,3,4};

meta_fork shared(sum_a){
for(int i=0; i<5; i++)

sum_a += a[i];

}

meta_fork shared(sum_b){
for(int i=0; i<5; i++)

sum_b += b[i];

}

meta_join;
}

void fork_func0(int* sum_a,int* a)

{

for(int i=0; i<5; i++)

(*sum_a) += a[i];

}

void fork_func1(int* sum_b,int* b)

{

for(int i=0; i<5; i++)

(*sum_b) += b[i];

}

int main()

{

int sum_a=0, sum_b=0;

int a[5] = {0,1,2,3,4};

int b[5] = {0,1,2,3,4};

cilk_spawn fork_func0(&sum_a,a);

cilk_spawn fork_func1(&sum_b,b);

cilk_sync;
}

Our lab develops a compilation platform for translating parallel
programs from one language to another; above we translate from
OpenMP to CilkPlus through MetaFork.

High-performance computing: automatic parallelization

Serial dense univariate polynomial multiplication

for(i=0; i<=n; i++){

for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];

}

GPU-like multi-threaded dense univariate polynomial multiplication

meta_for (b=0; b<= 2 n / B; b++) {

for (u=0; u<=min(B-1, 2*n - B * b); u++) {

p = b * B + u;

for (t=max(0,n-p); t<=min(n,2*n-p) ;t++)

c[p] = c[p] + a[t+p-n] * b[n-t];

}

}

We use symbolic computation to automatically translate serial programs to GPU-like programs.

Research projects with publicly available software

www.bpaslib.org
www.metafork.org

www.cumodp.org www.regularchains.org

www.bpaslib.org
www.metafork.org
www.cumodp.org
www.regularchains.org

Application to mathematical sciences and engineering

Figure: Toyota engineers use our software to design control systems

Plan

1 Optimizing Computer Programs

2 GPGPUs and CUDA

3 Performance Measures of CUDA Kernels

4 Generating Parametric CUDA Kernels

5 Experimentation

6 Conclusion

Optimizing Computer Programs

Plan

1 Optimizing Computer Programs

2 GPGPUs and CUDA

3 Performance Measures of CUDA Kernels

4 Generating Parametric CUDA Kernels

5 Experimentation

6 Conclusion

Optimizing Computer Programs

Once upon a time, everything was slow in a computer.

Optimizing Computer Programs

The second space race . . .

Optimizing Computer Programs

An inefficient program

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

...

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

A[i][j] += B[i][k] + C[k][j];

Optimizing Computer Programs

A better program

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

Cx = (double *)malloc(sizeof(double)*y*z);

...

for(j =0; j < y; j++)

for(k=0; k < z; k++)

Cx[j][k] = C[k][j]

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

A[i][j] += B[i][k] * Cx[j][k];

Optimizing Computer Programs

An inefficient program

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

Cx = (double *)malloc(sizeof(double)*y*z);

...

for(j =0; j < y; j++)

for(k=0; k < z; k++)

Cx[j][k] = C[k][j]

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

A[i][j] += B[i][k] * Cx[j][k];

Optimizing Computer Programs

A better program

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

Cx = (double *)malloc(sizeof(double)*y*z);

...

for(j =0; j < y; j++)

for(k=0; k < z; k++)

Cx[j][k] = C[k][j];

for(j =0; j < y; j++)

for(k=0; k < z; k++)

IND(Cx,j,k,z) = IND(C,k,j,y);

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

A[i0][j0] += B[i0][k0] * Cx[j][k0];

Optimizing Computer Programs

An inefficient program

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

Cx = (double *)malloc(sizeof(double)*y*z);

...

for(j =0; j < y; j++)

for(k=0; k < z; k++)

Cx[j][k] = C[k][j];

for(j =0; j < y; j++)

for(k=0; k < z; k++)

IND(Cx,j,k,z) = IND(C,k,j,y);

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

A[i0][j0] += B[i0][k0] * Cx[j][k0];

Optimizing Computer Programs

A nearly optimal program for parallel dense matrix multiplication

void parallel_dandc(int i0, int i1, int j0, int j1, int k0, int k1, int* A, int lda, int* B, int ldb, int* C, int ldc, int X)

{

int di = i1 - i0;

int dj = j1 - j0;

int dk = k1 - k0;

if (di >= dj && di >= dk && di >= X) {

int mi = i0 + di / 2;

cilk_spawn parallel_dandc(i0, mi, j0, j1, k0, k1, A, lda, B, ldb, C, ldc,X);

parallel_dandc(mi, i1, j0, j1, k0, k1, A, lda, B, ldb, C, ldc,X);

cilk_sync;

} else if (dj >= dk && dj >= X) {

int mj = j0 + dj / 2;

cilk_spawn parallel_dandc(i0, i1, j0, mj, k0, k1, A, lda, B, ldb, C, ldc,X);

parallel_dandc(i0, i1, mj, j1, k0, k1, A, lda, B, ldb, C, ldc,X);

cilk_sync;

} else if (dk >= X) {

int mk = k0 + dk / 2;

parallel_dandc(i0, i1, j0, j1, k0, mk, A, lda, B, ldb, C, ldc,X);

parallel_dandc(i0, i1, j0, j1, mk, k1, A, lda, B, ldb, C, ldc,X);

} else {

mm_loop_serial2(C, k0, k1, A, i0, i1, B, j0, j1, lda) ;

/* for (int i = i0; i < i1; ++i)

for (int j = j0; j < j1; ++j)

for (int k = k0; k < k1; ++k)

C[i * ldc + j] += A[i * lda + k] * B[k * ldb + j];*/

}

}

GPGPUs and CUDA

Plan

1 Optimizing Computer Programs

2 GPGPUs and CUDA

3 Performance Measures of CUDA Kernels

4 Generating Parametric CUDA Kernels

5 Experimentation

6 Conclusion

GPGPUs and CUDA

CUDA design goals

Enable heterogeneous systems (i.e., CPU+GPU)
Scale to 100’s of cores, 1000’s of parallel threads
Use C/C++ with minimal extensions
Let programmers focus on parallel algorithms (well, that’s the
intention)

GPGPUs and CUDA

Heterogeneous programming

A CUDA program is a serial program with parallel kernels, all in C.

The serial C code executes in a host (= CPU) thread

The parallel kernel C code executes in many device threads across
multiple GPU processing elements, called streaming processors (SP).

GPGPUs and CUDA

Vector addition on GPU (1/4)

GPGPUs and CUDA

Vector addition on GPU (2/4)

GPGPUs and CUDA

Vector addition on GPU (3/4)

GPGPUs and CUDA

Vector addition on GPU (4/4)

GPGPUs and CUDA

Blocks run on multiprocessors

GPGPUs and CUDA

Streaming processors and multiprocessors

GPGPUs and CUDA

Blocks run on multiprocessors: four principles

Hardware allocates resources to blocks and schedules threads.

1 Expose as much parallelism as possible

2 Optimize memory usage for maximum bandwidth

3 Maximize occupancy to hide latency

4 Optimize instruction usage for maximum throughput

Performance Measures of CUDA Kernels

Plan

1 Optimizing Computer Programs

2 GPGPUs and CUDA

3 Performance Measures of CUDA Kernels

4 Generating Parametric CUDA Kernels

5 Experimentation

6 Conclusion

Performance Measures of CUDA Kernels

Characteristics of the abstract many-core machines

Figure: A many-core machine

Global memory has high latency and low throughput while private
memories have low latency and high throughput.

Performance Measures of CUDA Kernels

Characteristics of the abstract many-core machines

Figure: Sketch of a many-core machine program

Performance Measures of CUDA Kernels

Parameters and complexity measures in the MCM model

Machine parameters

Z: Private memory size of any SM,

U : Data transfer time.

Program parameters

`: number of threads per thread-block,

number of data words read/written per thread,

. . .

Complexity measures

The work accounts for the total amount of local operations (ALU
and private memory accesses)

The span accounts for the maximum number of local operations
along a path in the DAG representing the program

The parallelism overhead for the total amount of data transfer.

Performance Measures of CUDA Kernels

Fast Fourier Transform

Let f be a vector with coefficients in a field (either a prime field like Z/pZ
or C) and size n, which is a power of 2. Let ω be a n-th primitive root of
unity.

The n-point Discrete Fourier Transform (DFT) at ω is the linear map
defined by x 7−→ DFTn x with

DFTn = [ωij]0≤i, j<n.

We are interested in comparing popular algorithms for computing DFTs on
many-core architectures:

Cooley & Tukey FFT algorithm,

Stockham FFT algorithm.

Performance Measures of CUDA Kernels

Fast Fourier Transforms: Cooley & Tukey vs Stockham

The work, span and parallelism overhead ratios between Cooley & Tukey’s
and Stockham’s FFT algorithms are, respectively,

Wct

Wsh
∼ 4n (47 log2(n) ` + 34 log2(n) ` log2(`))

172n log2(n) ` + n + 48 `2
,

Sct

Ssh
∼ 34 log2(n) log2(`) + 47 log2(n)

43 log2(n) + 16 log2(`)
,

Oct

Osh
=

8n (4 log2(n) + ` log2(`)− log2(`)− 15)

20n log2(n) + 5n− 4 `
,

where ` is the number of threads per thread-block.

Both the work and span of the algorithm of Cooley & Tukey are
increased by Θ(log2(`)) factor w.r.t their counterparts in Stockham
algorithm.

Performance Measures of CUDA Kernels

Fast Fourier Transforms: Cooley & Tukey vs Stockham

The ratio R = Tct/Tsh of the estimated running times (using our
Graham-Brent theorem) on Θ(n`) SMs is 1:

R ∼ log2(n)(2U ` + 34 log2(`) + 2U)

5 log2(n) (U + 2 log2(`))
,

when n escapes to infinity. This latter ratio is greater than 1 if and only if
` > 1.

n Cooley & Tukey Stockham
214 0.583296 0.666496
215 0.826784 0.7624
216 1.19542 0.929632
217 2.07514 1.24928
218 4.66762 1.86458
219 9.11498 3.04365
220 16.8699 5.38781

Table: Running time (secs) with input size n on GeForce GTX 670.

1` is the number of threads per thread-block.

Performance Measures of CUDA Kernels

A popular performance counter: occupancy

The occupancy of an SM is Awarp/Mwarp, where Awarp and Mwarp

are respectively the number of active warps and maximum number of
running warps per SM.
warps require resources (registers, shared memory, thread slots) to run
Awarp is bounded over by Mblock `, where Mblock is the maximum
number of active blocks.
Hence a small value for ` may limit occupancy,
but larger ` will reduce the amount of registers and shared memory
available per thread; this will limit data reuse within a thread-block.

Performance Measures of CUDA Kernels

The need for parametric CUDA kernels

Overall, both theoretical models and empirical performance counters
suggest:

1 Generating kernel code, where ` and other parameters are an input
arguments.

2 Once the machine parameters (like Swarp, Mwarp, Mblock, Z are
known, optimize at run-time the values of those program parameters
(like `).

Generating Parametric CUDA Kernels

Plan

1 Optimizing Computer Programs

2 GPGPUs and CUDA

3 Performance Measures of CUDA Kernels

4 Generating Parametric CUDA Kernels

5 Experimentation

6 Conclusion

Generating Parametric CUDA Kernels

Automatic parallelization: plain multiplication

Serial dense univariate polynomial multiplication

for(i=0; i<=n; i++){

c[i] = 0; c[i+n] = 0;

for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];

}

Dependence analysis suggests to set t(i, j) = n− j and p(i, j) = i + j.

Synchronous parallel dense univariate polynomial multiplication

for (p=0, p<=2*n, p++) c[p]=0;

for (t=0, t=n, t++)

meta_for (p=n-t; p<=2*n -t; p++)

c[p] = c[p] + a[t+p-n] * b[n-t];

}

Generating Parametric CUDA Kernels

Generating parametric code & use of tiling techniques (1/2)

meta_for (p=0; p<=2*n; p++){

c[p]=0;

for (t=max(0,n-p); t<= min(n,2*n-p);t++)

C[p] = C[p] + A[t+p-n] * B[n-t];

}

Improving the parallelization

Make the maximum number of thread-blocks a parameter N .

We group the virtual processors (or threads) into 1D blocks, each of
size B. Each thread is known by its block number b and a local
coordinate u in its block.

Blocks represent good units of work which have good locality
property. The total number of blocks may exceed N so blocks are
processed in a cyclic manner; the cycle index is s.

We have: 0 ≤ r ≤ N − 1, b = sN + r, 0 ≤ u < B, p = bB + u.

Generating Parametric CUDA Kernels

Generating parametric code: using tiles (2/2)

Let us generate CUDA-like code. Hence we do not need to worry about
scheduling the blocks and we just schedule the threads within each block.
Thus we only consider the following relations on the left to which we apply
our QE tools (in order to get rid off i, j) leading to the relations on the right

o < n
0 ≤ i ≤ n
0 ≤ j ≤ n
t = n− j
p = i + j

0 ≤ b
o ≤ u < B
p = bB + u,



B > 0
n > 0

0 ≤ b ≤ 2n/B
0 ≤ u < B

0 ≤ u ≤ 2n−Bb
p = bB + u,

(1)

from where we derive the following program:

for (p=0; p<=2*n; p++) c[p]=0;

meta_for (b=0; b<= 2 n / B; b++) {

meta_for (u=0; u<=min(B-1, 2*n - B * b); u++) {

p = b * B + u;

for (t=max(0,n-p); t<=min(n,2*n-p) ;t++)

c[p] = c[p] + a[t+p-n] * b[n-t];

}

}

Generating Parametric CUDA Kernels

Generation of parametric parallel programs

Summary

Given a parallel algorithm (e.g. divide-and-conquer matrix multiplication)
expressed in MetaFork with program parameters like B,
given a type of hardware accelerators, like GPGPUs, characterized by
machine parameters, like Z, M ,
we can:

1 automatically generate code that depends on the machine and program
parameters Z, M , . . . , B, by means of symbolic computation,

2 specialize the machine parameters for a specific accelerator of the above
type,

3 optimize the program parameters by means of numerical computation.

Note

The symbolic computation part, which is a special form of quantifier
elimination (QE) (Changbo Chen & M3 , ISSAC 2014 & CASC 2015) is
performed by our RegularChains library in Maple available at

www.regularchains.org

www.regularchains.org

Experimentation

Plan

1 Optimizing Computer Programs

2 GPGPUs and CUDA

3 Performance Measures of CUDA Kernels

4 Generating Parametric CUDA Kernels

5 Experimentation

6 Conclusion

Experimentation

A complete example: Jacobi

for (int t = 0; t < T; ++t) {

for (int i = 1; i < N-1; ++i)

b[i] = (a[i-1] + a[i] + a[i+1]) / 3;

for (int i = 1; i < N-1; ++i)

a[i] = b[i];

}

Original C code.

Experimentation

A complete example: Jacobi

int ub_v = (N - 2) / B;

meta_schedule {

for (int t = 0; t < T; ++t) {

meta_for (int v = 0; v < ub_v; v++) {

meta_for (int u = 0; u < B; u++) {

int p = v * B + u + 1;

int y = p - 1;

int z = p + 1;

b[p] = (a[y] + a[p] + a[z]) / 3;

}

}

meta_for (int v = 0; v < ub_v; v++) {

meta_for (int u = 0; u < B; u++) {

int w = v * B + u + 1;

[w] = b[w];

}

}

}

}

MetaFork code obtained via quantifier elimination.

Experimentation

A complete example: Jacobi

#include "jacobi_kernel.hu"

__global__ void kernel0(int *a, int *b, int N,

int T, int ub_v, int B, int c0)

{

int b0 = blockIdx.x;

int t0 = threadIdx.x;

int private_p;

int private_y;

int private_z;

extern __shared__ int shared_a[];

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

for (int c1 = b0; c1 < ub_v; c1 += 32768) {

if (!t0) {

shared_a[(B)] = a[(c1 + 1) * (B)];

shared_a[(B) + 1] = a[(c1 + 1) * (B) + 1];

}

if (N >= t0 + (B) * c1 + 1)

shared_a[t0] = a[t0 + (B) * c1];

__syncthreads();

for (int c2 = t0; c2 < B; c2 += 512) {

private_p = ((((c1) * (B)) + (c2)) + 1);

private_y = (private_p - 1);

private_z = (private_p + 1);

b[private_p] = (((shared_a[private_y - (B) * c1] +

shared_a[private_p - (B) * c1]) +

shared_a[private_z - (B) * c1]) / 3);

}

__syncthreads();

}

}

CUDA kernel corresponding to the first loop nest.

Experimentation

Preliminary implementation

Figure: Components of MetaFork-to-CUDA generator of parametric code.

Experimentation

Reversing an array

Speedup (kernel) Input size

Block size 223 224 225 226 227

8 1.695 1.689 1.610 1.616 1.623

16 3.267 3.330 3.120 3.125 3.130

32 6.289 6.513 6.389 6.432 6.276

64 11.385 11.745 11.792 11.811 11.776

128 16.116 17.191 17.976 18.202 18.333

256 14.464 17.108 17.614 19.704 20.264

512 13.956 14.216 16.002 17.171 18.249

Table: Reversing a one-dimensional array by MetaFork.

Speedup (kernel) Input size

Block size 223 224 225 226 227

32 7.844 8.202 8.225 8.024 8.140

Table: Reversing a one-dimensional array by PPCG.

Experimentation

Matrix transpose

Speedup (kernel) Input size

Block size 212 213 214

8 * 8 17.940 19.138 20.896

8 * 16 12.384 14.857 17.571

16 * 4 16.792 20.275 32.335

16 * 8 19.107 21.365 29.859

16 * 16 10.665 13.888 18.729

16 * 32 4.930 6.047 7.713

32 * 4 19.257 22.397 30.549

32 * 8 15.947 17.402 25.209

32 * 16 10.509 12.114 15.011

Table: Matrix transpose by MetaFork.

Speedup (kernel) Input size

Block size 212 213 214

16 * 32 50.060 63.102 104.787

Table: Matrix transpose by PPCG.

Experimentation

Matrix addition

Speedup (kernel) Input size

Block size 212 213

4 * 4 14.419 14.870

4 * 8 33.103 32.679

4 * 16 35.432 33.270

4 * 32 20.202 18.445

8 * 8 44.995 44.860

8 * 16 42.257 35.772

16 * 4 43.960 47.065

16 * 8 44.841 53.761

16 * 16 43.847 33.112

16 * 32 15.238 8.927

32 * 4 54.460 49.150

32 * 8 44.505 39.024

32 * 16 30.300 18.571

Table: Matrix addition by MetaFork.

Speedup (kernel) Input size

Block size 212 213

16 * 32 5.651 5.018

Table: Matrix addition by PPCG.

Experimentation

Matrix multiplication

Speedup (kernel) Input size

Block size 211 212

4 * 4 22.180550 25.989502

4 * 8 39.404386 51.298267

4 * 16 73.658984 95.768978

4 * 32 43.123198 54.494699

8 * 4 34.486799 44.828359

8 * 8 111.695654 142.638582

8 * 16 128.915358 166.739415

8 * 32 69.528568 89.975465

16 * 4 50.311660 64.348409

16 * 8 101.053287 130.995876

16 * 16 110.964165 144.353908

16 * 32 69.064474 90.188780

Table: Matrix multiplication by MetaFork.

Speedup (kernel) Input size

Block size 211 212

16 * 32 218.668 284.659

Table: Matrix multiplication by PPCG.

Conclusion

Plan

1 Optimizing Computer Programs

2 GPGPUs and CUDA

3 Performance Measures of CUDA Kernels

4 Generating Parametric CUDA Kernels

5 Experimentation

6 Conclusion

Conclusion

Concluding remarks

Observations

Most computer programs that we write are far to make an efficient use
of the targeted hardware
CUDA has brought supercomputing to the desktop computer, but is
hard to optimize even to expert programmers.
High-level models for accelerator programming, like OpenACC, OpenCL
and MetaFork are an important research direction.

Project

MetaFork-to-CUDA generates kernels depending on program
parameters (like number of threads per block) and machine parameters
(like shared memory size) are allowed.
This is feasible thanks to techniques from symbolic computation.
Machine parameters and program parameters can be respectively
determined and optimized, once the generated code is installed on the
target machine.
The optimization part can be done from numerical computation.

Conclusion

Our project web sites

www.bpaslib.org
www.metafork.org

www.cumodp.org www.regularchains.org

www.bpaslib.org
www.metafork.org
www.cumodp.org
www.regularchains.org

	Optimizing Computer Programs
	GPGPUs and CUDA
	Performance Measures of CUDA Kernels
	Generating Parametric CUDA Kernels
	Experimentation
	Conclusion

