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Abstract

Constructible sets are the geometrical objects naturally attached to triangular decompositions,
as polynomial ideals are the algebraic concept underlying the computation of Gröbner bases.
This relation becomes even more complex and essential in the case of polynomial systems with
infinitely many solutions. In this paper, we introduce ConstructibleSetTools a new module
of the RegularChains library in Maple. To our knowledge, this is the first computer algebra
package providing constructible set as a type and exporting a rich collection of operations for
manipulating constructible sets. Besides, this module provides routines in support of solving
parametric polynomial systems. Simplifying set-theoretical expressions on constructible sets is
at the core of fundamental and challenging operations, like the removal of redundant components
when decomposing a polynomial system. We present practically efficient approaches for this
purpose together with an application to solver verification.
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1. Introduction

Solving systems of equations, algebraic or differential, is a driving subject for sym-
bolic computation. Many practical applications of polynomial system solving require a
description of the real solutions of an input system with finitely many complex solu-
tions. Meanwhile, some other applications of polynomial system solving require more
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advanced operations on ideals and varieties, such as decomposition into components (un-
mixed, irreducible, . . . ). Primary decomposition of ideals and triangular decomposition
of algebraic varieties are concepts which provide the necessary theoretical framework.
Algorithms for primary decomposition involve operations on ideals, such as saturation,
intersection and quotient computations; their implementation in the computer algebra
systems AXIOM, Singular, CoCoA, MAGMA and Maple has led to packages for computing with
polynomial ideals, based on Gröbner basis techniques.

The development of triangular decomposition started in the late 80’s with the work
of Wu (1987), more than 20 years after the introduction of Gröbner bases by Buch-
berger (1965). In the early 90’s, the notion of a regular chain, introduced independently
by Kalkbrener (1993) and Yang and Zhang (1991), led to important algorithmic progress
and stimulated implementation activity. To our knowledge, computer algebra systems
provide solvers based on triangular decompositions for 12 years only, mainly in Maple,
but also in AXIOM, Singular and MAGMA. Examples of such solvers are the downloadable
packages Epsilon by D.M. Wang, WSolve by D.K. Wang, DISCOVERER by B.C. Xia and
the RegularChains library (Lemaire et al., 2005) shipped with Maple since its release 10.
Efficient solvers based on triangular decomposition are work in progress (Li et al., 2008).

This implementation effort is supported by continuous theoretical and algorithmic ad-
vances. The notion of comprehensive triangular decomposition introduced by Chen et al.
(2007a) has brought to light the fact that constructible sets play the role for triangular
decompositions that polynomial ideals play for Gröbner bases. This fact was underlying
since the early work of Wu (1984); it became explicit in (Chen et al., 2007a) where the
authors provided procedures for computing the set-theoretical difference and intersection
of two constructible sets represented by triangular decompositions. Actually, this work
motivated the realization of the software presented in this article.

Comprehensive triangular decomposition (CTD) is one of the tools for parametric
polynomial system solving, an area which has an increasing number of applications and
which is in demand of efficient algorithms and solvers. Of course, the classical tech-
niques based on Gröbner bases and triangular decompositions can process parametric
polynomial systems. However, most practical questions related to these systems require
specific theoretical and algorithmic enhancements. To highlight this point, let us consider
Σ(U,X) a parametric polynomial system, where U stands for a set of parameters and
X for a set of unknowns. A typical problem is to determine the values of U for which
Σ(U,X) possesses solutions. This brings the following difficulty: these values of U may
not form an algebraic variety, that is, they may not form the solution set of a system
of polynomial equations. For instance, for the system Σ(U,X) consisting of the single
equation ux − 1 = 0, with U = {u} and X = {x}, the solution set of our problem is
given by u 6= 0, which is a constructible set, but not an algebraic variety. Therefore, in
the context of a strongly typed language, say AXIOM, the implementation of a package
for parametric polynomial systems would naturally imply the implementation of a type
constructible set. In the case of Maple, the implementation of the CTD (in the module Pa-

rametricSystemTools of the RegularChains library) led us to realize a second module, namely
ConstructibleSetTools.
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Let us illustrate this new module with an example from the theory of algebraic curves. Each
of the polynomials below defines an elliptic curve in the complex plane of coordinates (x, y):

g1(x, y) = x3 + ux− y2 + 1 and g2(x, y) = x3 + vx− y2 + 1.

They depend on parameters u and v respectively. In invariant theory, a classical question is
whether there exists a linear fractional map from the first curve to the second:

f : (x, y) 7→

„

a x + b y + c

g x + h y + k
,
d x + e y + f

g x + h y + k

«

We assume here that the origin is mapped to the origin which sets c = f = 0. Writing that the
rational function

g1(x, y)− g2(f(x, y))

is identically zero yields a system F with 24 equations (which contain lots of trivial equations),
7 unknowns a, b, d, e, g, h, k and 2 parameters u, v. Moreover we must have (g, h, k) 6= (0, 0, 0).
Hence, the problem is turned into computing the projection of the set defined by the difference
of two varieties V (F )\V (H), where H is the system {g, h, k}. The command Difference of the
module ConstructibleSetTools can compute such a difference and the output is a constructible
set:
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k 6= 0

∪

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

a3 − k3 = 0

b = 0

d = 0

−k2 + e2 = 0

h = 0

g = 0

u = 0

v = 0

k 6= 0.

The command Projection is then used to compute its projection image onto the parameter
space defined by u and v, which is again a constructible set:
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:

u− v = 0

v 6= 0
∪
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:

u2 + uv + v2 = 0

v 6= 0
∪

8

<

:

u = 0

v = 0.

Such a constructible set can be simplified as u3 − v3 = 0; interestingly, these calculations lead
to another proof of Theorem 1 in (Kogan and Moreno Maza, 2002).

More generally our software allows the user to perform on constructible sets the usual set
theoretical operations: union, intersection, difference, complement, and emptiness-test. A more
advanced operation is the computation of image (or pre-image) of a constructible set by a
rational map: this provides an algorithmic realization of Chevalley’s Theorem for constructible
sets. Section 3 provides a tour of the ConstructibleSetTools module.

In Section 2 we discuss the implementation of this module. We represent a constructible set
C by a list [[T1, h1], . . . , [Te, he]] of so-called regular systems, where each Ti is a regular chain
and each hi is a polynomial regular w.r.t. the saturated ideal of Ti. Then the points of C are
formed by the points that belong to at least one quasi-component W (Ti) without cancelling the
associated polynomial hi. This representation reveals important geometrical information such
as the degree and dimension of the Zariski closure of C. However, it is not canonical: different
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regular system decompositions can encode the same constructible set. In order to compare two
such decompositions, we propose efficient “simplification” algorithms together with complexity
and experimental results.

In Section 4, we give a tour of the commands of the module ParametricSetTools dedicated to
solving parametric polynomial systems. Another application supported by ConstructibleSet-

Tools appears in Section 5: verification of polynomial system solvers.
Up to our knowledge, ConstructibleSetTools is the first distributed package for this pur-

pose. Nevertheless, several existing packages have some functionalities related to ours. We at-
tempt to give a survey of those in Section 6.

2. Representation, simplification

In algebraic geometry, a constructible set is any zero set of a system of polynomial equations
and inequations. Thus each possible representation of such zero sets provides an encoding for
constructible sets. Selecting a representation should be guided by the operations to be performed
on it; these could be computing intersection, union and differences of constructible sets, etc.

The problems faced there are representative of the usual dilemma of symbolic computation:
choosing between canonical representation and expression-tree representation. Indeed, using a
canonical representation, say by means of irreducible varieties as in (Manubens and Montes,
2006b), makes a union computation C1 ∪ C2 non-trivial whereas one could implement the union
by just concatenating the representations of C1 and C2. This latter expression-tree approach
or lazy evaluation approach should be equipped with one (or more) simplification operation, for
instance, in order to remove duplicated data.

Before presenting the representation used in our software module, we need to review the
underlying algebraic notions: triangular set, regular chain, regular system and constructible set.
For details on these concepts and their properties, please refer to Aubry et al. (1999) and Chen
et al. (2007a).

Triangular set. Let K[X] := K[x1, . . . , xn] be a polynomial ring over a field K and with
ordered variables x1 ≺ · · · ≺ xn. We denote by K the algebraic closure of K. For a set of
polynomials F ⊂ K[X], we denote by V (F ) the zero set (or algebraic variety) of F in K

n
. For

a non-constant polynomial p ∈ K[X], we denote by init(p) the leading coefficient of p regarded
as a univariate polynomial in its main (or largest) variable. Let T ⊂ K[X] be a triangular set,
that is, a set of non-constant polynomials with pairwise distinct main variables. The saturated
ideal sat(T ) of T is defined to be the ideal 〈T 〉 : hT

∞, where hT is the product of initials of
polynomials in T . The quasi-component W (T ) of T is V (T ) \V (hT ), that is, the set of the zeros
of T which do not cancel any initials of T .

Regular chain. Let T ⊂ K[X] be a triangular set. If T is empty, then it is a regular chain.
Otherwise, let p be the polynomial of T with greatest main variable and let C be the set of
other polynomials in T . We say that T is a regular chain, if C is a regular chain and the initial
of p is regular (that is, neither null nor a zero-divisor) modulo sat(C).

Regular system. A pair [T, h] is a regular system if T ⊂ K[X] is a regular chain, and
h ∈ K[X] is regular with respect to sat(T ). The zero set of [T, h], denoted by Z(T, h), is defined
as W (T ) \ V (h). Note that the zero set of any regular system [T, h] is not empty; moreover its
Zariski closure is equal to V (sat(T )) which is an unmixed algebraic variety.

Constructible set. A constructible set of K
n

is a finite union (A1 \ B1) ∪ · · · ∪ (Ae \ Be)
where A1, . . . , Ae, B1, . . . , Be are algebraic varieties in K

n
. In Chen et al. (2007a) it is shown

that every constructible set is equal to a finite union of zero sets of regular systems.
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Based on this latter result, we represent a constructible set C of K
n

by a list of regular
systems [[T1, h1], . . . , [Te, he]], with T1, . . . , Te ⊂ K[X] and h1, . . . , he ∈ K[X], such that:

C = Z(T1, h1) ∪ · · · ∪ Z(Te, he).

Example 1. For the ordered variable x ≻ y ≻ s and over the field Q of rational numbers, the
constructible set C given by the conjunction of the conditions

s− (y + 1)x = 0, s− (x + 1)y = 0, and s 6= 1

is represented by [R1, R2] where R1 = [T1, h1] and R2 = [T2, h2] are regular systems with
8

<

:

T1 = [(y + 1)x− s, y2 + y − s]

h1 = s− 1
,

8

<

:

T2 = [x + 1, y + 1, s]

h2 = 1
.

At first glance, our encoding can be regarded as a compromise between a canonical repre-
sentation and an expression-tree representation. From a decomposition into regular systems,
important geometrical information (dimension, degree) can be read directly. Nevertheless, dif-
ferent regular system decompositions may encode the same constructible set. Comparing (for
equality test or inclusion test) two such decompositions, however, can be done efficiently. The
sequel of this section aims at supporting this claim.

Exploiting the triangular structure of regular systems leads to natural and efficient operations
on those objects, see Section 2.1. In Section 2.2 we specify our simplification operations for
constructible sets. Sections 2.3, 2.4 and 2.5 provide complexity results, practical algorithms and
experimental results for those operations.

2.1. Comparing two regular systems

Our basic tool for manipulating constructible sets is an algorithm for computing the set the-
oretical difference of the zero sets Z(T, h) and Z(T ′, h′) of two regular systems of K[X]. We
introduced this algorithm in (Chen et al., 2007a) as a building block for simplifying the repre-
sentations of constructible sets by means of the operations MPD and SMPD, defined in Section 2.2.
The objective of the present section is to illustrate the fact that zero sets of regular systems are
easy to compare. We also want to stress the fact that these comparisons reduce to polynomial
GCD computations modulo regular chains, for which efficient algorithms and implementation
are available (Li et al., 2008).

To keep this review simple, we restrict ourselves to the case where h = h′ = 1 and the initials
of T and T ′ are all equal to 1, too, that is, hT = hT ′ = 1. A sketch of our algorithm computing
Z(T, h) \ Z(T ′, h′) is given below and is illustrated by Figure 1. We stress the fact that this is
only a sketch; in particular, the algorithm makes recursive calls where the input arguments do
not satisfy the assumption h = h′ = 1. The complete algorithm, with proofs, can be found in
(Chen et al., 2007a). It has a similar structure as the sketched algorithm below.

T
′

T

Case 1

T
′
v

T
′

T

v

Case 2

T
′

T

vTv

Case 3

T
′

T

Tv T
′
v

Case 4

Fig. 1. Computing Z(T, h) \ Z(T ′, h′) by exploiting the triangular structure level by level.
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Case 1. We first check whether the regular chains T and T ′ generate the same ideal. Under
our assumption hT = hT ′ = 1, this is equivalent to sat(T ) = sat(T ′). This latter equality can
be tested by pseudo-division, by virtue of Theorem 6.1 in (Aubry et al., 1999). If this equality
holds then the difference Z(T, h) \ Z(T ′, h′) is empty. (Recall that we assume h = h′ = 1.) If
this equality does not hold, then let v be the largest variable such that T<v and T ′

<v generate
the same ideal, where T<v and T ′

<v denote the set of the polynomials with main variable less
than v in T and T ′ respectively. From this point we consider the Cases 2, 3 and 4 below.

Case 2. Assume that there is a polynomial T ′
v in T ′ with main variable v and no such a

polynomial in T . Then the points of Z(T, h) \ Z(T ′, h′) = V (T ) \ V (T ′) split into two groups:

- those from V (T ) that do not cancel T ′
v, that is, Z(T, T ′

v),

- those from V (T ) that cancel T ′
v but are outside of V (T ′), that is, V (T ∪ {T ′

v}) \ V (T ′).

Case 3. Assume that there is a polynomial Tv in T with main variable v and no such a
polynomial in T ′. Then, it suffices to exclude from V (T ) the points of V (T ′) which cancel Tv,
that is, V (T ) \ V (T ′ ∪ {Tv}).

Case 4. Now we assume that both Tv and T ′
v are defined. By definition of v, they are different

modulo the ideal generated by T<v. Let g be a GCD of Tv and T ′
v modulo T<v. (We use here

the GCD notion of (Moreno Maza and Rioboo, 1995).) To keep things simple, we assume that
the computations do not split and that the initial of g is 1. Three sub-cases arise:

(4.1) If g is a constant then the ideals generated by T and T ′ are relatively prime, hence V (T )
and V (T ′) are disjoint.

(4.2) If g is non-constant but its main variable is less than v, the points of Z(T, h)\Z(T ′, h′) =
V (T ) \ V (T ′) split into two groups:

- those from V (T ) that do not cancel g, that is, Z(T, g),
- those from V (T ) that cancel g but are still outside of V (T ′), that is, V (T ∪{g})\V (T ′).

(4.3) If g has main variable v, we just split T following the D5 principle (Della Dora et al.,
1985). Hence T is replaced by

Dg := T<v ∪ {g} ∪ T>v and Dq := T<v ∪ {q} ∪ T>v

where q is the quotient of Tv by g modulo the ideal generated by T<v. Finally, we recur-
sively compute V (Dg) \ V (T ′) and V (Dq) \ V (T ′).

2.2. The MPD and SMPD operations

When computing with constructible sets, two notions of simplification are equally important
to us. The first one is to remove the redundant components occurring when concatenating the
regular system lists encoding two constructible sets C1 and C2. This happens, obviously, when
computing C1 ∪ C2. A formal definition for this simplification follows.

The MPD operation. Given regular systems [T1, h1], . . . , [Te, he] in K[X], the function Make-

PairwiseDisjoint (MPD for short) returns regular systems [S1, g1], . . . , [Sf , gf ] in K[X] such that
the following conditions hold:

(i) Z(T1, h1) ∪ · · · ∪ Z(Te, he) = Z(S1, g1) ∪ · · · ∪ Z(Sf , gf ),
(ii) for all 1 ≤ i < j ≤ f we have Z(Si, gi) ∩ Z(Sj , gj) = ∅.
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A second level of redundancy can occur in a family C of constructible sets C1, . . . , Cm, where
Ci ∩ Cj 6= ∅ might hold for some 1 ≤ i < j ≤ m. If each Ci is a meaningful geometrical
object (say with some particular properties) replacing C by another family D of constructible
sets should imply preserving the geometrical information carried by C. This is naturally achieved
if D is an intersection-free basis of C, as defined hereafter.

The SMPD operation. Given a family C = {C1, . . . , Cm} of constructible sets of K
n
, the func-

tion SymmetricallyMakePairwiseDisjoint (SMPD for short) returns a family D = {D1, . . . , Dn}
of constructible sets of K

n
with the following properties:

(i) Di ∩Dj = ∅ for all 1 ≤ i < j ≤ n,
(ii) each Ci can be uniquely written as a finite union of some of the Dj ’s.

We call D an intersection-free basis of C.

The name SMPD comes from the idea that the operation SMPD must preserve some structure
whereas the operation MPD is simply meant to remove duplicated data.

2.3. Complexity results

We are interested in analyzing the complexity of algorithms implementing the MPD and SMPD

operations when classical polynomial arithmetic is used for computing GCDs modulo regular
chains. Indeed, the current code of our modules ConstructibleSetTools and ParametricSys-

temTools does not rely yet on asymptotically fast algorithms, such as FFT-based polynomial
arithmetic. In broad terms, our targeted result is the following: if our polynomial arithmetic
runs in quadratic time (w.r.t. input sizes) then the operations MPD and SMPD run “essentially”
in quadratic time (w.r.t. input sizes). Theorems 1 and 2 are formal statements of this result.
Comments about their proofs appear in Section 2.4 and complete proofs appear in the technical
report (Chen et al., 2008).

In our current study, we restrict ourselves to regular systems [T, h] for which the saturated
ideal sat(T ) is zero-dimensional. We believe that this special case already allows us to obtain
good indication on the performances of our algorithms. Note that for the general case, we have
conducted intensive experimental comparisons, see Section 2.5. In future work, we shall relax
this zero-dimensional assumption.

Under this hypothesis, the saturated ideal sat(T ) is equal to the ideal generated by T ; more-
over h is invertible modulo T and thus can be assumed to be 1, or equivalently, can be ignored.
Finally, we shall assume that the base field K is perfect and that 〈T 〉 is radical. The latter
assumption is easily achieved by squarefree factorization, since 〈T 〉 is zero-dimensional.

Theorem 1. Let T1, . . . , Te be zero-dimensional regular chains such that the ideals they gen-
erate are radical. Let di be the degree of the variety V (Ti), for 1 ≤ i ≤ e. Then, there exists
a positive constant K (independent of T1, . . . , Te) such that, on input [T1, 1], . . . , [Te, 1] the
operation MPD runs in O(Kn

P

1≤i<j≤e
didj) operations in K.

Theorem 2. Let C1, . . . , Cm be constructible sets. We assume that each Ci is represented
by zero-dimensional regular chains Ti,1, . . . , Ti,ei

generating radical ideals; hence we have Ci =
V (Ti,1) ∪ · · · ∪ V (Ti,ei

). Moreover we assume V (Ti,j) ∩ V (Ti,k) = ∅ for all 1 ≤ j < k ≤ ei,
and we denote by Di be the number of points in Ci, for all 1 ≤ i ≤ m. Then, there exists a
positive constant K (independent of C1, . . . , Cm) such that, on input C1, . . . , Cm, the operation
SMPD runs in O(Kn

P

1≤i<j≤m
DiDj) operations in K.

When FFT-based polynomial arithmetic is assumed then the operations MPD and SMPD run
“essentially” in linear time, see (Dahan et al., 2006). However, implementation techniques for
those asymptotically fast algorithms remain to be developed.
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2.4. Algorithms for MPD and SMPD

Our proofs of Theorems 1 and 2 employ the augment refinement method by Bach et al. (1990).
This has led to algorithms for the operations MPD and SMPD improving those first given in (Chen
et al., 2007a). For the sake of conciseness, in the rest of this section, we focus on SMPD. We
assume that, given two constructible sets C1, C2 of K

n
we have an operation PairRefine(C1, C2)

returning a triple (C1\2, C1∩2, C2\1) such that we have

C1\2 = C1 \ C2, C1∩2 = C1 ∩ C2, and C2\1 = C2 \ C1.

In fact, the “difference” operation sketched in Section 2.1 can be enhanced such that it computes
the two differences Z(T, h) \ Z(T ′, h′) and Z(T ′, h′) \ Z(T, h) together with the intersection
Z(T, h) ∩ Z(T ′, h′). Algorithms 1 and 2 below both implement the SMPD operation: The first
follows the pattern proposed by Bach et al. (1990) for computing GCD-free basis. The second one
is a divide-and-conquer transformation of Algorithm 1 which leads to interesting experimental
results, see Section 2.5.

Algorithm 1 SMPD

Input: a list L of constructible sets

Output: an intersection-free basis of L

m← |L|
if m < 2 then

output L
else

I ← ∅; D′ ← ∅; d← L[m]
L∗ ← SMPD(L[1, . . . , m− 1])
for l ∈ L∗ do

(d, i, d′)← PairRefine(d, l)
I ← I ∪ i; D′ ← D′ ∪ d′

end for

output d ∪ I ∪D′

end if

Algorithm 2 SMPD

Input: a list L of constructible sets

Output: an intersection-free basis of L

m← |L|
if m < 2 then

output L
else

z ← ⌊m/2⌋; I ← ∅
L1 ← SMPD(L[1, . . . , z])
L2 ← SMPD(L[z + 1, . . . , m])
for j in 1..|L1| do

for k in 1..|L2| do

(L1[j], i, L2[k])←
PairRefine(L1[j], L2[k])

I ← I ∪ i
end for

end for

output L1 ∪ I ∪ L2

end if

Observe that Algorithms 1 and 2 do not require that constructible sets are represented by
means of regular systems. The only requirement is to have at hand a function (C1, C2) 7−→
PairRefine(C1, C2) with the above specification. The work in Hong (1992) suggests that the
techniques from multiple-valued logic minimization could help with simplifying the computations
before calling operations on regular systems (or Gröbner bases).

2.5. Experimental results

In this section we provide benchmarks on the implementation of three different algorithms for
realizing the SMPD operation in Maple, respectively the original algorithm of Chen et al. (2007a)
(we call it Algorithm 0), Algorithm 1 and Algorithm 2. We examine their efficiency by comparing
their running times during the computation of a comprehensive triangular decomposition (CTD).
Table 1 gives the timing for twenty examples selected from Chen et al. (2007a) (all examples
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are in positive dimension). These benchmarks are performed in Maple 12 on an Intel Pentium 4
machine (3.20GHz CPU, 2.0GB memory).

Sys Algo. 0 Algo. 1 Algo. 2 Sys Algo. 0 Algo. 1 Algo. 2

9 3.817 0.818 1.112 19 0.733 0.444 0.211

10 1.138 0.223 0.281 20 0.020 0.013 0.013

11 12.302 3.494 0.786 21 3.430 0.584 0.633

12 10.114 0.383 0.318 22 25.413 8.292 9.530

13 1.268 0.318 0.362 23 1097.291 82.468 122.575

14 0.303 0.103 0.062 24 11.828 0.930 0.985

15 1.123 0.259 0.271 25 54.197 1.934 1.778

16 2.407 1.184 0.703 26 0.530 0.047 0.064

17 0.574 0.091 0.159 27 27.180 13.705 4.626

18 0.548 0.293 0.283 28 ¿ 10,000 1838.927 592.554

Table 1 Timing (s) of SMPD algorithms during CTD computation

Given a list C of constructible sets, Algorithm 0 first collects all their defining regular systems
into a list, then computes its intersection-free basis G which consists of regular systems; finally
one can easily deduce from G an intersection-free basis of C. In this manner the defining regular
systems of each constructible set are made (symmetrically) pairwise disjoint, though sometimes
this is unnecessary. As reported in Chen et al. (2007a), Algorithm 0 is expensive and sometimes
can be a bottleneck.

Our benchmark results suggest that algorithms 1 and 2 are practically more efficient than
Algorithm 0. This has led to improve the performances of our CTD code in a significant manner.
For instance, it can solve now Sys 28, posted by Lazard in ASCM 2001, which our previous
implementation could not process. Besides, Algorithm 2 performs more than 3 times faster
than Algorithm 1 for some examples: it probably behaves better w.r.t. cache locality due to its
divide-and-conquer structure.

3. The ConstructibleSetTools Module

Our ConstructibleSetTools module is a collection of commands for computing with con-
structible sets. It includes a relatively complete set of basic routines, like building constructible
sets, set operations such as difference, intersection and union, and also some advanced function-
alities. We illustrate some of them by examples in Sections 3.2, 3.3 and 3.4. In Section 3.1 we
discuss software design issues.

3.1. Software design

The design of the ConstructibleSetTools module somehow mimics the organization of cat-
egories and domains in the computer algebra system AXIOM (Jenks and Sutor, 1992). Both
regular systems and constructible sets are treated as classes of objects, regular system and con-
structible set . This follows the implementation strategy of the RegularChains library (Lemaire
et al., 2006), where a regular chain is a class type regular chain. This implementation technique
enhances the extensibility and reusability of our code.
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The RegularChains library user-interface has been organized into two levels: a set of basic
commands for non-expert users and a set of modules with more advanced functionalities. The
ConstructibleSetTools module lies in this second level.

We also provide flexibility in viewing the data. Since symbolic computation generally involves
large expressions, our functions are devised to display their computed results as the types of the
objects which they represent, i.e. regular chain, regular system and constructible set . The user
can then choose to view more details by our displaying tools such as Equations and Info.

A special design issue is on the representation and simplification of constructible sets, as
discussed in Section 2. One could think of maintaining the objects of type constructible set in
a canonical representation. This is the point of view which is followed for most domains in
AXIOM. For the case of constructible sets, this could imply using decomposition into irreducible
components as in (Manubens and Montes, 2006a); the comparative experimentation in (Chen
et al., 2007a) suggests that this could be a bottleneck. Instead, we follow a lazy (but not too
lazy) strategy. In our module, the union of two constructible sets C1 and C2 is simply computed
by concatenating the regular system lists encoding C1 and C2. Thus, the representation of the
constructible set C1 ∪ C2 may contain some redundant components. However, the command
MakePairwiseDisjoint can be used to remove them at a relatively low cost. This is achieved by
the good computational properties of our representation, presented in Section 2. For computing
C1 ∩C2 and C1 \C2, however, our code performs algebraic computations such those objects can
be represented by regular system lists. This is why we would like to say that our strategy is lazy,
but not too lazy.

3.2. Creating constructible sets

The command GeneralConstruct provides a synthetic way to create a constructible set. For
a given polynomial ring R, this command takes as input two lists of polynomials F and H,
regarded respectively as equations and inequations; optionally it takes also a regular chain T .
Then, it returns the constructible set equal to (V (F ) ∩W (T )) \ V (H). In fact, the command
GeneralConstruct extends the functionalities of the Triangularize command in the Regular-

Chains library.

Example 2. In the Maple session below, after loading the RegularChains library and the Cons-
tructibleSetTools module, we define R to be the polynomial ring Q[x ≻ y ≻ z]. Note that the
second argument of the PolynomialRing command specifies the characteristic of the ring.

> R := PolynomialRing([x, y, z], 0):

> F := [x*y*z-x*y, y^2-y*z]:

> H := [y]:

> cs := GeneralConstruct(F, H, R);

cs := constructible set

> lrs := RepresentingRegularSystems(cs, R);

lrs := [regular system, regular system]

> Info(cs, R);

[[x, y − z], [z]], [[y − 1, z − 1], [1]]

Recall that we encode each constructible set by a list of regular systems. The command Represen-

tingRegularSystems gives access to this representation. In addition, the commands Represen-
tingChain and RepresentingInequations (not illustrated above) “unwraps” a regular system
[T, h] and returns respectively T and h. Alternatively, the Info command displays directly the
polynomials defining a constructible set, a regular system or a regular chain. Therefore, in the
above lrs, the zero set of the first regular system can be read as {(x, y, z) | x = 0, y = z, z 6= 0},
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and the zero set of the other one is {(x, y, z) | y = 1, z = 1}. The constructible set cs is the
union of them.

3.3. Basic operations

Example 3. One of the key functionalities is to compute the set theoretical difference of two
constructible sets which is also a constructible set.

> R := PolynomialRing([x, y, u, v]):

> G := [x^2+y^2-1, u*x-v*y]:

> cs1 := GeneralConstruct(G, [x], R):

> Info(cs1, R);

[[ux− vy,
`

u2 + v2
´

y2 − u2], [y, v]]

[[x− 1, y, u], [1]], [[x + 1, y, u], [1]], [[x2 + y2 − 1, u, v], [x]]

> cs2 := GeneralConstruct(G, [y], R):

> Info(cs2, R);

[[ux− vy,
`

u2 + v2
´

y2 − u2], [y]], [[x2 + y2 − 1, u, v], [y]]

> cs3 := Difference(cs1, cs2, R);

cs3 := constructible set

> Info(cs3, R);

[[x− 1, y, u], [v]], [[x− 1, y, u, v], [1]],
[[x + 1, y, u], [v]], [[x + 1, y, u, v], [1]]

Example 4. The command Union forms the union of two constructible sets, simply by putting
all defining regular systems together.

> cs4 := Union(cs1, cs2, R); Info(cs4, R);

cs4 := constructible set

[[ux− vy,
`

u2 + v2
´

y2 − u2], [y, v]],

[[x− 1, y, u], [1]], [[x + 1, y, u], [1]], [[x2 + y2 − 1, u, v], [x]],

[[ux− vy,
`

u2 + v2
´

y2 − u2], [y]], [[x2 + y2 − 1, u, v], [y]]

Due to our lazy evaluation strategy, the output of Union may contain redundancy. For example,
the zero set of the regular system

[[ux− vy,
`

u2 + v2
´

y2 − u2], [y, v]]

is contained in the zero set of the regular system

[[ux− vy,
`

u2 + v2
´

y2 − u2], [y]].

If an irredundant result is demanded, one can call MakePairwiseDisjoint to clean cs4.

> cs5 := MakePairwiseDisjoint(cs4, R);

cs5 := constructible set

> Info(cs5, R);

[[x2 + y2 − 1, u, v], [y]], [[x− 1, y, u], [1]],

[[x + 1, y, u], [1]], [[ux− vy,
`

u2 + v2
´

y2 − u2], [y]]

The constructible set cs5 encodes the same set of points as cs4, but the zero sets of its defining
regular systems are pairwise disjoint.
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Example 5. The command RefiningPartition implements the operation SMPD introduced
in Section 2.2 and the algorithm it uses is the divide-and-conquer algorithm (Algorithm 2) of
Section 2.4. This function can remove the redundancy among a list of constructible sets while
preserving geometrical information carried by them.

> rp := RefiningPartition([cs1, cs2], R);

rp :=

2

6

6

6

6

6

4

constructible set [2]

constructible set [2, 1]

constructible set [1]

3

7

7

7

7

7

5

The above output is a matrix in which the first column are constructible sets and the second
column are indices showing where the constructible sets come from. In this matrix, the con-
structible set in the first row with index “2” is the difference cs2 \ cs1, the second one with
index “1, 2” is the intersection cs1 ∩ cs2 and the third one with index “1” is the difference
cs1 \ cs2. Hence, the three constructible sets in rp form an intersection-free basis of cs1 and cs2.

3.4. Two advanced operations

This subsection introduces two advanced operations related to constructible sets: projection
and rational map image.

Example 6. The Projection command is used to project a constructible set of K
n

to the space
of the first d coordinates for some 1 ≤ d < n. Suppose that we want to answer the following
question: what are the conditions on the coefficients of the quadratic equation x2 + ax + b = 0
to have two non-zero solutions, one being the double of the other. Let x and y be the roots of
this equation. The calculations below solve our question and the answer is 9b = 2a2 provided
that a and b are non-zero.

> R := PolynomialRing([x, y, a, b]):

> px := x^2+a*x+b:

> py := y^2+a*y+b:

> cs1 := GeneralConstruct([px, py, y-2*x], [x], R):

> cs2 := Projection(cs1, 2, R);

cs2 := constructible set

> Info(cs2, R);

[[−9 b + 2 a2], [a, b]]

In above example, the second argument “2” of the Projection command means that the
constructible cs1 is projected onto the coordinate space defined by the last two variables.

RationalMapImage and RationalMapPreimage are two commands for computing respectively
the image and preimage of a constructible set under a rational map. As a direct application,
we illustrate how to find the implicit representation of a curve from a rational parametrization.
The following example shows how to compute the implicit representation of the tacnode curve.

Example 7. First, we define two polynomial rings for the source space S and the target space
T . Note that the default characteristic is zero, hence the second argument of the PolynomialRing
command can be omitted.

> S := PolynomialRing([t]):

> T := PolynomialRing([x, y]):
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Then we define a rational map M from S to T .

> mx := (t^3-6*t^2+9*t-2)/(2*t^4-16*t^3+40*t^2-32*t+9):

> my := (t^2-4*t+4)/(2*t^4-16*t^3+40*t^2-32*t+9):

> M := [mx, my];

M := [
t3 − 6 t2 + 9 t− 2

2 t4 − 16 t3 + 40 t2 − 32 t + 9
,

t2 − 4 t + 4

2 t4 − 16 t3 + 40 t2 − 32 t + 9
]

The image of the whole space under the map M is computed below by the command
RationalMapImage. We obtain a constructible set cs encoded by three regular systems. Each of
the last two is just a point whereas the first one is “almost” a curve.

> F := []:

> cs := RationalMapImage(F, M, S, T);

cs := constructible set

> RepresentingRegularSystems(cs, T);

[regular system, regular system, regular system]

> Info(cs, T);

[[2 x4 − 3 yx2 + y2 − 2 y3 + y4], [y,
`

−4328 y3 + 964 y6 − 480 y5 − 6858 y4 − 888 y2 − 2− 72 y
´

x2

+892 y4 + y + 2104 y7 − 88 y8 + 32 y2 − 2316 y6 − 943 y5 + 318 y3, (10 y + 2) x2 + 2 y3 − y2 − y]],
[[x, y], [1]], [[x, y − 1], [1]]

We denote by p below the equation in the first regular system. It is not hard to prove that
the variety of p is the closure of the image cs and therefore is the implicit representation of
the tacnode curve. Moreover, the image cs is equal to the variety of p as checked below by the
command IsContained. This fact implies that the rational parametrization of tacnode curve
encodes exactly all the points of it.

> p := 2*x^4-3*y*x^2+y^2-2*y^3+y^4:

> cs2 := GeneralConstruct([p], [], T):

> IsContained(cs, cs2, T) and IsContained(cs2, cs, T);

true

4. The ParametricSystemTools Module

Our ParametricSystemTools module is a collection of commands for solving polynomial
systems depending on parameters. It is a direct application of the ConstructibleSetTools

module presented in the previous section. The main commands presented in this section are:
PreComprehensiveTriangularize, ComprehensiveTriangularize, DiscriminantSet, Complex-
RootClassification. These functions can be used to understand the properties of the solution
set of a parametric polynomial system F , with or without inequations. For instance, one can
answer questions like: for which values of the parameters does F have solutions, finitely many
solutions, or N solutions for a given N > 0 ? We start this section with a few definitions.

Let F be a finite set of polynomials with coefficients in K, parameters in U = (u1 ≺ · · · ≺ ud),
and unknowns X = (x1 ≺ . . . ≺ xm), that is, F ⊂ K[U, X]. Recall that K denotes the algebraic

closure of K. For each u ∈ K
d
, we define V (F (u)) ⊆ K

m
as the zero set of F after specializing

U at u. For a constructible set cs of K[U, X] and a point u ∈ K
d
, we define

cs(u) = {x ∈ K
m
| (u, x) ∈ cs}.
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Specialize well. Let T ⊂ K[U, X] be a regular chain. Let T0 be the set of the polynomials in
T involving only the parameters in U and let T1 be the set of the other polynomials in T . Let

W ⊂ K
d

be the quasi-component of T0 regarded as a regular chain in K[U ]. The regular chain
T specializes well at a point u of W if T1(u) ⊂ K[X] is a regular chain after specialization and
no initial of polynomials in T1 vanishes during the specialization. The regular system rs = [T, h]
specializes well at a point u of W if T specializes well at u and h(u) is regular w.r.t sat(T1(u)).

4.1. Pre-comprehensive triangular decomposition

A pre-comprehensive triangular decomposition (PCTD) of a constructible set cs ⊂ K[U, X] is

a family of regular systems R satisfying the following property: for each u ∈ K
d
, denoting by

Ru the subfamily of all regular systems in R that specialize well at u, we have

cs(u) =
[

rs∈Ru

Z(rs(u)).

In the Maple session below, F and H are two lists of polynomials in Q[x, y, s] regarded
as equations and inequations, respectively. The constructible set cs, defined by F and H, is
represented by two regular systems. Observe that, for s = 0, the regular system [[(y + 1)x −
s, y2 − s + y],−1 + 2 s − y], specializes to [[(y + 1)x, y2 + y],−1 − y], which is not a regular
system since y + 1, the initial of the polynomial (y + 1)x, is a zero-divisor modulo y2 + y. These
“bad specializations” are discovered by the command PreComprehensiveTriangularize. This is
why the call PreComprehensiveTriangularize(F,H,1,R) returns four regular systems instead
of two. (Note that the third parameter “1” specifies that the least variable of the polynomial
ring R is regarded as a parameter.) The third and fourth regular systems in pctd correspond to
the “bad parameter values” s = 0 and −3 + 4s = 0 of the first regular system of cs.

Example 8 (PCTD).

> R := PolynomialRing([x,y,s]):
> F := [s-(y+1)*x,s-(x+1)*y]:
> H := [x+y-1]:
> cs := GeneralConstruct(F,H,R):
> dec := RepresentingRegularSystems(cs, R);
> map(Info,dec,R);

dec := [regular system, regular system]

[[[(y + 1) x− s, y2 − s + y], [−1 + 2 s− y]], [[x + 1, y + 1, s], [1]]]

> pctd := PreComprehensiveTriangularize(F, H, 1, R);
> map(Info, pctd, R);

pctd := [regular system, regular system, regular system, regular system]

[[[(y + 1) x− s, y2 − s + y], [−1 + 2 s− y]], [[x + 1, y + 1, s], [1]],

[[x, y, s], [1]], [[2 x + 3, 2 y + 3,−3 + 4 s], [1]]]

Remark 1. We would like to point out here how the Projection command is implemented.
Recall that the function call Projection(cs, d, R) computes the projection image of a con-
structible set cs on the parameter space defined by the last d variables of the polynomial ring R.
The trick is to first compute a pre-comprehensive triangular decomposition pctd of cs regarding
the last d variables as parameters, and then to compute the union of the sets D(rs) for all rs
in pctd, where D(rs) is the set of the parameter values u at which rs specializes well.
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4.2. Comprehensive triangular decomposition

Comparing with the notion of pre-comprehensive triangular decomposition, that of compre-
hensive triangular decomposition (CTD) provides additional information on the geometry of the
input polynomial system. A CTD of a constructible set cs in K[U, X] comprises: (1) a finite
partition of the parameter space into cells, each of them given by a constructible set, and (2)
for each cell C, a family RC of regular systems which specialize well at any point of C and such
that, for all u ∈ C we have:

cs(u) =
[

rs∈RC

Z(rs(u)).

The following example shows how to compute the comprehensive triangular decomposition
of a constructible set by ComprehensiveTriangularize command. Two ways are available. First
the list F of equations and the list H of inequations are passed to ComprehensiveTriangularize.
Secondly, we build the constructible set cs from F and H; then we pass it to ComprehensiveTrian-

gularize.

Example 9 (CTD).

> R := PolynomialRing([x, y, s]):
> F := [s-(y+1)*x, s-(x+1)*y]:
> H := [x+y-1]:
> ctd := ComprehensiveTriangularize(F, H, 1, R);

ctd := [regular system, regular system, regular system, regular system],

[[constructible set , [1]], [constructible set , [2, 3]], [constructible set , [4]]]

> cs := GeneralConstruct(F, H, R);
> ctd := ComprehensiveTriangularize(cs, 1, R);

ctd := [regular system, regular system, regular system, regular system],

[[constructible set , [1]], [constructible set , [2, 3]], [constructible set , [4]]]

> cs1 := ctd[2][1][1]: Info(cs1, R);
> cs2 := ctd[2][2][1]: Info(cs2, R);
> cs3 := ctd[2][3][1]: Info(cs3,R);

[[], [−3 + 4 s, s]]

[[s], [1]]

[[−3 + 4 s], [1]]

The number “1” in the command ComprehensiveTriangularize means that the least variable
is the parameter. The output of ComprehensiveTriangularize consists of two parts: the first
one is a list of regular systems; the second part is a list of indexed constructible sets. Each of
these constructible sets encodes a cell in the parameter space above which the solutions of the
input system are given by the regular systems whose indices are in the list associated with the
constructible set. For our particular example, we see that, if (−3 + 4s)s 6= 0 holds, then the
solutions of the input system are those of the first regular system. If s = 0, the solutions of
the input system are given by the the union of those of the second and third regular systems.
Finally, if (−3+4s) = 0, the solutions of the input system are that of the fourth regular system.

4.3. Complex root classification

The ParametricSystemTools module provides two commands for investigating the number
of solutions of a polynomial system depending on parameters. The input of these two commands
can be either a polynomial system with or without inequations or, a constructible set.
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Example 10. The function DiscriminantSet is used for determining the discriminant set of a

constructible set cs, which is defined as the set of all points u ∈ K
d

for which cs(u) is empty or
infinite. In this example, the argument “2” means we see the last two variables as parameters.

> R := PolynomialRing([x, y, u, v]):
> F := [x^2+y^2-1, u*x-v*y]:
> cs := DiscriminantSet(F, [x], 2, R);
> Info(cs, R);

cs := constructible set

[[u, v], [1]], [[u2 + v2], [v]], [[v], [u]]

Example 11. The function ComplexRootClassification is used to compute the number of
distinct complex roots of a parametric polynomial system depending on parameters. In this
example, the argument “1” means we see the last variable as the parameter.

> R := PolynomialRing([x, y, s]):
> F := [s-(y+1)*x, s-(x+1)*y]:
> H := [x+y-1]:
> crc := ComplexRootClassification(F, H, 1, R);

crc := [[constructible set , 1], [constructible set , 2]]

The output is a list of pairs, which shows all the possible numbers of complex roots together
with the corresponding conditions on the parameter. Thus, this output provides a complete
complex root classification of the input system.

> map(x->[Info(x[1], R), x[2]], crc):

[[[[4 s + 1], [1]], [[−3 + 4 s], [1]], 1], [[[s], [1]], [[], [s,−3 + 4 s, 4 s + 1]], 2]]

For this example, the output can be read as follows: If (4s+1)(−3+4s) = 0, then the system
has 1 complex root. Otherwise, the system has 2 complex roots.

4.4. A small comparison with SACGB

We report here a brief comparison of our function ComprehensiveTriangularize with the
Maple implementation SACGB on comprehensive Gröbner basis by Suzuki and Sato (2006). The
comparison between ComprehensiveTriangularize, the RegSer function of Epsilon by Wang
(2000) and the function DISPGB of DPGB by Montes (2002) can be found in Chen et al. (2007a).

Table 2 illustrates the timing and the length of the output regarded as a string on the
6 examples from Suzuki and Sato (2006). The tests are performed in Maple 9.5 on an Intel
Pentium 4 machine (2.60GHz CPU, 1.0GB memory). Here we list the defining polynomials of

SACGB CTD

Sys Time(s) # Segs Length Time(s) # Cells Length

1 38.1 13 120788 5.8 4 591

2 Error – – > 1 hour – –

3 > 1 hour – – > 1 hour – –

4 904.7 27 23398 2.0 9 958

5 > 1 hour – – 1.8 7 961

6 > 1 hour – – 1.3 5 864

Table 2 Comparison with SACGB on 6 examples

cells (segments) on the parameter space for the first example in Table 2. The output by SACGB
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consists of the following 13 segments:

C1 : b = 0, a 6= 0

C2 : b = 0, a4 = 0, a 6= 0

C3 : b3 = 0, a = 0, b 6= 0

C4 : 729a4 + 64b3 = 0, ab 6= 0

C5 : b = 0, a8 = 0, a 6= 0

C6 : b6 = 0, a = 0, b 6= 0

C7 : 16767a4 + 5632b3 = 0, b6 = 0, ab 6= 0

C8 : a = 0, b 6= 0

C9 : b = 0, a = 0

C10 : ab(16767a4 + 5632b3)(−4096b3 + 729a4)(729a4 + 64b3)2 6= 0

C11 : −4096b3 + 729a4 = 0, ab 6= 0

C12 : ab(16767a4 + 5632b3)(−4096b3 + 729a4)(729a4 + 64b3) 6= 0,

−2939328b3a4 − 262144b6 + 531441a8 = 0

C13 : 16767a4 + 5632b3 = 0, ab 6= 0.

The partition obtained by ComprehensiveTriangularize contains 4 nonempty cells, listed
below:

D1 : 729a4 + 64b3 = 0, b 6= 0, a 6= 0

D2 : 729a4 + 64b3 6= 0, 729a4 − 4096b3 6= 0, b 6= 0

or b = 0, a 6= 0

D3 : 729a4 − 4096b3 = 0, b 6= 0, a 6= 0

D4 : a = 0, b = 0.

Note that there exist inconsistent segments in SACGB’s output and these segments may have
common part, while all Di’s are nonempty and pairwise disjoint.

There are a few other packages or programs available related to solving parametric systems:
DPGB, DV, RootFinding[Parametric], SACGB, DISCOVERER, Epsilon, WSolve, etc. The first five
packages are based on Gröbner bases approach while the rest three are implemented via tri-
angular decompositions. Among the packages based on triangular decompositions, DISCOVERER
focuses on real solving; WSolve does not have dedicated functions for parametric system solving;
Epsilon can be applied to parametric polynomial system solving, but it usually computes more
than needed since the parameters are not prescribed. Our ParametricSystemTools module ex-
plicitly distinguishes variables and parameters and is a tool particularly aiming at parametric
polynomial system solving.

5. Solver Verification

Symbolic solvers are highly complex software. They implement sophisticated algorithms,
which are generally at the level of on-going research. Moreover, in most computer algebra sys-
tems, the solve command involves nearly the entire set of libraries in the system, challenging
the most advanced operations on matrices, polynomials, algebraic and modular numbers, poly-
nomial ideals, etc.
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Given a polynomial system F and a set of components C1, . . . , Ce, it is hard, in general,
to tell whether the union of C1, . . . , Ce corresponds exactly to the solution set V (F ) or not.
Actually, solving this verification problem is generally (at least) as hard as solving the system
F itself.

Because of the high complexity of symbolic solvers, developing verification algorithms and
reliable verification software tools is a clear need. However, this verification problem has received
little attention in the literature. In Chen et al. (2007b) we proposed a procedure in order to
verify polynomial system solvers based on triangular decompositions.

In this section, we consider the verification of software packages computing polynomial GCDs
modulo regular chains. Below, we review this GCD notion, see (Moreno Maza, 1999).

Let T ∈ K[X] be a regular chain and let f1, f2 ∈ K[X] be non-constant polynomials with the
same main variable v. We assume that v is larger than any variable occurring in T and that the
initials of f1, f2 are regular w.r.t. the saturated ideal of T . A non-zero polynomial g ∈ K[X] is
a polynomial GCD modulo T of f1, f2 if the following conditions hold:

(i) the leading coefficient of g w.r.t. v is regular w.r.t. sat(T ),

(ii) if deg(g, v) > 0 then f1 and f2 belong to sat(T ∪ {g}),

(iii) there exist a1, a2 ∈ K[X] such that g ≡ a1f1 + a2f2 mod sat(T ).

Verifying this third condition is non-trivial and can be achieved via Gröbner basis computations.
Let us suppose now that we have at hand two implementations computing polynomial GCDs

modulo regular chains. Assume first that on input f1, f2, T they return respectively two differ-
ent polynomials g and g′ whose initials are regular w.r.t sat(T ). Let us assume that the first
implementation is trusted, hence g is correct. To check that g′ is correct it is sufficient to check
that the saturated ideals sat(T ∪ {g}) and sat(T ∪ {g′}) are equal, which can be done simply
by pseudo-division.

The difficulties start when one implementation splits the computation and the other does
not, or even worse, when they both split the computations but use different decompositions of
sat(T ). To highlight this point, let us assume that on input f1, f2, T the trusted implementation
returned g whereas the other implementation splits T into T1, T2 (this means that sat(T ) =
sat(T1) ∩ sat(T2) holds) and that modulo Ti the returned polynomial GCD is gi, for i = 1, 2.
Observe that if we have

W (T ∪ {g}) = W (T1 ∪ {g1}) ∪ W (T2 ∪ {g2}) (1)

then we also have
p

sat(T ∪ {g}) =
p

sat(T1 ∪ {g1}) ∩
p

sat(T2 ∪ {g2}). (2)

Indeed, the Zariski closure of the quasi-component W (T ) (for any regular chain T ) equals
V (sat(T )). If the saturated ideals of the regular chains T ∪ {g}, T1 ∪ {g1} and T2 ∪ {g2} are
radical (which is easy to check in characteristic zero or in dimension zero) we obtain the property
that we want to check, that is:

sat(T ∪ {g}) = sat(T1 ∪ {g1}) ∩ sat(T2 ∪ {g2}) (3)

Equation (1) is an equality between constructible sets (which may be not algebraic varieties).
Checking that this equality holds can be done by means of our ConstructibleSetTools module.
This computation is relatively easy with the algorithms of Section 2.

Equation (3) is an equality between ideals. Checking it can be done via Gröbner basis compu-
tations but this is potentially expensive (due to the computation of bases for saturated ideals).

Observe that Equation (3) might hold while Equation (1) does not. However, during our
experimentation we have never encountered such case. We have used this verification procedure
for the fast GCD algorithms reported in Li et al. (2008) comparing them against the trusted
implementation of the RegularChains library.
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6. Related Work

This section is a survey of algorithms and implementations related to constructible sets.
Recall that a constructible set is a finite union of subsets W = A \ B with A and B being
varieties. Different representations for W give quite different methods to realize basic operations
like difference, intersection, and projection.

Gröbner basis approach The above two varieties A and B can be given by two reduced
Gröbner bases, as in O’Halloran and Schilmoeller (2002), Kemper (2007), Schauenburg (2007),
Manubens and Montes (2006b), etc. In Manubens and Montes (2006b), as part of computing
canonical comprehensive Gröbner systems, the authors proposed an algorithm to describe the
segments (constructible sets) in a canonical way, where a constructible set is represented by a
P-tree (each node, except the root, is a prime ideal) with some additional properties.

The problem of computing the difference or intersection of two constructible sets boils down
to manipulating polynomial ideals like computing the intersection of two ideals. In Sit (1998),
the author proposed algorithms for testing inclusion and equality relations between two con-
structible sets. The main technique is based on radical membership tests with Gröbner bases.
Similar technique was also used in Chen et al. (2004) to make the constructible subsets of
parameter space consistent. The projection of a variety may be seen as a refinement of the clas-
sical elimination and extension theorems (Cox et al., 1992). In Schauenburg (2007), the authors
describe an algorithm to compute the projection image of a variety. This approach is geomet-
rical and there exists a certain analogy with the one based on the notion of well-specialization
in (Chen et al., 2007a).

Triangular set approach By the technique of triangular decompositions as introduced in (Wu,
1984), the set W = A \ B can be decomposed into a union of zero sets of triangular sys-
tems (Wang, 2001; Chen and Wang, 2002). Each triangular system is a pair [T, h], where T is a
triangular set and h is a polynomial. The set of points encoded by the pair [T, h] is V (T )\V (h).
A very first problem is that this set may be empty, and there are several constraints added to
a triangular system.

In (Chou and Gao, 1992; Gao and Wang, 2003), triangular sets are normalized, that is, the
initials only involve parameters. In (Wang, 2000, 2001), Wang proposed a notion of “regular
system” (stronger than the one used in Section 2) in which both the triangular sets and the
inequations are normalized. Unfortunately, as shown by the complexity result of (Dahan and
Schost, 2004), “normalizing” regular chains tends to blow up coeffcients dramatically. In (Chen
et al., 2007a) the authors defined a weaker notion of a regular system (the one of Section 2)
where normalization is not involved. Since the zero set of a regular system is always nonempty
(in fact unmixed), a constructible set is empty if and only if it is given by an empty list of
regular systems.

The difference of two constructible sets can be computed naively, that is, by reducing the
problem to compute the union or intersection of two varieties. In (Chen et al., 2007a), an efficient
algorithm was developed for computing the difference of the zero sets of two regular systems.
The basic idea there is to make better use of the triangular structure of the input and a similar
idea applies to compute the intersection. A sketch of this algorithm is given in Section 2.1.

To compute the projection of a constructible set, one may first decompose it into the union
of zero sets of triangular systems. Then it is enough to compute the projection of the zero set
of each triangular system. Afterwards, one can apply pseudo-division to eliminate variables of a
triangular system one by one. This approach was proposed by Wu (1990) and further developed
in (Chen and Wang, 2002; Wang, 2001; Chou and Gao, 1992). There is an interesting result
stated in (Wang, 2001, 2005), which pointed out that the projection of the zero set of a regular
system (in the sense of Wang) is simply the common zeros of some polynomials in the regular
system. This property is called the strong projection property of a (Wang) regular system.
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The packages mentioned earlier on parametric polynomial system are also related to con-
structing and manipulating constructible sets. There is another related package, QuasiAlgebraic-
Set, by Sit (1998) implemented in AXIOM. Although there are many related implementations,
to our knowledge, there is no package which dedicates to manipulating constructible sets in a
systematic way before the development of our ConstructibleSetTools module.
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O’Halloran, J., Schilmoeller, M., 2002. Gröbner bases for constructible sets. Journal of Commu-
nications in Algebra 30 (11).
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