
Real Quantifier Elimination in the
RegularChains Library

Changbo Chen1 and Marc Moreno Maza2

1 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences
2 ORCCA, University of Western Ontario

August 9, 2014
ICMS 2014, Seoul, Korea



Outline

1 Introduction

2 The RegularChains libary

3 QE in the RegularChains libary

4 Underlying theory and technical contribution

5 Experimentation

6 An Application

7 Concluding Remarks



Outline

1 Introduction

2 The RegularChains libary

3 QE in the RegularChains libary

4 Underlying theory and technical contribution

5 Experimentation

6 An Application

7 Concluding Remarks



Quantifier Elimination

Input: a prenex formula PF := (Qk+1xk+1 · · ·Qnxn)F (x1, . . . , xn)
• F (x1, . . . , xn) : a quantifier free formula over R
• each Qi is either ∃ or ∀.

Output : a quantifier free formula SF (x1, . . . , xk) such that
SF ⇔ PF holds for all x1, . . . , xk ∈ R.

Quantifier Elimination (QE)

(∃x)(∀y) (ax2 + bx + c)− (ay2 + by + c) ≥ 0, where a, b, c, x, y ∈ R,

for which QE yields

(a < 0) ∨ (a = b = 0).

Quantifier Free Formula (QFF)

¬(y − x2 > 0 ∧ z3 − x = 0) ∨ (z + xy ≥ 0 ∧ x2 + y3 6= 0)



Applications of QE

Geometry theorem proving,

Stability and bifurcation analysis of dynamical systems (biological
systems),

Control system design,

Verification of hybrid systems,

Program verification,

Nonlinear optimization,

Automatic parallelization,

· · ·



Outline

1 Introduction

2 The RegularChains libary

3 QE in the RegularChains libary

4 Underlying theory and technical contribution

5 Experimentation

6 An Application

7 Concluding Remarks



The RegularChains library in Maple

Design goals

Solving polynomial systems over Q and Fp, including parametric
systems and semi-algebraic systems.

Offering tools to manipulate their solutions.

Organized around the concept of a regular chain, accommodating all
types of solving and providing space-and-time efficiency.

Features

Use of types for algebraic structures: polynomial ring,
regular chain, constructible set, quantifier free formula,
regular semi algebraic system, . . .

Top level commands: PolynomialRing, Triangularize,
RealTriangularize SamplePoints, . . .

Tool kits: AlgebraicGeometryTools, ConstructibleSetTools,
MatrixTools, ParametricSystemTools, FastArithmeticTools,
SemiAlgebraicSetTools, . . .



The RegularChains library in Maple

Design goals

Solving polynomial systems over Q and Fp, including parametric
systems and semi-algebraic systems.

Offering tools to manipulate their solutions.

Organized around the concept of a regular chain, accommodating all
types of solving and providing space-and-time efficiency.

Features

Use of types for algebraic structures: polynomial ring,
regular chain, constructible set, quantifier free formula,
regular semi algebraic system, . . .

Top level commands: PolynomialRing, Triangularize,
RealTriangularize SamplePoints, . . .

Tool kits: AlgebraicGeometryTools, ConstructibleSetTools,
MatrixTools, ParametricSystemTools, FastArithmeticTools,
SemiAlgebraicSetTools, . . .



Solving for the real solutions of polynomial systems

Classical tools

Isolating the real solutions of zero-dimensional polynomial systems:
SemiAlgebraicSetTools:-RealRootIsolate

Real root classification of parametric polynomial systems:
ParametricSystemTools:-RealRootClassification

Cylindrical algebraic decomposition of polynomial systems:
SemiAlgebraicSetTools:-CylindricalAlgebraicDecompose

New tools

Triangular decomposition of semi-algebraic systems:
RealTriangularize

Sampling all connected components of a semi-algebraic system:
SamplePoints

Set-theoretical operations on semi-algebraic sets:
SemiAlgebraicSetTools:-Difference



Solving for the real solutions of polynomial systems

Classical tools

Isolating the real solutions of zero-dimensional polynomial systems:
SemiAlgebraicSetTools:-RealRootIsolate

Real root classification of parametric polynomial systems:
ParametricSystemTools:-RealRootClassification

Cylindrical algebraic decomposition of polynomial systems:
SemiAlgebraicSetTools:-CylindricalAlgebraicDecompose

New tools

Triangular decomposition of semi-algebraic systems:
RealTriangularize

Sampling all connected components of a semi-algebraic system:
SamplePoints

Set-theoretical operations on semi-algebraic sets:
SemiAlgebraicSetTools:-Difference



Outline

1 Introduction

2 The RegularChains libary

3 QE in the RegularChains libary

4 Underlying theory and technical contribution

5 Experimentation

6 An Application

7 Concluding Remarks



The user interface of the QE procedure

We have developed the interface of our QE procedure based on the Logic
package of Maple. The following Maple session shows how to use our
procedure.

Example (Davenport-Heintz)

The interface:

> f := &E([c]), &A([b, a]), ((a=d) &and (b=c))

&or ((a=c) &and (b=1)) &implies (a^2=b):

> QuantifierElimination(f);

false

since this actually yields (d - 1 = 0) &or (d + 1 = 0).



The default output of QuantifierElimination is quantifier free formula.



Output of QuantifierElimination in extended Tarski formula (I)



Output of QuantifierElimination in extended Tarski formula (II)



Outline

1 Introduction

2 The RegularChains libary

3 QE in the RegularChains libary

4 Underlying theory and technical contribution

5 Experimentation

6 An Application

7 Concluding Remarks



Cylindrical Algebraic Decomposition (CAD) of Rn

A CAD of Rn is a partition C of Rn s. t. each cell in C is a connected
semi-algebraic set of Rn and all cells are cylindrically arranged.
Two subsets A,B of Rn are cylindrically arranged if for any
1 ≤ k < n, the projections of A and B on Rk are equal or disjoint.
Each cell can be described by a triangular system and all the cell
descriptions can be organized as a tree data-structure.



Why CAD supports QE : The main idea

T F F F T T

T F F F T T

T F T

T F F F T T

T F F F T T

F TFx x

∀y∃y

(∃y)f(x, y) ≥ 0 (∀y)f(x, y) ≥ 0



CAD based on regular chains (RC-CAD)

Motivation: potential drawback of Collins’ projection-lifting scheme

The projection operator is a function defined independently of the
input system.

As a result, a strong projection operator (Collins-Hong operator)
usually produces much more polynomials than needed.

A weak projection operator (McCallum-Brown operator) may fail for
non-generic cases.

Solution: make case discussion during projection

Case discussion is common for algorithms computing triangular
decomposition.

At ISSAC’09, we (with B. Xia and L. Yang) introduced case
discussion into CAD computation.

The new method consists of two phases. The first phase computes a
complex cylindrical tree (CCT). The second phase decomposes each
cell of CCT into its real connected components.



CAD based on regular chains (RC-CAD)

Motivation: potential drawback of Collins’ projection-lifting scheme

The projection operator is a function defined independently of the
input system.

As a result, a strong projection operator (Collins-Hong operator)
usually produces much more polynomials than needed.

A weak projection operator (McCallum-Brown operator) may fail for
non-generic cases.

Solution: make case discussion during projection

Case discussion is common for algorithms computing triangular
decomposition.

At ISSAC’09, we (with B. Xia and L. Yang) introduced case
discussion into CAD computation.

The new method consists of two phases. The first phase computes a
complex cylindrical tree (CCT). The second phase decomposes each
cell of CCT into its real connected components.



Illustrate PL-CAD and RC-CAD by parametric parabola example

Let f := ax2 + bx + c. Suppose we like to compute a f -sign invariant
CAD. The projection factors are a, b, c, 4ac− b2, ax2 + bx + c. Rethinking
PL-CAD in terms of a complex cylindrical tree, we get the left tree.

any x

ax2 + bx+ c 6= 0

ax2 + bx+ c = 0

ax2 + bx+ c = 0

ax2 + bx+ c 6= 0

c 6= 0

c = 0

any x

b 6= 0

b = 0

ax2 + bx+ c = 0

ax2 + bx+ c 6= 0

ax2 + bx+ c 6= 0

ax2 + bx+ c = 0

ax2 + bx+ c = 0

ax2 + bx+ c 6= 0

4ac− b2 = 0

c = 0

ax2 + bx+ c = 0

ax2 + bx+ c 6= 0
4ac− b2 = 0

4ac− b2 6= 0

ax2 + bx+ c = 0

ax2 + bx+ c 6= 0

a 6= 0

b = 0

c(4ac− b2) 6= 0

a = 0
c = 0

c 6= 0

b 6= 0

a 6= 0
2ax+ b 6= 0

4ac− b2 = 0
2ax+ b = 0

bx+ c 6= 0

bx+ c = 0

ax2 + bx+ c = 0

ax2 + bx+ c 6= 0

any x

any x

c 6= 0

c = 0

b = 0

b 6= 0

4ac− b2 6= 0

a = 0

any c

any b

Clearly, RC-CAD (see right tree) computes a smaller tree by avoiding
useless case distinction.



QE by RC-CAD

Challenges for doing QE by RC-CAD

RC-CAD has no global projection factor set associated to it.

Instead, it is associated with a complex cylindrical tree. The
polynomials in one path of a tree may not be sign invariant above
cells derived from a different path of a tree.

There is no universal projection operator for RC-CAD.

Refining an existing CAD is not straightforward comparing to
PL-CAD.

The solution (C. Chen & M., ISSAC 2014)

Uses an operation introduced in ASCM 2012 (C. Chen & M.) for
refining a complex cylindrical tree and,

Adapts C. W. Brown’s incremental method for creating
projection-definable PL-CAD to RC-CAD;

The approach works with truth-invariant CAD produced in ASCM
2012 and CASC 2014 (with R. Bradford, J. H. Davenport, M.
England and D. J. Wilson) for making use of equational constraints.



QE by RC-CAD

Challenges for doing QE by RC-CAD

RC-CAD has no global projection factor set associated to it.

Instead, it is associated with a complex cylindrical tree. The
polynomials in one path of a tree may not be sign invariant above
cells derived from a different path of a tree.

There is no universal projection operator for RC-CAD.

Refining an existing CAD is not straightforward comparing to
PL-CAD.

The solution (C. Chen & M., ISSAC 2014)

Uses an operation introduced in ASCM 2012 (C. Chen & M.) for
refining a complex cylindrical tree and,

Adapts C. W. Brown’s incremental method for creating
projection-definable PL-CAD to RC-CAD;

The approach works with truth-invariant CAD produced in ASCM
2012 and CASC 2014 (with R. Bradford, J. H. Davenport, M.
England and D. J. Wilson) for making use of equational constraints.



QE by CAD based on regular chains (RC-QE) : The big picture

Algorithm: QuantifierElimination

Input: A prenex formula
PF := (Qk+1xk+1 · · ·Qnxn)FF (x1, . . . , xn).

Output: A solution formula of PF .

Description

1 Let F be the set of polynomials appearing in FF

2 T := CylindricalDecomposeF//computes a complex cylindrical tree

3 RT := MakeSemiAlgebraic(T )//computes a CAD tree

4 AttachTruthValue(FF,RT )//evaluate the truth values of FF at each cell

5 PropagateTruthValue(PF,RT )//get the true values of PF

6 MakeProjectionDefinable(PF,RT)//refine RT until projection definable (not
required if the output is allowed to be extended Tarski formula)

7 SF := GenerateSolutionFormulak(RT )//generate QFF describing true cells
in free space



An example

This example illustrates the case that the polynomials in the initial CCT
are not enough to express the solution set.

Consider the following QE problem:

(∃y) (x2 + y2 − 1 = 0) ∧ (x + y < 0) ∧ (x > −1) ∧ (x < 1).

CylindricalDecompose([x2 + y2 − 1 = 0, x + y 6= 0, x 6= −1, x 6= 1])
computes the following CCT T :

root

2x4 − 3x2 + 1 6= 0

y2 + x2 − 1 6= 0y2 + x2 − 1 = 0

2x2 − 1 = 0

y − x 6= 0y − x = 0

x− 1 = 0

any y

x+ 1 = 0

any y



The CAD of R1 has the following cells, with blue ones being true cells.

(−∞,−1),−1, (−1,−
√

2

2
),−
√

2

2
, (−
√

2

2
,

√
2

2
),

√
2

2
, (

√
2

2
, 1), 1, (1,+∞).

The true cells describe the projection of the blue region on the x-axis,
which cannot be expressed by the signs of polynomials in the CCT.

The cells −
√
2
2 and

√
2
2 is called a conflicting pair, since they have

opposite true values and all univariate polynomials in the tree have
the same signs at them.

They are derived from the path Γ := [root, 2x21 − 1 = 0] of T1. Refine
Γ w.r.t. diff(2x21 − 1, x) generates a projection definable CAD, from
where we deduce the solution
(x1 < 0 ∧ 0 < x1 + 1) ∨ x1 = 0 ∨ (0 < x1 ∧ 2x21 < 1).



An advanced example

Let f := 2z4 + 2x3y − 1 and h = x + y + z.
Consider the following quantifier elimination problem.

∃(z)(f < 0 ∧ h < 0).

The plots of f = 0 and h = 0 are depicted in the following figure.



The solution set is the blue region in the following picture, where the red
curve is the locus of p := 2x4 + 10x3y + 12x2y2 + 8xy3 + 2y4 − 1.
The solution set is exactly the set of (x, y) such that x > 0 and
y < RealRoot2(p, y). Apparently, this region cannot be described just by
the sign of p.



To describe the blue region by a QFF, the derivative of p, namely
q := 10x3 + 24x2y + 24xy2 + 8y3, is introduced. The locus of q is the
blue curve.
Note that the blue region is the union of the green region (x > 0 ∧ q < 0),
the blue curve (x > 0∧ q = 0) and the pink region (x > 0∧p < 0∧ q > 0).



Outline

1 Introduction

2 The RegularChains libary

3 QE in the RegularChains libary

4 Underlying theory and technical contribution

5 Experimentation

6 An Application

7 Concluding Remarks



Benchmark examples

The efficiency of the QE procedure directly benefits that of RC-CAD.

It was shown in ASCM 12 that RC-CAD is competitive to the state of
art CAD implementations.

We illustrate the efficiency of the QE procedure by several examples.

Neither QEPCAD nor Mathematica can solve the examples
blood-coagulation-2 and MontesS10 within 1-hour time limit.

Example (blood-coagulation-2)

It takes about 6 seconds.

f := &E([x, y, z]), (1/200*x*s*(1 - 1/400*x)

+ y*s*(1 - 1/400*x) - 35/2*x=0)

&and (250*x*s*(1 - 1/600*y )*(z + 3/250) - 55/2*y=0)

&and (500*(y + 1/20*x)*(1 - 1/700*z) - 5*z=0);

QuantifierElimination(f);

true



Example (MontesS10)

It takes about 26 seconds.

f := &E([c2,s2,c1,s1]),

(r-c1+l*(s1*s2-c1*c2)=0) &and (z-s1-l*(s1*c2+s2*c1)=0)

&and (s1^2+c1^2-1=0) &and (s2^2+c2^2-1=0);

QuantifierElimination(f);

2 2 2

((((-r - z + l - 2 l + 1 = 0) &or

2 2 2 2 2 2

((l - r - z - 2 l < -1) &and (-r - z + l + 2 l + 1 = 0))) &or

2 2 2 2 2 2

((l - r - z - 2 l < -1) &and (0 < -r - z + l + 2 l + 1))) &or

2 2 2 2 2 2

((0 < -r - z + l - 2 l + 1) &and (l - r - z + 2 l < -1))) &or

2 2 2 2 2 2

((0 < -r - z + l - 2 l + 1) &and (-r - z + l + 2 l + 1 = 0))



Consider a new example on algebraic surfaces.

Example (Sattel-Dattel-Zitrus)

It takes about 3 seconds while QEPCAD cannot solve it in 30 minutes.

Sattel := x^2+y^2*z+z^3;

Dattel := 3*x^2+3*y^2+z^2-1;

Zitrus := x^2+z^2-y^3*(y-1)^3;

f := &E([y, z]), (Sattel=0) &and (Dattel=0) &and (Zitrus<0);

QuantifierElimination(f);

The output is the inequality:

387420489x36 + 473513931x34 + 1615049199x32

−5422961745x30 + 2179233963x28 − 14860773459x26

+43317737551x24 − 45925857657x22 + 60356422059x20

−126478283472x18 + 164389796305x16 − 121571730573x14

+54842719755x12 − 16059214980x10 + 3210573925x8

−446456947x6 + 43657673x4 − 1631864x2 < 40328.



Outline

1 Introduction

2 The RegularChains libary

3 QE in the RegularChains libary

4 Underlying theory and technical contribution

5 Experimentation

6 An Application

7 Concluding Remarks



Verification and synthesis of switched and hybrid dynamical systems
(Sturm-Tiwari, ISSAC 2011)

A common problem studied in this field is to determine if a system remains
in the safe state if it starts in an initial safe state. A typical approach to
solve this problem is to find a certificate, or an invariant set, such that the
following are satisfied simultaneously:

the initial states satisfy the invariant set

any states that satisfy the invariant set are safe

the system dynamics cannot force the system to leave the invariant set

Finding such a certificate can be casted into a real quantifier elimination
problem.



Figure: Solve a QE problem related to 1-D robot model



Outline

1 Introduction

2 The RegularChains libary

3 QE in the RegularChains libary

4 Underlying theory and technical contribution

5 Experimentation

6 An Application

7 Concluding Remarks



Summary and future work

We have presented the command QunatifierElimination of the
RegularChains library.

The Maple library archive RegularChains.mla can be downloaded
from www.regularchains.org

The efficiency of QunatifierElimination is illustrated by examples.

Our underlying algorithm algorithm benefit from RC-CAD and related
optimizations like RC-TTICAD, early use of equational constraints,
etc.

An application to automatic parallelization of for-loop nests
(suggested by A. Größlinger, M. Griebl, and C. Lengauer in JSC 2006)
is discussed in our ISSAC 2014 paper.

Further work is required to get simpler output QFF and partial
cylindrical algebraic decompositions.


	Introduction
	The RegularChains libary
	QE in the RegularChains libary
	Underlying theory and technical contribution
	Experimentation
	An Application
	Concluding Remarks

