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Abstract. We study continuous dynamical systems defined by auto-
nomous ordinary differential equations, themselves given by parametric
rational functions. For such systems, we provide semi-algebraic descrip-
tions of their hyperbolic and non-hyperbolic equilibria, their asymptot-
ically stable hyperbolic equilibria, their Hopf bifurcations. To this end,
we revisit various criteria on sign conditions for the roots of a real para-
metric univariate polynomial. In addition, we introduce the notion of
comprehensive triangular decomposition of a semi-algebraic system and
demonstrate that it is well adapted for our study.

1 Introduction

The study of polynomial dynamical systems by means of symbolic computation
is one of the most popular application of computer algebra. Equilibria, limit
cycles, center manifolds, normal forms and bifurcation analysis are the main
notions used in the study of dynamical systems [30, 4, 21, 33]. These objects
can be manipulated by a variety of symbolic methods [11, 9, 10, 39, 13, 34, 27, 23,
24, 35, 19, 17, 16, 22, 36, 5, 31]. Among these notions, those which have received
the greatest attention by the computer algebra community are equilibria and
bifurcation analysis. Studying them for polynomial dynamical systems typically
consists of: (1) setting up a (parametric) semi-algebraic system S, (2) extracting
from S a particular information.

The aim of this paper is twofold. Our first objective is to revisit the results
that are practically useful for conducting equilibrium and bifurcation by means
of symbolic computation. These results are gathered in Sections 2 and 3. They
are generally stated in terms of the coefficients of a univariate polynomial and
translate into semi-algebraic systems. A prototype of such results is the Routh-
Hurwitz’s criterion. While many of these criteria appear in the literature (for
instance in [23, 24]) we also provide some new criteria, like Theorem 9, as well
as new interpretation of classical results, like Theorem 13.

Our second objective is to exhibit tools that are well adapted for solving
the semi-algebraic systems implementing the above mentioned results. Typical
problems on parametric dynamical systems (see Problems 1, 2, 3) require to de-
compose the parameter space into connected semi-algebraic sets above which the
qualitative behavior of the dynamical system is essentially constant. Taking also
into consideration the fact that certain degenerated behaviors have no practical



interest, we introduce, in Section 4, the notion of a comprehensive triangular de-
composition of a parametric semi-algebraic system, together with an algorithm
for computing it. This work extends some of our previous papers [6, 8].

This paper attempts to be as self-contained and comprehensive as possible.
While this is not a survey paper (as it contains new theorems and algorithms) a
fair amount of classical results are recalled for the reader’s convenience. In addi-
tion, we provide in Appendix A a complete process for analyzing the bistability
of a biological model with the tools presented in this paper.

We dedicate the rest of this introduction to identify problems arising in
the study of dynamical systems which are eligible to solutions based on semi-
algebraic system solving. Some of these problems, namely Problems 1, 2, 3, are
directly formulated in terms of dynamical systems. For a sake of clarity, the
other problems, namely Problems 4 and 5, are stated in terms of conditions
on the roots of a parametric univariate polynomial, which is meant to be the
characteristic polynomial of the Jacobian matrix of the dynamical system under
study.

We consider continuous dynamical systems defined by autonomous ordinary
differential system of the following shape:



















ẏ1 = F1(u1, . . . , ud, y1, . . . , ym),
ẏ2 = F2(u1, . . . , ud, y1, . . . , ym),
...

...
˙ym = Fm(u1, . . . , ud, y1, . . . , ym).

(1)

where F1, . . . , Fm are polynomials of Q[u1, . . . , ud, y1, . . . , ym]. The variables u =
(u1, . . . , ud) are considered as parameters and the variables y = (y1, . . . , ym) are
seen as unknowns. In addition, we have yi = yi(t) and ẏi = dyi/dt while the
parameters u1, . . . , ud are independent of the derivation variable t. In the sequel,
we simply write (1) as

ẏ = F (u,y) (2)

where F (u,y) = (F1(u,y), . . . , Fm(u,y)) is called the vector field of the system.
For any given parameter value u ∈ Rd, one may notice that any y ∈ Rm such

that F1(u, y) = · · · = Fm(u, y) = 0 holds, is a constant solution of System (1),
which is called an equilibrium (or a steady state, or a fixed point). We are inter-
ested in the following problem regarding the equilibria of the given dynamical
system.

Problem 1 For a fixed parameter value u (or in absence of parameters) deter-
mine the number of equilibria of (1) and compute each of them (for instance, by
means of isolation intervals). In presence of parameters, partition the parameter
space into connected semi-algebraic sets, such that above each of them, the num-
ber of equilibria is constant and each equilibrium is a continuous function of the
parameters.

Problems 1 is a particular instance of the solving of semi-algebraic systems.
Section 4 is dedicated to this more general question, with a view toward Prob-
lem 1.



We consider now a fixed parameter value u and a particular equilibrium y
of System (1) at u. An important problem concerning the equilibrium y is to
analyze its stability. We say y is stable if any solution of System (1) starting
out close to y remains close to it. We say y is asymptotically stable if y is stable
and if the solutions of System (1) starting out close to y become arbitrary close
to it. If y is not stable, it is said to be unstable. The above discussion leads
to enhance Problem 1 into the following ones, which deals with the number of
asymptotically stable equilibria of System (1) depending or not on parameters.

Problem 2 For a fixed parameter value u (or in absence of parameters) deter-
mine the number of asymptotically stable hyperbolic equilibria of (1) and compute
each of them. In presence of parameters, partition the parameter space into con-
nected semi-algebraic sets, such that above each of them, the number of asymp-
totically stable hyperbolic equilibria is constant and each of these equilibria is a
continuous function of the parameters.

The study of the system near the particular equilibrium y is usually done
using the linear system

ẏ = J(u, y)(y − y), (3)

where J is the Jacobian matrix of F :

J =
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We denote by

f(λ) = a0λ
m + a1λ

m−1 + a2λ
m−2 + · · ·+ am−1λ+ am,

where a0 = 1, the characteristic polynomial of J . If the matrix J(u, y) has no
eigenvalues with zero real parts, that is, if f(u, y, λ) has no roots with zero
real parts, then y is called a hyperbolic equilibrium at u; otherwise y is a non-
hyperbolic equilibrium at u. In [32], Hartman and Grobman proved the following
result: if y is a hyperbolic equilibrium, then near y, the phase portrait of the
dynamical system (1) is topologically equivalent to that of the linearized dynam-
ical system (3). The results imply that, for a hyperbolic equilibrium y, the phase
flow of (1) is asymptotically stable near y if and only if the phase flow of (3) is
asymptotically stable near y. Therefore, using standard results on linear differ-
ential systems [1], the phase flow of (1) is asymptotically stable near y if and
only if all the complex roots of f(u, y, λ) have negative real parts. This reduces
Problem 2 to the following problem.

Problem 2’ For a univariate polynomial f(x) ∈ R[x], determine whether all the
complex roots of f(x) have negative real parts or not.

In the above analysis, we assume the equilibrium y is hyperbolic, so a natural
question is how to determine whether y is hyperbolic or not. In other words, we
want to solve the following problem:



Problem 3 For a fixed parameter value u, determine whether each equilibrium
of (1) is hyperbolic or not. In presence of parameters, partition the parameter
space into connected semi-algebraic sets, such that above each of them, an equi-
librium is always either hyperbolic or non-hyperbolic.

This problem is equivalent to determine whether all the complex roots of the
characteristic polynomial f(u, y, λ) have nonzero real parts, which leads to the
following general problem.

Problem 3’ For a univariate polynomial f(x) ∈ R[x], determine whether f(x)
has complex roots with zero real parts or not.

When y is a non-hyperbolic equilibrium of (1), if the characteristic poly-
nomial f(u, y, λ) has at least one complex root with positive real part, then y
is an unstable equilibrium. Otherwise, the stability of y depends also on the
higher order terms of the Taylor expansion of F near the point y. In this situa-
tion, one usually needs to apply the Centre Manifold Theorem [3] to reduce the
original system to a low dimensional dynamical system defined on a centre man-
ifold and further simplify it by computing its normal form. Finally, the normal
form can be further reduced by removing terms that do not affect the stability
of the equilibrium. Therefore, the first step towards stability analysis of non-
hyperbolic equilibria of (1) is to determine when the characteristic polynomial
has at least one complex root with positive real part or, equivalently, determine
when f(u, y, λ) has only complex roots with non-positive real parts, which leads
to the following problem.

Problem 4 For a univariate polynomial f(x) with parametric coefficients, de-
termine whether f(x) has at least one complex root with positive real part. Equiv-
alently, given two integers k1 and k2, determine whether f(x) has zero as a root
of multiplicity k1 and k2 pairs of purely imaginary roots while all the other com-
plex roots have negative real parts.

When non-hyperbolic equilibria are present, another more interesting phe-
nomenon is the appearance of bifurcation. For the dynamical system (1), a bi-
furcation occurs at a parameter α0 if there are parameter values α1 arbitrarily
close to α0 with dynamics topologically non-equivalent to those at α0. For ex-
ample, the number or stability of equilibria or periodic orbits of (1) may change
with perturbations of u from α0. For a general dynamical system, such as (1), a
systematic study is difficult. However, given an equilibrium y of (1) at u, neces-
sary conditions for bifurcation can be obtained as follows. If a bifurcation of an
equilibrium occurs near (u, y), then either or both conditions below are met:

– the characteristic polynomial f has zero as a root of multiplicity k, for some
k > 0,

– the characteristic polynomial f has k pairs of purely imaginary roots, for
some k > 0.



Therefore, the last problem we want to answer in this paper is as follows:

Problem 5 Given non-negative integers k1, k2 and a polynomial f(x) with para-
metric coefficients, determine whether f(x) has zero as a root of multiplicity k1
and k2 pairs of purely imaginary roots while no other roots have zero real parts.

A particular case of the above problem is (k1, k2) = (0, 1). In this case, thus
if the characteristic polynomial f(u, y, λ) has a pair of purely imaginary roots
and no other roots with zero real part, the limit cycle bifurcation that may occur
at (u, y) is called a Hopf bifurcation. Such bifurcation has attracted the inter-
est of many authors. In [20], the authors presented sufficient conditions for the
appearance of Hopf bifurcations. In [23], the authors give sufficient and neces-
sary conditions on Hopf bifurcations by further demanding that all the other
eigenvalues have negative real roots, which is convenient for applying Centre
Manifold Theory in order to reduce the dimension of dynamical systems. In [24],
the authors present a framework for solving Problem 5.

2 On the complex roots of a univariate polynomial

As we have seen in the previous section, many problems related to dynamical sys-
tems reduce to studying the complex roots of a univariate polynomial with real
coefficients. In particular, Problems 2’, 3’, 4 and 5 will be completely answered
in the present section.

This section is firmly rooted in the papers [23, 24]. With respect to [23, 24]
our main contribution in this section is Theorem 9, from which the main result
of [23] (that is, Theorem 3.6 in [23] and Corollary 3 in this section), dedicated
to Hopf bifurcation, can easily be derived. Theorem 9 provides two equivalent
conditions for a polynomial with real coefficients to have only complex roots
with non-positive real parts.

The proof of the first condition relies on several results of [23, 24], which are
reviewed hereafter for the reader’s convenience. To prove the second condition,
we introduce Corollary 2 and Theorem 7. It should be pointed out that to deduce
Corollary 3 from Theorem 9, this second condition is really needed. We also
correct the error of sign difference in Theorem 3.1 of [23](Theorem 1 in [24]) and
revise it as Theorem 5 hereafter.

Let f(x) ∈ R[x] be a polynomial of degree m, and let us write

f(x) = a0x
m + a1x

m−1 + · · ·+ am.

After recalling the definition and standard properties (Lemma 1, Theorems 1,
3, 2, 4) of Hurwitz determinants, we discuss their relations with subresultant
sequences in Section 2.2 and their use in the study of symmetric roots in Sec-
tion 2.3.

Definition 1 (Hurwitz matrix) We call Hurwitz matrix of f the m×m ma-
trix H = (Hµν) defined by Hµν = a2ν−µ for ν = 1, . . . ,m and µ = 1, . . . ,m,



with the convention that ai = 0 holds as soon as i < 0 or i > m holds. For
i = 1, . . . ,m, we denote by ∆i the leading principal minors of H, which are
called the Hurwitz determinants of H:

∆1 = a1, ∆2 =

∣

∣

∣

∣

a1 a3
a0 a2

∣

∣

∣

∣

, . . . , ∆m =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a3 a5 · · · · · ·
a0 a2 a4 · · · · · ·
0 a1 a3 a5 · · ·
0 a0 a2 a4 · · ·

. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

It is easy to see that we have ∆m = am∆m−1.

The following criterion provides a sufficient and necessary condition for a
polynomial f to have only roots with negative real parts, which is therefore an
answer to Problem 1.

Theorem 1 (Routh-Hurwitz’s criterion [15]) The real parts of all the ze-
ros of f(λ) are negative if and only if ∆1 > 0, ∆2 > 0, . . . , ∆m−1 > 0, am > 0.

There is also another famous criterion equivalent to the above one, which is
called Liénard-Chipart’s Criterion.

Theorem 2 (Liénard-Chipart’s criterion [15]) The real parts of all the ze-
ros of f(λ) are negative if and only if we have:

(1) If m is odd, then all the below inequalities hold:

am > 0, a2 > 0, a4 > 0, . . . , am−1 > 0, ∆2 > 0, ∆4 > 0, . . . , ∆m−1 > 0.

(2) If m is even, then all the below inequalities hold:

am > 0, a1 > 0, a3 > 0, . . . , am−1 > 0, ∆1 > 0, ∆3 > 0, . . . , ∆m−1 > 0.

2.1 Hurwitz determinants and stability of hyperbolic equilibria of
dynamical system

In this section, for a fixed parameter value u ∈ Rd, let y ∈ Rm be an equilibrium
of dynamical system (1).

Lemma 1 (Orlando’s formula [14]) Let λi, i = 1, . . . ,m, be the eigenvalues
of J(u, y) and ∆m−1 be the (m− 1)-th Hurwitz determinant of its characteristic
polynomial. Then we have:

∆m−1 = (−1)
1
2m(m−1)

∏

1≤i<j≤m

(λi + λj).

Corollary 1 (Hyperbolic equilibrium criterion) The following three prop-
erties hold.



(1) J(u, y) have no zero eigenvalues if and only if |J(u, y)| = (−1)mam 6= 0.
(2) If ∆m−1 6= 0, then J(u, y) has no pure imaginary eigenvalues.
(3) If ∆m = am∆m−1 6= 0, then y is a hyperbolic equilibrium.

Proof. Property (1) is clear. Property (2) is an immediate consequence of Or-
lando’s Formula. Property (3) follows from |J(u, y)| = λ1λ2 · · ·λm.

Remark 1 Necessary and sufficient conditions for J(u, y) to have no pure imag-
inary eigenvalues (resp. y to be hyperbolic equilibrium) will be provided in Sec-
tion 2.3.

Theorem 3 (Lyapunov’s first method on stability [28]) The following prop-
erties hold.

(i) If J(u, y) has at least one eigenvalue with positive real parts, then y is un-
stable.

(ii) Assume that y is a hyperbolic equilibrium. If all the eigenvalues of J(u, y)
have negative real parts, then y is asymptotically stable.

Theorem 4 (Stability criterion for hyperbolic equilibria) Let y be an equi-
librium of System (1), we have:

(1) y is an asymptotically stable hyperbolic equilibrium if and only if

∆1 > 0, ∆2 > 0, . . . , ∆m−1 > 0, am > 0.

(2) If y is hyperbolic, then y is unstable if and only if there exists some i, 1 ≤
i ≤ n, such that ∆i ≤ 0.

Proof. Directly by Theorem 3 and Routh-Hurwitz Criterion.

2.2 Hurwitz determinants and subresultant sequences

Let A be a commutative ring with identity and let p ≤ q be two positive integers.
Let M be a p× q matrix with coefficients in A. Let Mi be the square submatrix
of M consisting of the first p − 1 columns of M and the ith column of M , for
i = p · · · q. Let detMi be the determinant of Mi. We denote by dpol(M) the
element of A[y], called the determinant polynomial of M , given by

detMpy
q−p + detMp+1y

q−p−1 + · · ·+ detMq.

Let f1(y), . . . , fp(y) be a set of polynomials of A[y]. Let

q = 1 +max(deg f1(y), . . . , deg fp(y)).

The matrix M of f1, . . . , fp is defined by Mij = coeff(fi, y
q−j).

Let f = amym + · · · + a0, g = bny
n + · · · + b0 be two polynomials of A[y]

with positive degrees m and n. Let λ = min(m,n). Denote by lc(f) and lc(g)
respectively the leading coefficient of f and g w.r.t. y. For any 0 ≤ i < λ, let



M be the matrix of the polynomials yn−1−if, . . . , yf, f, ym−1−ig, . . . , yg, g. We
define the ith subresultant of f and g, denoted by Si(f, g, y) as

Si(f, g, y) = dpol(yn−1−if, . . . , yf, f, ym−1−ig, . . . , yg, g)
= dpol(M).

Note that Si(f, g, y) is a polynomial inA[y] with degree at most i. Let si(f, g, y) =
coeff(Si(f, g, y), y

i) and call it the principle subresultant coefficient of Si(f, g, y).
If m ≥ n, we define Sλ(f, g, y) = g, Sλ+1(f, g, y) = f , sλ = lc(g) and sλ+1 =
lc(f). If m < n, we define Sλ = f , Sλ+1 = g, sλ = lc(f) and sλ+1 = lc(g).

Let A = Q[a0, . . . , am] and f ∈ A[x] = a0x
m+a1x

m−1+· · ·+am−1x+am be a
polynomial of degreem. We write f(x) = f1(x

2)+xf2(x
2). Ifm = 2ℓ+1, we have

f1(y) = a1y
ℓ+a3y

ℓ−1+· · ·+a2ℓ+1 and f2(y) = a0y
ℓ+a2y

ℓ−1+· · ·+a2ℓ. Ifm = 2ℓ,
we have f1(y) = a0y

ℓ+a2y
ℓ−1+· · ·+a2ℓ and f2(y) = a1y

ℓ−1+a3y
ℓ−2+· · ·+a2ℓ−1.

Theorem 5 Let ∆1, ∆2, . . . , ∆m be the Hurwitz determinants sequence of f .
Then the following conclusion holds:

(i) If m = 2ℓ+ 1, we have ∆m−1−2i = ∆2ℓ−2i = (−1)
(ℓ−i)(ℓ−i−1)

2 si(f1, ℓ, f2, ℓ, y)
hold, for i = 0, 1, . . . , ℓ− 1.

(ii) If m = 2ℓ, we have ∆m−1−2i = ∆2ℓ−1−2i = (−1)
(ℓ−i)(ℓ−i−1)

2 si(f1, ℓ, f2, ℓ −
1, y), for i = 0, 1, . . . , ℓ− 1.

(iii) If m = 2ℓ+ 1, for i = 0, 1, . . . , ℓ, we have

∆m−2i = ∆2ℓ+1−2i = (−1)
(ℓ−i)(ℓ−i+1)

2 si(f1, ℓ, yf2, ℓ+ 1, y)

= (−1)
3(ℓ−i)(ℓ−i+1)

2 si(yf2, ℓ+ 1, f1, ℓ, y).

(iv) If m = 2ℓ, we have ∆m−2i = ∆2ℓ−2i = (−1)
(ℓ−i)(ℓ−i+1)

2 si(f1, ℓ, yf2, ℓ, y) hold,
for i = 0, 1, . . . , ℓ− 1.

Proof. Here, we only prove (i) holds and leave the other cases for exercise.

When m = 2ℓ + 1, we have f1(y) = a1y
ℓ + a3y

ℓ−1 · · · + am, f2(y) = a0y
ℓ +

a2y
ℓ−1 · · · + am−1. So the Sylvester matrix M formed by the coefficients of f1

and f2 is an 2ℓ× 2ℓ matrix of the form:

M =





























a1 a3 a5 · · · am
a1 a3 a5 · · · am

. . .
. . .

. . .

a1 a3 a5 · · · am
a0 a2 a4 · · · am−1

a0 a2 a4 · · · am−1

. . .
. . .

. . .

a0 a2 a4 · · · am−1





























(4)



On the other hand, the Hurwitz matrix H of f is an (2ℓ+1)×(2ℓ+1) matrix
whose elements are arranged like this:

H =

























a1 a3 a5 · · · am
a0 a2 a4 · · · am−1

a1 a3 a5 · · · am
a0 a2 a4 · · · am−1

· · · · · ·
a1 a3 a5 · · · am
a0 a2 a4 · · · am−1

a1 a3 · · · am−2 am

























(5)

Let H∗ be the sub-matrix composed by the first 2ℓ rows and 2ℓ columns of
H . We denote by H2i the sub-matrix of H∗, formed by the first 2i rows and 2i
columns, for i = 1, 2, . . . , ℓ. We denote by Mi the sub-matrix of M , formed by
deleting the last i rows composed by the coefficients of f1(y) and the last i rows
composed by the coefficients of f2(y) and then deleting the last 2i columns for
i = 0, 1, . . . , ℓ− 1. Then it’s easy to see that if we make the odd rows of H2ℓ−2i

“float up” one by one, we finally get the matrix Mi. So the number of row

exchanges for H2ℓ−2i is: 0+1+2+ · · ·+(ℓ− i− 1) = (ℓ−i)(ℓ−i−1)
2 . Therefore, we

have ∆2ℓ−2i = |H2ℓ−2i| = (−1)
(ℓ−i)(ℓ−i−1)

2 |Mi| = (−1)
(ℓ−i)(ℓ−i−1)

2 si(f1, ℓ, f2, ℓ, y),
for i = 0, 1, . . . , ℓ− 1.

Remark 2 This theorem is a corrected version of Theorem 1 in [24], where the
sign differences between ∆i and si are wrong.

2.3 Hurwitz determinants and symmetric roots

The following result is taken from [23]. Corollary 2 is a direct consequence.

Lemma 2 ([23]) Given a univariate polynomial f(x) = a0x
m+a1x

m−1+ · · ·+
am of R[x], where a0 6= 0. We write f(x) into the form: f(x) = f1(x

2)+xf2(x
2).

Then f(x) has a pair of symmetric zeros z and −z in C if and only if z2 is a
common zero of f1(y) and f2(y).

Corollary 2 Assume that am 6= 0, then f(x) has a pair of symmetric zeros z
and −z in C if and only if z2 is a common zero of f1(y) and yf2(y).

Theorem 6 ([23]) Let f(x) = a0x
m+a1x

m−1+· · ·+am ∈ R[x] be a polynomial
of degree m. Then f(x) has exactly k pairs of symmetric roots zi and −zi in C

if and only if ∆m−1 = 0, . . . , ∆m−2k+1 = 0, ∆m−2k−1 6= 0.

Theorem 7 Notation as above, if am 6= 0, then f has exactly k pairs of sym-
metric roots zi and −zi if and only if ∆m = 0, . . . , ∆m−2k+2 = 0, ∆m−2k 6= 0.

Proof. If am 6= 0, by Corollary 2, the number of symmetric roots, counted with
multiplicities, of the polynomial f is equal to the number of common roots,



counted with multiplicities, of the two polynomials f1(y) and yf2(y). According
to the elementary properties of subresultant sequences the polynomials f1(y)
and f2(y) have k common roots if and only if

s0(f1, yf2, y) = 0, . . . , sk−1(f1, yf2, y) = 0, sk(f1, yf2, y) 6= 0.

So by Theorem 5 and specialization property of subresultants [29, 7], f has
exactly k pairs of symmetric roots if and only if ∆m = 0, . . . , ∆m−2k+2 =
0, ∆m−2k 6= 0.

Lemma 3 ([23]) Let f(x) ∈ R[x] be a polynomial of degree m and z1, . . . , zk
be arbitrary complex numbers. Let f∗(x) = f(x)(x2 − z21) · · · (x

2 − z2k). If ∆
∗
i is

the Hurwitz determinants of order i of the polynomial f∗(x), then ∆i = ∆∗
i , for

i = 1, . . . ,m. Similarly, let f∗(x) = f(x)xk, then we also have ∆i = ∆∗
i hold.

Theorem 8 The polynomial f(x) has zero as root of multiplicity k and all the
other roots in the left half-plane if and only if am−k+1 = · · · = am = 0 and
∆1 > 0, ∆2 > 0, . . . , ∆m−k > 0.

Proof. It follows directly from Routh-Hurwitz criterion and Lemma 3.

Theorem 9 Let f(x) ∈ R[x] be a polynomial of degree m and f(x) = a0x
m +

a1x
m−1 + · · · + am = f1(x

2) + xf2(x
2). Let ∆1, ∆2, . . . , ∆m be the Hurwitz de-

terminants sequence of f . Then the following statements are equivalent:

(i) f(x) has k pairs of pure imaginary roots and all the other roots are in the
left half-plane.

(ii) Sk(f1, f2, y) has k negative real roots and∆m−1 = ∆m−3 = · · · = ∆m−2k+1 =
0, ∆m−2k > 0, ∆m−2k−1 > 0, . . . , ∆1 > 0.

(iii) Sk(f1, yf2, y) has k negative real roots and am 6= 0, ∆m = ∆m−2 = · · · =
∆m−2k+2 = 0, ∆m−2k > 0, ∆m−2k−1 > 0, . . . , ∆1 > 0.

Proof. “(i) ⇒ (ii)”. Assume that f(x) has k pairs of pure imaginary roots and
all the other roots are in the left half-plane. Let ±iω1, . . . ,±iωk be the k pairs of
pure imaginary roots, then we can write f(x) as f(x) = f∗(x)(x2 +ω2

1) · · · (x
2 +

ω2
k), where ω2

1 > 0, . . . , ω2
k > 0 and f∗(x) has only roots in the left half-plane.

By Routh-Hurwitz criterion, we know that ∆∗
1 > 0, ∆∗

2 > 0, . . . , ∆∗
m−2k > 0.

According to the Lemma 3, we know that ∆∗
i = ∆i. Therefore, we have∆m−2k >

0, ∆m−2k−1 > 0, . . . , ∆1 > 0 hold.
Moreover, by assumption we know the k pairs of pure imaginary roots are

the only symmetric roots of f(x), which implies ∆m−1 = ∆m−3 = · · · =
∆m−2k+1 = 0, ∆m−2k−1 6= 0. Therefore, by Theorem 5 we have s0(f1, f2, y) =
0, . . . , sk−1(f1, f2, y) = 0, sk(f1, f2, y) 6= 0, which implies that Sk(f1, f2, y) =
gcd(f1, f2, y). On the other hand, since ±iω1, . . . ,±iωk are the symmetric roots
of f(x), by Lemma 2, −ω2

1 , . . . ,−ω2
k are the common roots of f1(y) and f2(y),

that is, they are the real roots of Sk(f1, f2, y). Therefore Sk(f1, f2, y) has k
negative real roots.



“(ii) ⇒ (i)” By the assumption, we have ∆m−1 = ∆m−3 = · · · = ∆m−2k+1 =
0, ∆m−2k−1 6= 0, which implies that

s0(f1, f2, y) = s1(f1, f2, y) = · · · = sk−1(f1, f2, y) = 0, sk(f1, f2, y) 6= 0.

Therefore the degree of Sk(f1, f2, y) is k and Sk(f1, f2, y) = gcd(f1, f2, y). Since
Sk(f1, f2, y) has k negative real roots, we know that f1(y) and f2(y) has k
common negative real roots and no other common roots. So by Lemma 2, f(x)
has exactly k pairs of pure imaginary roots and no other symmetric roots. Let us
write f(x) = f∗(x)(x2 + ω2

1) · · · (x
2 + ω2

k), according to ∆m−2k > 0, ∆m−2k−1 >
0, . . . , ∆1 > 0 and Lemma 3, we know that all the roots of f∗(x) are in the left
half-plane. Therefore f(x) has k pairs of pure imaginary eigenvalues and all the
other roots are in the left half-plane.

The proof of equivalence of (i) and (iii) are similar. The only difference is
that during the proof we need to use Theorem 7 instead of Theorem 6 and
Corollary 2 instead of Lemma 2.

By the above theorem, we get the following corollary, which is the main
theorem on Hopf bifurcation in [23, 24].

Corollary 3 (Theorem 4 [24]) Let f(x) ∈ R[x] be a degree m polynomial and
write f(x) = a0x

m + a1x
m−1 + · · · + am = f1(x

2) + xf2(x
2) with a0 > 0. Let

∆1, ∆2, . . . , ∆m be the Hurwitz determinants sequence of f . Then f(x) has a
pair of distinct roots, iω and −iω, on the imaginary and all the other roots in
the left half-plane if and only if am > 0, ∆m−1 = 0, ∆m−2 > 0, . . . , ∆1 > 0.

Proof. By the equivalence of (i) and (iii) in Theorem 9, we only need to prove
that am > 0, ∆m−1 = 0, ∆m−2 > 0, . . . , ∆1 > 0 if and only if S1(f1, yf2, y)
has one negative real root and am 6= 0, ∆m = 0, ∆m−2 > 0, . . . , ∆1 > 0. By

Theorem 5, we have S1(f1, yf2, y) = (−1)
ℓ(ℓ−1)

2 (∆m−2y + am∆m−3).

“ ⇒ ” Since am > 0, ∆m−1 = 0, we have am 6= 0 and ∆m = am∆m−1 = 0.
Moreover, as am > 0 and ∆m−2 > 0, ∆m−3 > 0, we know that S1(f1, yf2, y) has
one negative real root.

“ ⇐ ” Since S1(f1, yf2, y) has one negative real root and ∆m−2 > 0, ∆m−3 >
0, we have −∆m−2am∆m−3 < 0, which implies that am > 0. Moreover, by
∆m = 0, we have ∆m−1 = 0.

Combining the result of Theorem 8 and Theorem 9, we get the answer to
Problem 4. The answer to Problem 5 was first briefly mentioned in [24], which
we summarize as the following Theorem.

Theorem 10 Let f(x) = a0x
m+a1x

m−1+· · ·+am be a univariate polynomial of
R[x]. Then f(x) has a root 0 of multiplicity k1 and has k2 pairs of pure imaginary
roots while no other roots have zero real parts if and only if the following holds:

– The coefficients of f(x) satisfy am = · · · = am−k1+1 = 0, am−k1 6= 0.



– Denote a0x
m−k1 + a1x

m−k1−1 + · · ·+ am−k1 = f1(x
2)+ xf2(x

2). Then there
exists an integer k ≥ k2 such that Sk(f1, f2, y) has k2 negative real roots and

∆m−k1−1 = ∆m−k1−3 = · · · = ∆m−k1−2k+1 = 0, ∆m−k1−2k−1 6= 0.

Proof. It directly follows from Lemma 2, Lemma 3 and Theorem 6.

Remark 3 In the above theorem, if both k1 = 0 and k2 = 0, then we get an
answer to Problem 3′. If k1 = 0 and k2 = 1, then we get the necessary and
sufficient condition on Hopf bifurcation.

The reader may notice that in [23, 24] there is also a theorem to provide
sufficient and necessary conditions on Hopf bifurcation. More precisely, it is
Theorem 3.5 in [23] and Theorem 3 in [24]. However, we find that (also noticed
by the author) the condition provided there is only a sufficient condition.

In Theorem 10, we need to determine when a univariate polynomial Sk of de-
gree k with parametric coefficients has k2, 0 < k2 ≤ k, negative real zeros. This
problem can be reduced to an exhaustive case discussion on the signs of polyno-
mials whose variables are the coefficients of Sk, by Sturm-Habicht sequence [18]
or negative root discriminant sequence [37].

In Theorem 9, rather we want to determine when all the complex roots of
a univariate polynomial with parametric real coefficients are real and negative.
In the rest of this section, we provide a relatively simple answer by virtue of
Descartes criterion and discriminant sequence [37, 38].

Lemma 4 (Descartes criterion) Let f(x) ∈ R[x] be a polynomial of degree
n. Let ν be the number of sign variations of its coefficients sequence. Then there
exists m ≥ 0 such that the number of positive real roots of f(x) equals ν − 2m.

Corollary 4 Let f(x) = a0x
n + · · · + an−1x + an be a polynomial of degree n.

If f(x) has n negative real roots, then we have aiai+1 > 0 for all 0 ≤ i ≤ n− 1.

Proof. Since f(x) has n negative real roots, f(−x) has n positive real roots.
By Descartes criterion, we have ai 6= 0. On the other hand, since f(x) has no
positive real roots, we know that ai have the same sign. Done.

Definition 2 (Discrimination matrix) Given a polynomial with general sym-
bolic coefficients, f(x) = a0x

n + a1x
n−1 + · · ·+ an, the following 2n× 2n matrix

in terms of the coefficients,

























a0 a1 a2 · · · an
0 na0 (n− 1)a1 · · · an−1

0 a0 a1 · · · an−1 an
0 0 na0 · · · 2an−2 an−1

· · · · · ·
· · · · · ·
a0 a1 a2 · · · an
0 na0 (n− 1)a1 · · · an−1



























is called the discrimination matrix of f(x), and denoted by Discr(f). By dk or
dk(f) denote the determinant of the submatrix of Discr(f), formed by the first
k rows and the first k columns for k = 1, 2, . . . , 2n.

Definition 3 (Discriminant sequence) Let Dk = d2k, k = 1, . . . , n. We call
the sequence [D1, D2, . . . , Dn] the discriminant sequence of f(x), and denote it
by DiscrList(f). The last term Dn is just the discriminant of f .

Definition 4 (Sign list) We call the list [sign(A1), sign(A2), . . . , sign(An)] the
sign list of a given sequence A1, A2, . . . , An, where

sign(Ai) =







1, Ai > 0
0, Ai = 0
−1, Ai < 0

Definition 5 (Revised sign list) Given a sign list [s1, s2, . . . , sn], we con-
struct a new list [t1, t2, . . . , tn] as follows: (which is called the revised sign list)

– If [si, si+1, . . . , si+j ] is a section of the given list, where si 6= 0, si+1 = · · · =
si+j−1 = 0, si+j 6= 0, then, we replace the subsection [si+1, . . . , si+j−1] by
the first j − 1 terms of [−si,−si, si, si,−si,−si, si, si, . . .].

– Otherwise, let tk = sk, i.e. no changes for other terms.

Theorem 11 Given a polynomial f(x) = a0x
n+a1x

n−1+· · ·+an, where a0 6= 0
of R[x]. If the number of sign changes of the revised sign list of D1, D2, . . . , Dn

is ν, the number of non-vanishing members of the revised sign list is l, then
we have: the number of distinct real roots of f(x) equals l − 2ν; the number of
distinct pairs of conjugate imaginary roots of f(x) is ν.

Example 1 Let f = (x−1)(x2+1), whose discriminant sequence is [3,−4,−16].
The sign list of it is: [1,−1, 1]. Its revised is the same to the sign list. So the
number of distinct real roots of f is 3− 2 = 1.

Theorem 12 Let f(x) ∈ R[x] be a polynomial of degree n and [D1, D2, . . . , Dn]
be its discriminant sequence. Then f(x) has n negative real roots if and only if
all its coefficients have the same nonzero sign and there exists k, 1 ≤ k ≤ n,
such that ∀i ≤ k, Di > 0 and for other i, we have Di = 0.

Proof. “ ⇒ ” By Corollary 4, we know that all the coefficients of f(x) have
the same nonzero sign. On the other hand, since f(x) has no imaginary real
roots, the revised sign list of [D1, D2, . . . , Dn] has no sign changes according to
Theorem 11. By the rule on constructing the revised sign list, we conclude that
there exists k, 1 ≤ k ≤ n, such that ∀i ≤ k, Di > 0 and for all i > k, Di = 0.

“ ⇐ ” If there exists k, 1 ≤ k ≤ n, such that ∀i ≤ k, Di > 0 and for other i,
we have Di = 0. Then the revised sign list will look like this: [1, . . . , 1, 0, . . . , 0]
Therefore, the number of sign changes is 0. So f(x) have no imaginary roots.
Moreover, since the coefficients sequence of f(x) has 0 sign variations, we know
immediately that f(x) has n negative real roots by Descartes Criterion.



3 Stability of hyperbolic equilibria in view of bifurcation

In Section 2, we discussed the stability of a hyperbolic equilibria for a fixed
parameter value. In this section, we study the stability of a hyperbolic equilibria
under variation of parameters.

Definition 6 ([25]) Let us consider a dynamical system that depends on pa-
rameters. The appearance of a topologically nonequivalent phase portrait under
variation of parameters is called a bifurcation.

Lemma 5 ([25]) Given two hyperbolic equilibria of dynamical system (1), the
phase portraits of system (1) near them are locally topologically equivalent if
and only if at the two equilibria the Jacobian matrix J has the same number of
eigenvalues with negative (positive) real parts.

Theorem 13 (Boundary crossing theorem) Given a parameter value α0 of
the dynamical system (1) and let β0 be a hyperbolic equilibrium of system (1) at
the parameter α0. Then there exists a continuous function y(u) defined in a small
neighbourhood O(α0) of α0 satisfying F (u, y(u)) = 0, y(α0) = β0. Moreover, the
defining domain O(α0) of y(u) can be extended as long as ∆m(u, y(u)) 6= 0. In
addition, inside the extended domain, there will be no bifurcation. In particular,
the stability of y(u) remains the same in the extended domain.

Proof. Since β0 is a hyperbolic equilibrium of system (1), we have ∆m(α0, β0) =
(−1)m∆m−1(α0, β0)Det(J)(α0, β0) 6= 0. Since Det(J)(α0, β0) 6= 0, by the im-
plicit function Theorem, we know that in a neighbourhood of α0, there is one
and only one continuous function y(u) defined by F (u, y(u)) = 0 such that
y(α0) = β0. Moreover, we can extend the domain of the function y(u) if only
Det(J)(u, y(u)) 6= 0. On the other hand, the real parts of the eigenvalues of
J(u, y(u)) will not become zero, which implies that the number of the eigenval-
ues of J(u, y(u)) with negative real parts and positive real parts will remain the
same, respectively. By Lemma 5, the phase portraits will remain locally topolog-
ically equivalent. Therefore, the stability will not change if only ∆n(u, y(u)) 6= 0.

Remark 4 In 1929, Frazer and Duncan published a paper entitled “On the Cri-
teria for the Stability of Small Motions” [12]. In that paper, the authors presented
a theorem with the same name as above one, where they pointed out that when
the system passes from a region of stability to the border of stability, ∆n changes
from positive to zero. Here by the language of bifurcation, we see that a dynam-
ical system will keep structurally stable if only the parameter does not cross the
boundary described by ∆n = 0.

4 Comprehensive triangular decomposition of parametric

semi-algebraic systems

In this section, we introduce the notion of a comprehensive triangular decom-
position of a parametric semi-algebraic system. Its purpose serves our needs in



the study of parametric polynomial dynamical systems: solving the parametric
semi-algebraic systems that arise from the results of Sections 2 and 3.

We start with some necessary notations. For the related concepts, the reader
may refer to [6, 8, 2]. Let k is a field of characteristic zero and let K be its
algebraic closure. Let d,m, n be positive integers such that we have n = d +m
and d,m ≥ 1. Let x = x1 < · · · < xn be ordered variables, which are divided into
two groups x1 < · · · < xd and xd+1 < · · · < xn. We rename xi as ui for 1 ≤ i ≤ d
and see u = u1, . . . , ud as parameters. We rename xi as yi−d for d + 1 ≤ i ≤ n
and see y = y1, . . . , ym as unknowns.

In this paper, we use “Z” to denote the zero set of a polynomial system,
involving equations and inequations, in Kn and “ZR” to denote the zero set of a
semi-algebraic system in Rn. For a polynomial system S and point u, we denote
by S(u) the specialized (or evaluated) system at u.

Let p be a non-constant polynomial of k[x]. Denote by sep(p) the separant
(that is the derivative of p w.r.t. its main variable) of p. Let T be a regular
chain of k[u,y]. Denote respectively by mvar(T ), hT , sep(T ) and W (T ) the set
of main variables of T , the product of initials of polynomials in T , the product
of all sep(p) for p ∈ T and the quasi-component of T . Let p ∈ k[u,y]. Denote
by res(p, T ) the iterated resultant of p w.r.t. T . Denote by ∅ the empty regular
chain.

In section 4.1, we introduce the concept of a disjoint squarefree comprehensive
triangular decomposition (DSCTD) of a parametric constructible system cs of
k[u,y], which extends the notion of a CTD of an algebraic variety V of k[u,y],
introduced in [6]. We also present an algorithm for computing this new type of
decomposition.

In section 4.2, we introduce the concept of a comprehensive triangular decom-
position of a parametric semi-algebraic system (RCTD) S of k[u,y]. Moreover,
we show that RCTD can be easily computed by combining DSCTD with our
previous work on computing CAD via triangular decompositions [8].

4.1 Disjoint squarefree comprehensive triangular decomposition

Definition 7 Let R := [T, h] be a squarefree regular system of k[u,y]. Let u ∈
Kd. We say that R specializes well at u if R(u) is a squarefree regular system
of K[y] and hT (u) 6= 0. Let R = {R1, . . . , Re} be a finite set of regular systems
of k[u,y]. We say that R specializes disjointly well at u, if: (i) each R ∈ R
specializes well at u and (ii) the zero sets of Ri(u) in Kn are pairwise disjoint.

Denote by πu the canonical projection onto the parameter space. Let ·∪ denote
the disjoint union of two sets. Let cs be a constructible set of Kn. Following the
results of [6], we assume that cs is given as the union of the zero sets of finitely
many regular systems in k[u,y]. In this section, we always assume that cs is
represented by such a set of regular systems.

Definition 8 Let cs be a constructible set of Kn. A DSCTD of cs is a pair
(C, (RC , C ∈ C)), where C is a finite partition of πu(cs) into nonempty con-



structible sets, and, for each C ∈ C, RC is a finite set of regular systems of
k[u,y] such that for each point u ∈ C the following conditions hold:

(i) RC specializes disjointly well at u;

(ii) we have cs(u) = ·∪R∈RC
Z(R(u))

Let R := [T, h] be a squarefree regular system of k[u,y]. Let Tu (resp. Ty)
denote the set of polynomials in T whose main variables belong to u (resp. y).
Define ry = res(h · sep(Ty), Ty). Let Wu(Tu) be the quasi-component of Tu in
Kd.

Let p ∈ k[u,y]. Denote by coeffs(p,y) the set of coefficients of p w.r.t. the
variables y. Let V u(coeffs(p,y)) be the algebraic variety of coeffs(p,y) in Kd.

Definition 9 We call defining set of the squarefree regular system R := [T, h]
the set denoted by Du(R) and defined by Du(R) := Wu(Tu) \ V

u(coeffs(ry,y)).

Lemma 6 Let R := [T, h] be a squarefree regular system of k[u,y]. Let u ∈ Kd.
Then R specializes well at u if and only if u ∈ Du(R).

Proof. Its proof is based on the specialization properties of subresultants and it
is similar to the proof of Proposition 4 of [6].

Algorithm 14 computes a DSCTD of a constructible set. The proof of its
termination and correctness is similar to that of the algorithm CTD in [6]. We
also refer to [6] for the specifications of the subroutinesMPD, SMPD and Intersect

called in Algorithm 14.

Algorithm 1: DSCTD(cs)

Input: A constructible set cs of k[u,y].
Output: A DSCTD of cs.
let R be the set of regular systems representing cs1

R := MPD(R); R′ := { }2

while R 6= { } do3

let R := [T, h] ∈ R; R := R \ {R}4

R′ := R′ ∪ {R}5

G := coeffs(res(sep(Ty)h, Ty),y)6

R := R ∪ MPD(Intersect(G,R))7

R := R′; C := { }8

for R ∈ R do9

C := C ∪ {Du(R)}10

C := SMPD(C)11

for C ∈ C do12

let RC be the set of regular systems R ∈ R with C ⊆ Du(R)13

return (C, (RC , C ∈ C))14



The implementation of the DSCTD algorithm is available in the RegularChains
library since Maple13. It sits inside the ParametricSystemTool module and is
implemented as the command ComprehensiveTriangularize with option the
‘disjoint’=‘yes’.

Let cs be a constructible set of Kn. Often, we only need to partition the
parameter space into constructible sets such that above each of them:
1. either cs has no solutions;
2. or cs has infinitely many solutions;
3. or cs has a constant number of solutions and such that the solutions are

continuous functions of the parameters.
A precise definition of this idea is stated in Definition 10.

Definition 10 Let cs be a constructible set of Kn. A weak DSCTD (WDSCTD)
of cs is a pair (C, (TC , C ∈ C)), where
– C is a finite partition of Kd into nonempty constructible sets,
– for each C ∈ C, TC is a finite set of regular chains of k[u,y] such that:

(i) either TC is empty, which means that cs(u) is empty for each u ∈ C
(ii) or TC = {∅}, which means that cs(u) is infinite for each u ∈ C;
(iii) or each T ∈ TC satisfies mvar(T ) = y and for each u ∈ C, TC specializes

disjointly well at u and cs(u) = ·∪T∈TC
Z(T (u)).

Algorithm 2 computes a WDSCTD of cs. It is not difficult to prove the ter-
mination and correctness of this algorithm.

Algorithm 2: WDSCTD(cs)

Input: A constructible set cs of k[u,y].
Output: A WDSCTD of cs.
let R be the set of regular systems representing cs1

let R0 (resp. R1) be the set of regular systems [T, h] in R such that2

y ⊆ mvar(T ) (resp. y 6⊆ mvar(T ))
let (C, (RC , C ∈ C)) be a DSCTD of R03

let E1 be the projection of the constructible set R1 on Kd
4

D := { }5

if E1 is not empty then6

D := E1; TD := {∅}; D := D ∪ {D}7

for C ∈ C do8

C := Difference(C, E1)9

if C is not empty then10

D := C; TD := {Ty | [T, h] ∈ RC}; D := D ∪ {D}11

D := Difference(Kn,∪D∈DD)12

if D is not empty then13

D := D ∪ {D}; TD := { }14

return (D, (TD, D ∈ D))15



4.2 Comprehensive triangular decomposition of a parametric
semi-algebraic system

Let F = {f1, . . . , fs}, P = {p1, . . . , pr} be two finite sets of polynomials of
Q[u,y]. We denote by [F, P>] the basic semi-algebraic system {f1 = 0, . . . , fs =
0, p1 > 0, . . . , pr > 0}. Its zero set in Rn, denoted by ZR(F, P>), is called a basic
semi-algebraic set. It is well known that any semi-algebraic set is a finite union
of basic semi-algebraic sets of Q[u,y]. The set cs := {(u, y) ∈ Cn | f1(u, y) =
0, . . . , fs(u, y) = 0, p1(u, y) 6= 0, . . . , pr(u, y) 6= 0} is called the associated con-
structible set of ZR(F, P>).

In this section, we introduce the concept of the comprehensive triangular
decomposition of a parametric basic semi-algebraic system and propose an algo-
rithm to compute it.

Definition 11 Let R := [T, P ] be a squarefree regular system of Q[u,y]. We call
the pair A := [T, P>] a squarefree semi-algebraic system (SFSAS). The system
R is called the associated regular system of A.

Definition 12 Let S be a basic semi-algebraic set of Q[u,y]. Let cs be the as-
sociated constructible set of S. A comprehensive triangular decomposition of S
is a pair (C, (AC , C ∈ C)), where
– C is a finite partition of Rd into nonempty semi-algebraic sets,
– for each C ∈ C, AC is a finite set of SFSASes of Q[u,y] such that:

(i) either AC is empty, which means that S(u) is empty for each u ∈ C;
(ii) or AC = {[∅, { }]}, which implies that cs(u) is infinite for each u ∈ C;
(iii) or C is a connected semi-algebraic set, each A = [T, P>] ∈ AC satisfies

mvar(T ) = y and for each u ∈ C we have:
• the associated regular systems of AC specializes disjointly well at u,
• for each A ∈ AC , ZR(A(u)) is not empty,
• S(u) = ·∪A∈AC

ZR(A(u)).

Next, we provide an algorithm for computing a CTD of a basic semi-algebraic
set. It relies on a subroutine for decomposing real constructible sets into con-
nected cylindrically arranged cells of Rd. The subroutine can be easily described
via the subroutines MPD, MakeCylindrical and MakeSemiAlgebraic in paper [8].

Calling sequence. CAD(C)
Input. C := {C1, . . . , Ce} is a set of pairwise disjoint constructible sets of Cn

given by polynomials in Q[x] such that Cn = ∪e
i=1Ci.

Output. A CAD E of Rn such that for each element C of C, the set C ∩ Rn is a
union of some cells in E .

Step (1). For 1 ≤ i ≤ e, apply operation MPD to the family of regular systems
representing Ci, so as to obtain another familyRi of regular systems representing
Ci and whose zero sets are pairwise disjoint.

Step (2). Let R := ∪e
i=1Ri. Call algorithm MakeCylindrical(R, n), to compute a

cylindrical decomposition D of Kn such that the zero set of each regular system
in R is a union of some cells in D.



Step (3). Call algorithmMakeSemiAlgebraic to compute a CAD E of Rn such that,
for each element D of D, the set D ∩ Rn is a union of some cells in E .

Algorithm 3: CTD(S)

Input: A basic semi-algebraic set S := [F, P>] of k[u,y].
Output: A CTD of S .
let cs be associated constructible set of S1

let (C, (TC , C ∈ C)) be a WDSCTD of cs2

D := CAD(C)3

for each C ∈ C, for each D ∈ D such that D ⊆ C, let TD = TC4

E := { }5

for D ∈ D do6

if TD = { } then7

E := D; AE := { }; E := E ∪ {E}8

else if TD = {∅} then9

E := D; AE := {[∅, { }]}; E := E ∪ {E}10

else11

let s be a sample point of D12

E := D; E := E ∪ {E}13

AE := { }14

for T ∈ TD do15

A := [Ty, P>]16

if A(s) has real solutions then17

AE := AE ∪ {A}18

return (E , (AE , E ∈ E))19

5 Conclusion

Based on the notion of a comprehensive triangular decomposition (CTD) pre-
sented in the last section, we have obtained a framework for analyzing the sta-
bility of the equilibria and compute the bifurcations of polynomial dynamical
systems. Indeed, we can completely solve the problems introduced in Section 1.

Let us first have a look at Problem 1. Let F (u,x) be the right hand side
polynomial equations of the dynamical system (1). It is usually required that
u and x are both positive. Let P (u,x) be the corresponding set of positive
inequality constraints. Let (C, (AC , C ∈ C)) be a CTD of S = [F, P>]. In the
practice of dynamical systems, only the cells above which S has finitely many
complex solutions are interesting. This fact has motivated our definition of the
CTD of a semi-algebraic system. Let C ∈ C be a cell above which S has finitely
many complex solutions, one of them at least being real, that is, a cell of type
(iii) in Definition 12. The set C is a connected semi-algebraic subsets of Rd,
above which AC is a finite set of SFSASes whose solutions are disjoint graphs



of continuous functions above C; moreover the union of the graphs of these
functions is exactly C ∩ ZR(S). Therefore, Problem 1 is solved.

Next, we look at Problem 2. A first and direct approach consists of comput-
ing a CTD of the system S augmented with the inequalities ∆i > 0, 1 ≤ i ≤ m,
where the ∆i are the Hurwitz determinants, see Definition 1. A second approach
consists of computing a CTD of the system S augmented with the inequality
∆m > 0 only and then apply the Boundary Crossing Theorem, that is Theo-
rem 13.

Similarly, for each of the three other problems on bifurcation, we will first
produce a semi-algebraic system by means of results in Section 2 and then apply
CTD to solve it.
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A Example

In this section we present a complete process for analyzing the stability of a
biochemistry network by means of the tools presented in this paper.

A.1 The description of the model

In [26], Laurent proposed a model for the dynamics of diseases of the central
nervous system caused by prions, such as scrapie in sheep and goat, and “mad
cow disease” or Creutzfeldt-Jacob disease in humans. The model is based on the
protein-only hypothesis, which assumes that infection can be spread by partic-
ular proteins (prions) that can exist in two isomeric forms. The normal form
PrPC is harmless, while the infectious form PrPSC catalyzes a transformation
from the normal form to itself. A natural question is whether a small amount of
PrPSC cause prion disease.

The generic kinetic scheme of prion diseases is illustrated as follows:

↓ 1

PrPC 3
−→ PrPSC

4
−→ Aggregates.

↓ 2

Denote by
[

PrPC
]

and
[

PrPSC

]

be respectively the concentrations of PrPC

and PrPSC . Let νi be the rate of Step i for i = 1, . . . , 4. In the above diagram,
Step 1 corresponds to the synthesis of native PrPC , which is considered in the
present analysis as a zero-order kinetic process, that is ν1 = k1 for some constant
k1. Output reactions (Steps 2 and 4, which correspond to the degradation of
native PrPC and to the formation of aggregates respectively) are taken as first-
order rate equations: ν2 = k2

[

PrPC
]

, ν4 = k4
[

PrPSC

]

. Step 3 corresponds to
the transformation from PrPC to PrPSC , which is a nonlinear process

ν3 =
[

PrPC
] a

(

1 + b
[

PrPSC

]n)

1 + c [PrPSC ]
n .

Hence we can describe the model by the following differential equations:

d
[

PrPC
]

dt
= ν1 − ν2 − ν3

d
[

PrPSC

]

dt
= ν3 − ν4



To simplify notation, we set x =
[

PrPC
]

, y =
[

PrPSC

]

. The model is therefore
described by the dynamical system:

dx

dt
= k1 − k2x− ax

(1 + byn)

1 + cyn

dy

dt
= ax

(1 + byn)

1 + cyn
− k4y

where experiments suggest to set b = 2, c = 1/20, n = 4, a = 1/10, k4 = 50 and
k1 = 800. Now we have:

{

dx
dt = f1
dy
dt = f2

with

{

f1 = 16000+800y4−20k2x−k2xy
4−2x−4xy4

20+y4

f2 = 2(x+2xy4−500y−25y5)
20+y4

. (6)

Recall that a constant solution of the above differential equations is called an
equilibrium, that is a point (x, y) ∈ R2 at which the right hand side equations
vanish. By Routh-Hurwitz criterion (x, y) is asymptotically stable if

∆1 = −(
∂f1
∂x

+
∂f2
∂y

) > 0 and a2 =
∂f1
∂x

·
∂f2
∂y

−
∂f1
∂y

·
∂f2
∂x

> 0.

In system (6), let p1 and p2 be respectively the numerators of f1 and f2. The
parametric semi-algebraic sets S1 : {p1 = p2 = 0, k2 > 0} and S2 : {p1 =
p2 = 0, k2 > 0, ∆1 > 0, a2 > 0} encode respectively the equilibria and the
asymptotically stable hyperbolic equilibria of System (6).

A.2 Studying the equilibria with CTD

Firstly, we compute a CTD of S1. Let

R1 = 100000k82 + 1250000k72 + 5410000k62 + 8921000k52 − 9161219950k42

− 5038824999k32 − 1665203348k22 − 882897744k2 + 1099528405056.

The polynomial R1 has four real roots, two of them are positive. We denote
them by 0 < α1 < α2. Then the real line R is partitioned into 6 connected cells:
k2 ≤ 0, 0 < k2 < α1, k2 = α1, α1 < k2 < α2, k2 = α2 and k2 > α2. For the first
cell, namely k2 ≤ 0, there is no associated SFSAS, which implies that S has no
real solutions. The second, fourth and sixth cells are associated with the same
SFSAS, which is

A1 :=







(2y4 + 1)x− 25y5 − 500y = 0
(k2 + 4)y5 − 64y4 + (2 + 20k2)y − 32 = 0

k2 > 0.

The third and fifth cells are associated with the SFSAS A2, which will not be
displayed here due to its size. For each of the sixth cells, we can compute a
sample point and substitute it into the corresponding SFSAS. Then we obtain the
number of real solutions above the six cells, which are respectively 0, 1, 2, 3, 2, 1.
To summarize, we have the following conclusion.



Conclusion 1 Assume k2 > 0. If R1 > 0, then System (6) has 1 equilibrium;
if R1 = 0, then System (6) has 2 equilibria; if R2 < 0, then System (6) has 3
equilibria.

Similarly, we can also compute a CTD of S2 and then count the number of
asymptotically stable hyperbolic equilibria above each cell. Let R2 be the fol-
lowing polynomial.

R2 = 10004737927168k92 + 624166300700672k82 + 7000539052537600k72

+ 45135589467012800k62 − 840351411856453750k52 − 50098004352248446875k42

− 27388168989455000000k32 − 8675209266696000000k22

+ 102960917356800000000k2+ 5932546064102400000000.

The following conclusion summarizes the conditions for the stability and bifur-
cation of System (6).

Conclusion 2 Assume k2 > 0. If R1 > 0 (Figures 1 and 3), then the system
has one hyperbolic equilibrium, which is asymptotically stable; if R1 < 0 and
R2 6= 0 (Figure 2), then the system has three hyperbolic equilibria, two of which
are asymptotically stable, the other one being unstable; if R1 = 0 or R2 = 0 hold,
the system experiences a bifurcation.

Figure 1 Figure 2 Figure 3

Remark 5 This generalizes the illustrated results of Fig.1(c) in [26], where only
concrete values of k2 are given to make sure that system (6) is bistable. By
symbolic methods presented here, we can give the precise condition.

A.3 Explanation of the experimental results

From these figures, we also observe that, in Figure 1, the concentration of PrPSC

(y-coordinate) finally becomes low and thus the system enters a harmless state.
Conversely, in Figure 3 the concentration of PrPSC goes high and thus the
systems enters a pathogenic state. In Figure 2, the system exhibits bistability, the
initial concentrations of PrPSC determines whether the final state pathogenic
or not. We thus deduce the following facts, as stated in paper [26]:



– The turnover rate k2 determines whether it is possible for a pathogenic state
to occur.

– As an answer to our question, a small amount of PrPSC does not lead to a
pathogenic state when k2 is large enough.

– Compounds that inhibit addition of PrPSC can be seen as a possible therapy
against prion diseases. However, compounds that increase the turnover rate
k2 would be the best therapeutic strategy against prion diseases.


