

Quantifier Elimination (QE)

Let $F(x_1, \ldots, x_n)$ be a quantifier-ree formula in disjunctive normal form. Let $P := (Q_{k+1}x_{k+1}\cdots Q_nx_n) F(x_1,\ldots,x_n)$ be a prenex formula, where each Q_i is either the existential quantifier (\exists) or the universal quantifier (\forall) . The goal of Quantifier Elimi**nation** (QE) is to compute a quantifier free formula $S(x_1, \ldots, x_k)$ such that $SF \Leftrightarrow PF$ holds for all x_1, \ldots, x_k . As an example, consider

 $(\exists x)(\forall y)(ax^2 + bx + c) - (ay^2 + by + c) \ge 0$ for which QE yields

$$(a < 0) \lor (a = b = 0).$$

In many research articles and computer software (QEPCAD, Mathematica, Reduce) QE is performed via cylindrical algebraic decomposition.

Cylindrical Algebraic Decomposition

A cylindrical algebraic decomposition (CAD) of \mathbb{R}^2 such that $y^2 + y - x$ is sign invariant in each of the 9 cells is shown below.

In 1973, Collins introduced the first algorithm for computing CAD via a projection and lifting scheme. The projection phase relies on a global projection operator, which is a function defined independently of the input system, to eliminate variables. A strong projection operator usually produces much more polynomials than needed while a weak projection operator may fail for non-generic cases.

Quantifier Elimination via Triangular Decomposition

Changbo Chen, Marc Moreno Maza University of Western Ontario, Ontario, Canada

At ISSAC'09, the authors (with B. Xia and L. Yang) proposed a new scheme for computing CAD based on triangular decomposition (TCAD), which replaces the projection phase by computing a complex cylindrical tree. It is a natural question to ask how QE can be done via TCAD.

Main Contribution

We propose an operation which refines a given complex cylindrical tree with a new polynomial: this yields an incremental algorithm for computing the cylindrical decomposition of the complex space. An existing CAD can be refined through this operation. Moreover, QE is achieved based on refined CADs. This operation can fully take advantage of equational constraints.

Refining a Complex Cylindrical Tree

Fig.1 shows a $y^2 + x$ -invariant cylindrical decomposition of \mathbb{C}^2 , which is represented by a tree. This tree can be refined by the polynomial $y^2 + y$ into a $\{y^2 + x, y^2 + y\}$ -invariant cylindrical decomposition of \mathbb{C}^2 , see Fig. 2.

					the MAPLE's Reg cal decomposition		0
System Recursi		1 0 0		System	Recursive(t)	Incremental(t)	
Arnborg	Arnborg-Lazard-rev 2933		351 472.185		Lafferriere37	171.530	20.877
Barry		42.854		.972	lhlp5	38.362	6.956
blood-coagulation-2		246.963 31		.093	McCallum-rando	m > 1 hour	51.363
cdc2-cyclin		> 1 hour 120		0.923	nql-5-4	> 1 hour	9.620
circles		271.452 13		8.684	r-5	90.453	46.270
Collins-Johnson		20.405		.464	r-6	1608.392	1151.847
Collision		899.116		0.347	Raksanyi	2177.672	961.672
Davenport-Heintz		12.172		.076	Rose	> 1 hour	38.842
GonzalezGonzalez		166.18	32 104	5.590	Solotareff-3	315.375	23.525
hereman-2		> 1 hc	our 157	4.710	X-axis-ellipse	145.505	35.358
Jirstrand22		62.09	5 10	0.448	xy-5-5-1	114.627	12.336
Jirstrand42		152.14	15 112	2.735	YangBaxterRoss	50 73.500	2.068
	Syste Alons Barr blood-coagu cdc2-cy Collins-Jc Collisi Davenport herema Jirstran Jirstran Lafferrie Ihlp2 McCallum- nql-5 r-5 Rose Solotare	so y ilation-2 relin ohnson on -Heintz in-2 id41 id42 ere35 ere35 ere37 2 random -4	TCAD(t) 64.220 7.320 1438.769 801.470 13.116 294.462 13.044 $> 1 hour$ 2.716 $> 1 hour$ 4.056 102.450 2.444 $> 1 hour$ 110.750 1312.090 617.106 $> 1 hour$	$9939 \\ 1087 \\ 96093 \\ 435 \\ 3673 \\ 45979 \\ 4949 \\ > 1 hov \\755 \\ > 1 hov \\801 \\ 13371 \\ 353 \\ > 1 hov \\23347 \\ 261683 \\ 7951 \\ $	12.060 Fail Fail Fail 10.272 11.880 9.868 ur 37.206 9.76 ur 26.761 9.980 Fail ur 28.585 94.273 3 > 1 hour Fail	$\begin{array}{l} \text{QEPCAD}(\#) \\ & 39801 \\ & \textbf{Fail} \\ & \textbf{Fail} \\ & \textbf{Fail} \\ & 51 \ \textbf{hour} \\ & 3673 \\ & 45979 \\ & 4949 \\ & 6899 \\ & 755 \\ & 179905 \\ & 179905 \\ & 179905 \\ & 1005 \\ & \textbf{Fail} \\ & \textbf{Fail} \\ & \textbf{877} \\ & 23347 \\ & > 1 \ \textbf{hour} \\ & \textbf{Fail} \\ & 66675 \end{array}$	
We'd like to The equiva The input > S := {	lent QE probler control system. diff(x(t), t	e exists a co n is: ∀ (x, ;) = -x(t) S	ontrol Lyapun $y = (u) \left(x \neq t \right)$ $y = \left\{ \frac{d}{dt} x(t) = \right\}$	ov function $0 \text{ or } y \neq 0$ (t),t) = = -x(t) + u	an of the form $ax^2 + by$ ⇒ $V > 0 \land \frac{d}{dt} V < 0$ -x(t) - y(t)^3}; $\frac{d}{dt} y(t) = -x(t) - y$).	

 $fy := -x - y^{\circ}$ $V := y^2 b + x^2 a$ $Vt := 2 x a (-x + u) + 2 b y (-x - y^3)$

> RegularChains:-QuantifierElimination([[A, x, y], [E, u]], [[x<>0], [y<>0]], [[V>0, Vt<0]]);</pre> [[0 < b, 0 < a]]

; subs(u=4*y, %);

$$2 u x - 2 x^2 - 8 y^4 - 8 y x$$

 $-2 x^2 - 8 y^4$