
Efficient Computations of Irredundant

Triangular Decompositions with the

RegularChains Library

Changbo Chen†, François Lemaire‡, Marc Moreno Maza†, Wei Pan† and
Yuzhen Xie†

† University of Western Ontario, London N6A 1M8, Canada
‡ Université de Lille 1, 59655 Villeneuve d’Ascq Cedex, France

Abstract. We present new functionalities that we have added to the
RegularChains library in Maple to efficiently compute irredundant
triangular decompositions. We report on the implementation of different
strategies. Our experiments show that, for difficult input systems, the
computing time for removing redundant components can be reduced to
a small portion of the total time needed for solving these systems.

Key words: RegularChains, quasi-component, inclusion test, irre-
dundant triangular decomposition

1 Introduction

Efficient symbolic solving of parametric polynomial systems is an increasing
need in robotics, geometric modeling, stability analysis of dynamical systems
and other areas. Triangular decomposition provides a powerful tool for these
systems. However, for parametric systems, and more generally for systems in
positive dimension, these decompositions have to face the problem of removing

redundant components. This problem is not limited to triangular decompositions
and is also an important issue in other symbolic decomposition algorithms such
as those of [9, 10] and in numerical approaches [7].

We study and compare different criteria and algorithms for deciding whether
a quasi-component is contained in another. Then, based on these tools, we obtain
several algorithms for removing redundant components in a triangular decompo-
sition. We report on the implementation of these different solutions within the
RegularChains library [5].

We have performed extensive comparisons of these approaches using well-
known problems in positive dimension [8]. Our experiments show that, the re-
moval of the redundant components is never a bottleneck. Moreover, we have
developed a heuristic inclusion test which provides very good running time per-
formances and which fails very rarely in detecting an inclusion. We believe that
we have obtained an efficient solution for computing irredundant triangular de-
compositions.



2 Inclusion test of quasi-components

In this section we describe our strategies for the inclusion test of quasi-components
based on the RegularChains library. We refer to [1, 6, 5] for the notion of
a regular chain, its related concepts, such as initial, saturated ideals, quasi-
components and the related operations.

Let T, U ⊂ K[X ] be two regular chains. Let hT and hU be the respective
products of their initials. We denote by sat(T ) the saturated ideal of T . We
discuss how to decide whether the quasi-component W (T ) is contained in W (U)
or not. An unproved algorithms for this inclusion test is stated in [4]; it appeared
not to be satisfactory in practice, since it is relying on normalized regular chains,
which tend to have much larger coefficients that non-normalized regular chains
as verified experimentally in [2] and formally proved in [3].

Proposition 1. The inclusion W (T ) ⊆ W (U) holds if and only if the following

both statements hold

(C1) for all p ∈ U we have p ∈
√

sat(T ),
(C2) we have W (T ) ∩ V (hU ) = ∅.

If sat(T ) is radical, then condition (C1) can be replaced by:

(C′
1
) for all p ∈ U we have p ∈ sat(T ),

which is easier to check. Checking (C2) can be approached in different ways, de-
pending on the computational cost that one is willing to pay. The RegularChains

library provides an operation Intersect(p, T ) returning regular chains T1, . . . , Te

such that we have

V (p) ∩ W (T ) ⊆ W (T1) ∪ · · · ∪ W (Te) ⊆ V (p) ∩ W (T ).

A call to Intersect can be seen as relatively cheap, since Intersect(p, T ) exploits
the fact that T is a regular chain. Checking

(Ch) Intersect(hU , T )=∅,

is a good criterion for (C2). However, when Intersect(hU , T ) does not return
the empty list, we cannot conclude. To overcome this limitation, we rely on
Proposition 2 and the operation Triangularize of the RegularChains library.
For a polynomial system, Triangularize(F ) returns regular chains T1, . . . , Te such
that V (F ) = W (T1) ∪ · · · ∪ W (Te).

Proposition 2. The inclusion W (T ) ⊆ W (U) holds if and only if the following

both statements hold

(C1) for all p ∈ U we have p ∈
√

sat(T ),

(C′
2
) for all S ∈ Triangularize(T ∪ {hU}) we have hT ∈

√

sat(S).

This provides an effective algorithm for testing the inclusion W (T ) ⊆ W (U).
However, the cost for computing Triangularize(T ∪ {hU}) is clearly higher than
that for Intersect(hU , T ), since the former operation cannot take advantage of
the fact T is a regular chain.



3 Removing redundant components

Let F ⊂ K[X ] and let T = T1, . . . , Te be a triangular decomposition of V (F ),
that is, a set of regular chains such that we have V (F ) = W (T1) ∪ · · · ∪ W (Te).
We aim at removing every Ti such that there exists Tj, with i 6= j and W (Ti) ⊆
W (Tj). Based on the results of Section 2, we have developed the following strate-
gies for testing the inclusion W (T ) ⊆ W (U).

heuristics-no-split: It checks whether (C′
1
) and (Ch) hold. If both hold,

W (T ) ⊆ W (U) has been established, otherwise no conclusions can be made.
heuristically-with-split: It tests the conditions (C1) and (Ch). Checking

(C1) is achieved by means of the operation Regularize [5, 6]: for a polynomial
p and a regular chain T , Regularize(p, T ) returns regular chains T1, . . . , Te

such that we have
– W (T ) ⊆ W (T1) ∪ · · · ∪ W (Te) ⊆ W (T ),
– for each 1 ≤ i ≤ e the polynomial p is either 0 or regular modulo sat(Ti).

Therefore, Condition (C1) holds iff for all Ti returned by Regularize(p, T )
we have p 6≡ 0 mod sat(Ti).

certified: It checks conditions (C1) and (C′
2
). If both hold, then W (T ) ⊆

W (U) has been established. If at least one of the conditions (C1) or (C′
2
)

does not hold, then the inclusion W (T ) ⊆ W (U) does not hold either.

The following polynomial systems are well-known systems which can be found
at [8]. For each of them, the zero set has dimension at least one. Table 1 and Table
2 report the number of components and running time of different approaches for
these input systems, based on which we make the following observations:

1. The heuristic removal without split performs very well. First, for all exam-
ples, except sys 8, it discovers all redundant components. Second, for all
examples, except sys 8, its running time is a relatively small portion of the
solving time (third column of Table 1).

2. Theoretically, the heuristic removal with split can eliminate more redundan-

cies than the other strategies. Indeed, it can discover that a quasi-component
is contained in the union of two others, meanwhile these three components
are pairwise noninclusive.

3. In practice, the heuristic removal with split does not discover more irredun-
dant components than the heuristic removal without split, except for systems
5 and 6. However, the running time overhead is large.

4. The direct deterministic removal is also quite expensive on several systems
(5, 6, 8). Unfortunately, the heuristic removal without split, used as pre-
cleaning process does not really reduce the cost of a certified removal.

References

1. P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets. J.

Symb. Comp., 28(1-2):105–124, 1999.



Triangularize Certified
Sys Name (No removal) Proposition 2

♯ RC time(s) ♯ RC time(s)

1 genLinSyst-3-2 20 1.684 17 1.182
2 Butcher 15 9.528 7 0.267
3 MacLane 161 12.733 27 7.144
4 neural 10 14.349 4 8.948
5 Vermeer 6 27.870 5 58.396
6 Liu-Lorenz 23 29.044 16 121.793
7 chemical 7 71.364 5 7.727
8 Pappus 393 37.122 120 141.702
9 Liu-Lorenz-Li 22 1796.622 9 96.364
10 KdV572c11s21 41 8898.024 7 6.980

Table 1: Triangularize without removal, certified removal

Heuristic Certification Heuristic Certification
(C′

1) and (Ch) (C1) and (Ch)
Sys (without split) (Deterministic) (with split) (Deterministic)

♯ RC time(s) ♯ RC time(s) ♯ RC time(s) ♯ RC time(s)

1 17 0.382 17 1.240 17 0.270 17 1.214
2 7 0.178 7 0.259 7 0.147 7 0.325
3 27 3.437 27 8.470 27 3.358 27 8.239
4 4 1.881 4 8.353 4 6.429 4 14.045
5 5 0.771 5 60.108 8 54.455 8 109.928
6 16 1.937 16 123.052 18 96.492 18 203.937
7 5 0.243 5 7.828 5 5.180 5 12.842
8 124 42.817 120 135.780 124 48.756 120 148.341
9 9 8.186 9 101.668 10 105.598 10 217.837
10 7 4.878 7 6.688 7 5.881 7 7.424

Table 2: Heuristic removal, without and with split, followed by certification

2. P. Aubry and M. Moreno Maza. Triangular sets for solving polynomial systems: A
comparative implementation of four methods. J. S. Com., 28(1-2):125–154, 1999.

3. X. Dahan and É. Schost. Sharp estimates for triangular sets. In ISSAC 04, pages
103–110. ACM, 2004.

4. D. Lazard. A new method for solving algebraic systems of positive dimension.
Discr. App. Math, 33:147–160, 1991.

5. F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains library. In Ilias S.
Kotsireas, editor, Maple Conference 2005, pages 355–368, 2005.

6. M. Moreno Maza. On triangular decompositions of algebraic varieties. Technical
Report TR 4/99, NAG Ltd, Oxford, UK, 1999. http://www.csd.uwo.ca/∼moreno.

7. A.J. Sommese, J. Verschelde, and C.W. Wampler. Numerical decomposition of the
solution sets of polynomial systems into irreducible components. SIAM J. Numer.

Anal., 38(6):2022–2046, 2001.
8. The SymbolicData Project. http://www.SymbolicData.org, 2000–2006.
9. D. Wang. Elimination Methods. Springer, 2001.

10. G. Lecerf. Computing the equidimensional decomposition of an algebraic closed
set by means of lifting fibers. J. Complexity, 19(4):564–596, 2003.


