Motivation

Stability analysis of (polynomial) dynamical systems leads to manipulate the solution sets of systems of equations, inequations or inequalities, so-called semi-algebraic sets. We generalize comprehensive triangular decomposition (CTD) to these sets and apply this new tool to a concrete example.

Laurent Model for Prion Diseases

Mad cow disease is a transmissible disease of the central nervous system, thought to be caused by prion proteins. Prion proteins exist in normal and pathogenic forms; the normal form causes prion diseases. However, compounds that inhibit addition of PrPSc can be seen as a possible therapy against prion diseases. However, compounds that increase the turnover rate k_2 would be the best therapeutic strategy against prion diseases.

Basic Definitions

- A semi-algebraic set of \mathbb{R}^n is a finite union of sets of form:
 \[
 \{ (u, x) \in \mathbb{R}^n \mid (\forall f \in F) f(u, x) = 0 \wedge (\forall g \in G) g(u, x) > 0 \},
 \]
 where F and G are any finite polynomial sets of $\mathbb{R}[U, X]$.
- A pair $[T, G+]$ is called a regular semi-algebraic system if
 \- T is a squarefree regular chain of $\mathbb{R}[U, X]$,
 \- $G+$ is a finite set of strict polynomial inequalities \(\{ g > 0 \} \),
 \- each g is regular w.r.t the saturated ideal of \(T \).
- A regular semi-algebraic system $[T, G+]$ separates well at \(u \in \mathbb{R}^d \) if \([T(u), G(u)+] \) is a regular semi-algebraic system of $\mathbb{R}[X]$ after specialization and no initials of polynomials in T vanish during the specialization.

CTD of Semi-algebraic Sets

Let S be a parametric semi-algebraic set of $\mathbb{R}[U, X]$. A comprehensive triangular decomposition of S is given by:

- a finite partition C of the parameter space \mathbb{R}^d into connected semi-algebraic sets,
- for each $C \in C$, an associated sample point $s \in C$,
- for each $C \in C$ a set of regular semi-algebraic systems A_C of $\mathbb{R}[U, X]$ such that for each $u \in C$: each $A \in A_C$ separates well at u: the solutions sets of the systems $(A(u), v)$, for $A \in A_C$, are pairwise disjoint and their union is exactly the set of points of S whose $U-$coordinates are equal to u.

In system (1), let p_1 and p_2 be respectively the numerators of f_1 and f_2. The parametric semi-algebraic set

\[S : \{ (u, x) \in \mathbb{R}^n \mid (\forall f \in F) f(u, x) = 0 \wedge (\forall g \in G) g(u, x) > 0 \} \]

encodes exactly the asymptotically hyperbolic equilibria of system (1). A comprehensive triangular decomposition of S is illustrated as follows:

Equilibria Analysis

With CTD at hand, we can count the number of (asymptotically stable) equilibria of (1) depending on parameters. Let

\[
R_1 = 1000000k_1^5 + 1250000k_2^3 + 5410000k_2^3 + 8921000k_2^5 - 9161219950k_2^3 - 5038824999k_2^5 - 1665203348k_2^7 - 88297744k_2^9 + 109528460656.
\]

If $R_1 > 0$ (Figures 1 and 3), then the system has one equilibrium, which is asymptotically stable. If $R_1 < 0$ (Figure 2), then the system has three equilibria, two of which are asymptotically stable. If $R_1 = 0$, the system experiences a bifurcation.

From these figures, we also observe that: In Figure 1, the concentration of PrPSc (y-coordinate) finally becomes low and thus the system enters a harmless state. Conversely, in Figure 3 the concentration of PrPSc goes high and thus the system enters a pathogenic state. In Figure 2, the system exhibits bistability, the initial concentrations of PrPSc determines whether the final state pathogenic or not. We thus deduce the following facts:

- The turnover rate k_2 determines whether it is possible for a pathogenic state to occur.
- As an answer to our question, a small amount of PrPSc does not lead to a pathogenic state when k_2 is large.
- Compounds that inhibit addition of PrPSc can be seen as a possible therapy against prion diseases. However, compounds that increase the turnover rate k_2 would be the best therapeutic strategy against prion diseases.