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© A new tool for solving parametric polynomial systems

@ Study the equilibria of dynamical systems symbolically
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Motivation: a biochemical network

Mad cow disease

http://x-medic.net/infections/
bovine-spongiform-encephalopathy/attachment/mad-cow-disease


http://x-medic.net/infections/bovine-spongiform-encephalopathy/attachment/mad-cow-disease
http://x-medic.net/infections/bovine-spongiform-encephalopathy/attachment/mad-cow-disease

Motivation: a biochemical network

A mad cow disease model (M. Laurent, 1996)
Hypothesis: the mad cow disease is spread by prion proteins.

The kinetic scheme

J1
prpC 2, pppSc L, Aggregates.

12

PrPC (resp. PrP5¢) is the normal (resp. infectious) form of prions

Step 1 (resp. 2) : the synthesis (resp. degradation) of native PrP¢
Step 3 : the transformation from PrPC¢ to PrPSc
Step 4 : the formation of aggregates

Question: Can a small amount of PrP5¢ cause prion disease?



Motivation: a biochemical network

The dynamical system governing the reaction network

Let 2 and y be respectively the concentrations of PrP¢ and PrP5c.

°
o Let v; be the rate of Stepifori=1,...,4.
@ 1 = k1 for some constant k.
@ 15 = kox and vg = kyy.
1+by™
o U3 = ax(1+c§jn)'
11
3 S 4 dz vV, — UV — U3
PrP¢ 25 PrP°c = Aggregates. dt )
O ) &

V3 —1y




Motivation: a biochemical network

The simplified dynamical system by experimental values

Experiments (M. Laurent 96) suggest to set b =2, ¢ = 1/20, n = 4,
a =1/10, ky = 50 and k; = 800. Now we have:

dz  _ f fi = 16000+800y47201@2111@2%472%4@4
ai?j with 9 4 20+y5

ay f o (z+2zy*—500y—25y°)

dt 2 2 - 20+y4

@ x and y are unknowns and ks is the only parameter.

e A constant solution (zg,yo) of system (2) is called an equilibrium.

e (z0,yo) is called asymptotically stable if the solutions of system (2)
starting out close to (xg,yo) become arbitrary close to it.
of  Ofs
o (z0,yo) is called hyperbolic if all the eigenvalues of | §F 4%
dy Oy

have nonzero real parts at (xg, yo)-




Motivation: a biochemical network

The polynomial system to solve (CASC 2011)

Theorem: Routh-Hurwitz criterion

A hyperbolic equilibrium (xg,yo) is asymptotically stable if and only if

Of L Ofa) 0 d A o O 005 OB

A = — = .
1(@0, o) (896 Oy Ox Oy Oy Ox

The semi-algebraic systems encoding the equilibria
o Let py (resp. p2) be the numerator of fi (resp. f2).
@ The system S;: {p1 =p2 =0,z > 0,y > 0,ky > 0} encodes the
equilibria of (2).
@ The system Sz : {p1 =p2 =0,2 > 0,y > 0,ka > 0,A1 > 0,y > 0}
encodes the asymptotically stable hyperbolic equilibria of (2).

The corresponding constructible systems

0 Ci:={p1=0,p2=0,2#0,y#0,ky #0} in C>.
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A new tool for solving parametric polynomial systems

Objectives

For a parametric polynomial system F' C k[u][x], the following problems
are of interest:

@ compute the values u of the parameters for which F'(u) has solutions,
or has finitely many solutions.

@ compute the solutions of F' as continuous functions of the
parameters.

@ provide an automatic case analysis for the number (dimension) of
solutions depending on the parameter values.



A new tool for solving parametric polynomial systems

Related work

o (Comprehensive) Grébner bases: (V. Weispfenning, 92, 02), (D.
Kapur 93), (A. Montes, 02), (M. Manubens & A. Montes, 02), (A.
Suzuki & Y. Sato, 03, 06), (D. Lazard & F. Rouillier, 07), (Y. Sun,
D. Kapur & D. Wang, 10) and others.

e Triangular decompositions: (S.C. Chou & X.S. Gao 92), (X.S. Gao &
D.K. Wang 03), (D. Kapur 93), (D.M. Wang 05), (L. Yang, X.R. Hou
& B.C. Xia, 01), (R. Xiao, 09) and others.

e Cylindrical algebraic decompositions: (G.E. Collins 75), (H. Hong 90),
(G.E. Collins, H. Hong 91), (S. McCallum 98), (A. Strzebonski 00),
(C.W. Brown 01) and others.
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A CASC story

At CASC 2007
o We investigated the specialization property of regular chains

o We introduced the concept of comprehensive triangular
decomposition (CTD) of an algebraic variety.
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A CASC story

At CASC 2007
o We investigated the specialization property of regular chains

o We introduced the concept of comprehensive triangular
decomposition (CTD) of an algebraic variety.

At CASC 2011

@ CTD of a parametric constructible set with application to complex
root classification

@ CTD of a parametric semi-algebraic system with application to real
root classification




A new tool for solving parametric polynomial systems

Specialization

Definition

A (squarefree) regular chain T of k[u, y| specializes well at u € K if
T'(u) is a (squarefree) regular chain of K[y| and init(7")(u) # 0.

Example
(s+1)z
T=2 (z+1)y+s with s<z<y<z
2 +z+s
does not specialize well at s =0 or s = —1
z 0z
TO)=<¢ (x+1)y TA)=1 (z+1)y—1




A new tool for solving parametric polynomial systems

Comprehensive Triangular Decomposition (CTD)

Definition
Let F' C k[u,y]. A CTD of V(F) is given by :
@ a finite partition C of the parameter space into constructible sets,

@ above each C € C, there is a set of regular chains 7 such that

e each regular chain T' € T¢ specializes well at any v € C' and
o forany u € C, we have V(F(u)) = Uper, W(T'(u)).
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Comprehensive Triangular Decomposition (CTD)

Definition
Let F' C k[u,y]. A CTD of V(F) is given by :
@ a finite partition C of the parameter space into constructible sets,

@ above each C € C, there is a set of regular chains 7 such that

e each regular chain T' € T¢ specializes well at any v € C' and
o forany u € C, we have V(F(u)) = Uper, W(T'(u)).

Example

A CTD of F := {2?(1 +y) — 5,y*(1 + z) — s} is as follows:
0 540 — {11,
@ s=0— {Tp, T3}

where

y+1

2?2y +a?—s (z+Dy+=z
Tl_{zSJr:z:Qs = 22 —sr—s Tr=q o+l




A new tool for solving parametric polynomial systems

Disjoint squarefree comprehensive triangular decomposition (DSCTD)

Definition
Let F' C k[u,y]. A DSCTD of V(F) is given by :

@ a finite partition C of the parameter space,

@ each cell C' € C is associated with a set of squarefree regular chains
T¢ such that
e each squarefree regular chain T € T¢ specializes well at any v € C and
o forany u € C, V(F(u)) = Urer. W(T(u)). (U denotes disjoint union)

v
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Disjoint squarefree comprehensive triangular decomposition (DSCTD)

Definition

Let F' C k[u,y]. A DSCTD of V(F) is given by :
@ a finite partition C of the parameter space,

@ each cell C' € C is associated with a set of squarefree regular chains
T¢ such that

e each squarefree regular chain T € T¢ specializes well at any v € C and
o forany u € C, V(F(u)) = Urer. W(T(u)). (U denotes disjoint union)

Example

Q s#0,s#£4/27 and s £ —4 — {11, T}
Q s=-4— {1}

© s=0— {T5,T4}

Q s=4/27 — {T»,T5,Ts}

Y 3y—1 3y +2
T T5 = 3z —1 T = 3x+2
s 27s — 4

Ty




A new tool for solving parametric polynomial systems

Properties of CTD

Above each cell,
@ either there are no solutions

@ or finitely many solutions and the solutions are continuous functions
of parameters

@ or infinitely many solutions, but the dimension is invariant.

Example

A CTD of F:= {z?(1 4+ y) — 5,%%(1 + x) — s} is as follows:
Q s#0 — {11, 15}
Q@ s=0— {Th, T3}

where

+1
$2y+x2—s Y
Tl{m3+a:2—s I = 2 —sr—s Ty=q 41




A new tool for solving parametric polynomial systems

Additional properties of DSCTD

Above each cell, where the system has finitely many solutions
@ the graphs of functions are disjoint
@ the number of distinct complex solutions is constant

Example
Q s#0, s#£4/27 and s £ —4 — {11, T2}
Q s=-4— {1}
@ s=0— {T3,T4}
Q s=4/271 — {T>,T5,Ts}

m2y+12—s

=9 375 2 y+1 Y 3y—1 3y +2
( +1) T T3 = r+1 Ty = x 15 = 3r—1 Te = 3r + 2
T,=4 CTHYTe s s 27s — 4 27s — 4

$2—S$—S




A new tool for solving p. etric polynomial systems

Comprehensive triangular decomposition of semi-algebraic systems?

Related concepts
e Cylindrical algebraic decomposition (CAD by G.E. Collins 75)
e Border polynomial (BP by L. Yang, X.R. Hou & B.C. Xia, 01)
e Discriminant variety (DV by D. Lazard & F. Rouillier, 07)

Why we want more?

@ CAD does too much work when used for the purpose of solving
semi-algebraic systems.

@ BP and DV are only about the parameter space.

@ Algorithm based on BP or DV focus on the components of maximal
dimension in the parameter space.




A new tool for solving parametric polynomial systems

Comprehensive triangular decomposition of semi-algebraic systems

Input
A parametric semi-algebraic system S C Q[u][y].

Output
@ A partition of the whole parameter space into connected cells, such

that above each cell
@ either the corresponding constructible system of S has infinitely many

complex solutions,

© or S has no real solutions
@ or S has finitely many real solutions which are continuous functions of

parameters with disjoint graphs
@ A description of the solutions of .S as functions of parameters by
triangular systems in case of finitely many complex solutions.




A new tool for solving parametric polynomial systems

How to compute a RCTD?

Specifications
@ Input: a parametric semi-algebraic system S

@ Output: a RCTD of S, that is, parameter space partition + triangular
systems.

v

Algorithm
For simplicity, we assume S consists of only equations.
(1) Compute a DSCTD (C, (T¢,C €C)) of S.
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How to compute a RCTD?

Specifications
@ Input: a parametric semi-algebraic system S

@ Output: a RCTD of S, that is, parameter space partition + triangular
systems.

v

Algorithm
For simplicity, we assume S consists of only equations.
(1) Compute a DSCTD (C, (T¢,C €C)) of S.

(2) Refine each constructible set cell C' € C into connected semi-algebraic
sets by CAD.




A new tool for solving parametric polynomial systems

How to compute a RCTD?

Specifications
@ Input: a parametric semi-algebraic system S

@ Output: a RCTD of S, that is, parameter space partition + triangular
systems.

Algorithm
For simplicity, we assume S consists of only equations.
(1) Compute a DSCTD (C, (T¢,C €C)) of S.

(2) Refine each constructible set cell C' € C into connected semi-algebraic

sets by CAD.

(3) Let C be a connected cell above which S has finitely many complex
solutions.
Compute the number of real solutions of T € T at a sample point u
of C.

Remove those T's which have no real solutions at w.
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@ Study the equilibria of dynamical systems symbolically



Study the equilibria of dynamical sy symbolically

Equilibria of mad cow disease model

Recall the dynamical system

dz f = 160004800y * —20kox —koxy* — 22 —4xy?
@ = N i b 20ty

dy _ f 2(z+2zy* —500y—25y°)

dt 2 - 20+y4

Let p1 (resp. p2) be the numerator of f; (resp. f2).

p1 = (—20ky — kay* — 2 — dy*)x + 16000 + 800y*
p2 = (2y* + 1)z — 500y — 25y°

The system 81 : {p1 =p2 =0,z > 0,y > 0,ka > 0} encode the equilibria.




Study the equilibria of dynamical systems symbolically

RCTD of S

Let 0 < a1 < ag be the two positive real roots of the following polynomial

r = 100000k§ 4+ 1250000k] + 5410000kS + 8921000k5 — 9161219950k
—  5038824999k3 — 1665203348k3 — 882897744ks + 1099528405056.

The isolating intervals for a1 and s are respectively [3.175933838, 3.175941467] and
[14.49724579, 14.49725342].
A RCTD of S is as follows.

{} ko <0 0 ko <0
{B1} 0< ke <ag 1 0< ke <ay
{Bz} ko = a1 2 ko = a1
{B1} a1 <k:<az 3 a1 <k <o
{Bz} ko = ao 2 ko = ao
{B1} ko > a2 1 k2 > a2

Theorem

If 0 < ko < ay or kg > «g, then the dynamical system has 1 equilibrium;
if ko = a1 or ko = g, then the dynamical system has 2 equilibria;

if a1 < ko < ag, then dynamical system has 3 equilibria.




Study the equilibria of dynamical systems symbolically

Hurwitz determinants and hyperbolicity

Let (z,y) be an equilibrium of the dynamical system

Let J be the Jacobian matrix of the dynamical system at (x,y)
Then the characteristic polynomial of J is A2 + A\ + Ao.

Let Ay and Ay be the two eigenvalues of J

Then we have A1 + Ag = —A7 and A1y = Ag

Thus

@ S;:={p1=p2=0,2 >0,y >0,k > 0} encodes the equilibria.

@ So:={S1,A; = Ay = 0} encodes the nonhyperbolic equilibria with
zero as eigenvalue of multiplicity two.

e S3:={S1,A; # 0,A9 = 0} encodes the nonhyperbolic equilibria with
zero as eigenvalue of multiplicity one.

@ Sy :={S1,A; =0,As > 0} encodes the nonhyperbolic equilibria with
a pair of pure imaginary eigenvalues, that is, a Hopf bifurcation.

e S5 :={S1,A; > 0,A9 > 0} encodes the asymptotically stable
hyperbolic equilibria.



Study the equilibria of dynamical systems symbolically

Stability and bifurcation analysis (1)

e RCTD(S;) shows that the system has
e one equilibrium if and only if ks < aq or ko > aso;
e two equilibria if and only if ko = a; or ko = ao;
e three equilibria if and only if k2 > a7 and ko < as.
e RCTD(S2) and RCTD(S4) show that neither So nor Sy have real
solutions.
o RCTD(S3) show that the system has
e one nonhyperbolic equilibria with zero eigenvalue of multiplicity one if
and only if ko = aq or ko = ao.
@ RCTD(Ss5) show that the system has

e one asymptotically stable hyperbolic equilibria if and only if k3 < a;j or
ko > ao;

e two asymptotically stable hyperbolic equilibria if and only if ky > a3
and ko < as.



Study the equilibria of dynamical systems symbolically

Stability and bifurcation analysis

Combining several RCTDs
@ RCTD(Sy) : equilibria.

(] RCTD(Sl, Al = AQ = 0), RCTD(Sl, Al # 0, AQ = 0), and
RCTD(S1,A1 = 0,As > 0): nonhyperbolic equilibria.
(

@ RCTD(S1,A;1 > 0,A5 > 0) : asymptotically stable hyperbolic equilibria.

Theorem

0 0 < ky < aqor kg > ag — the system has 1 equilibrium, which is
hyperbolic and asymptotically stable

@ ko = a1 or ko = as — the system has 2 equilibria, one is nonhyperbolic,
another one is hyperbolic and asymptotically stable

@ aj < ko < ag —> the system has 3 equilibria, two are hyperbolic and
asymptotically stable, one is hyperbolic and non-stable.

@ the system experiences a bifurcation at ko = aq or ks = o




Study the equilibria of dynamical ms symbolically

Can a small amount of PrP5¢ cause prion disease? (1)
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Figure: Vector field for ky = 3 (x : PrP¢, y: Prp3°)
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Can a small amount of PrP°¢ cause prion disease? (l)

k2 =8

e e | [ e
Pt a e aa a ee e e Se g k o
[ e e i e e e S ey & T ———
P o S et it i i i i \ T ———

P e T e
N i e e e
B S S R e P
™y ettt T
s t—t—t—t—Y T R e

. N L A—
—— PR Sttt T TR e
\.\./-/f../w\ A S
—anrrr e P PR R e
e 2 AP
LI L L L L L L N L L L B BV
o] o o] o o] o o
.nm .nlu ~ [t} o [=} o
>

200

150

100

20

X

Y PrPSC)

x: PrP¢,

(

Figure: Vector field for ko = 8



olically

ms symb

g

>
o
<
S

>
5

Can a small amount of PrP°¢ cause prion disease? (lI1)

k2=18
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