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Motivation

Stability analysis of (polynomial) dynamical systems leads to
manipulate the solution sets of systems of equations, inequa-
tions or inequalities, so-called semi-algebraic sets. We gen-
eralize comprehensive triangular decomposition (CTD) to
these sets and apply this new tool to a concrete example.

Laurent Model for Prion Diseases

Mad cow disease is a transmissible
disease of the central nervous system,
thought to be caused by prion pro-
teins. Prion proteins exist in normal
form PrPC and pathogenic form PrPSC.

The former is harmless while the latter can multiply by convert-
ing PrPC into PrPSC. An excess of PrPSC causes prion diseases.
Can a small amount of PrPSC cause prion disease? The model
of Laurent reduces this question to the dynamical system below,
where x and y are the concentrations of PrPC and PrPSC:
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dx
dt = k1 − k2x − xa(1+byn)

1+cyn

dy
dt = xa(1+byn)

1+cyn − k4y

where experiments suggest to set b = 2, c = 1/20, n = 4,
a = 1/10, k4 = 50 and k1 = 800. Now we have:
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dx
dt = f1
dy
dt = f2

with
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f1 = 16000+800y4−20k2x−k2xy4−2x−4xy4

20+y4

f2 = 2(x+2xy4−500y−25y5)
20+y4

. (1)

A constant solution of the above differential equations is called
an equilibrium, that is a point (x, y) ∈ R

2 at which the right
hand side equations vanish. An equilibrium (x, y) is asymp-
totically stable if any solution of (1) starting near (x, y) be-
come arbitrarily close to it. By Routh-Hurwitz criterion (x, y)

is asymptotically stable if
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·
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−
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+

∂f2

∂x
> 0.

Thus, determining the (asymptotically stable) equilibria of sys-
tem (1) leads to solving semi-algebraic sets.

Basic Definitions

•A semi-algebraic set of R
n is a finite union of sets of form:

{(u, x) ∈ R
n | (∀f ∈ F )f (u, x) = 0 & (∀g ∈ G) g(u, x) > 0},

where F and G are any finite polynomial sets of R[U, X ].

•A pair [T, G+] is called a regular semi-algebraic system if

–T is a squarefree regular chain of R[U, X ],
–G+ is a finite set of strict polynomial inequalities {g > 0},
– each g is regular w.r.t the saturated ideal of 〈T 〉.

•A regular semi-algebraic system [T,G+] separates well at
u ∈ R

d if [T (u), G(u)+] is a regular semi-algebraic system of
R[X ] after specialization and no initials of polynomials in T

vanish during the specialization.

CTD of Semi-algebraic Sets

Let S be a parametric semi-algebraic set of R[U, X ]. A com-
prehensive triangular decomposition of S is given by :

• a finite partition C of the parameter space R
d into connected

semi-algebraic sets,

• for each C ∈ C, an associated sample point s ∈ C,

• for each C ∈ C a set of regular semi-algebraic systems AC

of R[U,X ] such that for each u ∈ C: each A ∈ AC sepa-
rates well at u; the solutions sets of the systems A(u), for
A ∈ AC, are pairwise disjoint and their union is exactly the
set of points of S whose U−coordinates are equal to u.

In system (1), let p1 and p2 be respectively the numerators of f1

and f2. The parametric semi-algebraic set

S : {p1 = p2 = 0, k2 > 0, ∆1 > 0, ∆2 > 0}

encodes exactly the asymptotically hyperbolic equilibria of sys-
tem (1). A comprehensive triangular decomposition of S is il-
lustrated as follows:
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Equilibria Analysis

With CTD at hand, we can count the number of (asymptotically
stable) equilibria of (1) depending on parameters. Let

R1 = 100000k8
2 + 1250000k7

2 + 5410000k6
2 + 8921000k5

2

− 9161219950k4
2 − 5038824999k3

2 − 1665203348k2
2

− 882897744k2 + 1099528405056.

If R1 > 0 (Figures 1 and 3), then the system has one equilib-
rium, which is asymptotically stable. If R1 < 0 (Figure 2), then
the system has three equilibria, two of which are asymptotically
stable. If R1 = 0, the system experiences a bifurcation.

Figure 1 Figure 2 Figure 3

From these figures, we also observe that: In Figure 1, the con-
centration of PrPSC (y-coordinate) finally becomes low and thus
the system enters a harmless state. Conversely, in Figure 3 the
concentration of PrPSC goes high and thus the systems enters a
pathogenic state. In Figure 2, the system exhibits bistability,
the initial concentrations of PrPSC determines whether the final
state pathogenic or not. We thus deduce the following facts:

•The turnover rate k2 determines whether it is possible for a
pathogenic state to occur.

•As an answer to our question, a small amount of PrPSC does
not lead to a pathogenic state when k2 is large.

•Compounds that inhibit addition of PrPSC can be seen as a
possible therapy against prion diseases. However, compounds
that increase the turnover rate k2 would be the best thera-
peutic strategy against prion diseases.


