
Dense Arithmetic over Finite Fields with CUMODP

Sardar Anisul Haque1 Xin Li2 Farnam Mansouri1

Marc Moreno Maza1 Wei Pan3 Ning Xie1

1University of Western Ontario, Canada
2Universidad Carlos III, Spain
3Intel Corporation, Canada

ICMS, August 8, 2014

1 / 30



Outline

1 Overview

2 A many-core machine model for minimizing parallelism overheads

3 Putting the MCM model into practice

4 Adaptive algorithms

5 Bivariate system solving

6 Conclusion

2 / 30



Background

Reducing everything to multiplication

Polynomial multiplication and matrix multiplication are at the core of
many algorithms in symbolic computation.
Algebraic complexity is often estimated in terms of multiplication time
At the software level, this reduction is also common (Magma, NTL)
Can we do the same for SIMD-multithreaded algorithms?

Building blocks in scientific software

The Basic Linear Algebra Subprograms (BLAS) is an inspiring and
successful project providing low-level kernels in linear algebra, used by
LINPACK, LAPACK, MATLAB, Mathematica, Julia (among others).
Other BB’s successful projects: FFTW, SPIRAL (among others).
The The GNU Multiple Precision Arithmetic Library project plays a
similar role for rational numbers and floating-point numbers.
No symbolic computation software dedicated to sequential polynomial
arithmetic managed to play the unification role of the BLAS.
Could this work in the case of GPUs?

3 / 30



CUMODP Mandate (1/2)

Functionalities

Level 1: basic arithmetic operations that are specific to a polynomial
representation or a coefficient ring: multi-dimensional FFTs/TFTs,
converting integers from CRA to mixed-radix representations
Level 2: basic arithmetic operations for dense or sparse polynomials
with coefficients in Z/pZ, Z or in floating point numbers: polynomial
multiplication, polynomial division
Level 3: advanced arithmetic operations on families of polynomials:
operations based on subproduct trees, computations of subresultant
chains.

4 / 30



CUMODP Mandate (2/2)

Targeted architectures

Graphics Processing Units (GPUs) with code written in CUDA,
CUMODP aims at supporting BPAS (Basic Polynomial Algebra
Subprograms) which targets multi-core processors and which is
written in CilkPlus.
Thanks to our Meta Fork framework, automatic translation between
CilkPlus and OpenMP are possible, as well as conversions to C/C++.
Unifiying code for CUMODP and BPAS is conceivable (see the
SPIRAL project) but highly complex (multi-core processors enforce
memory consistency while GPUs do not, etc.)

5 / 30



CUMODP Design

Algorithm choice

Level 1 functions (n-D FFTs/TFTs) are highly optimized in terms of
arithmetic count, locality and parallelism.
Level 2 functions provide several algorithms or implementation for the
same operation: coarse-grained & fine-grained, plain & FFT-based.
Level 3 functions combine several Level 2 algorithms for achieving a
given task.

Implementation techniques

At Level 2, the user can choose between algorithms minimizing work
or algorithms maximizing parallelism
At Level 3, this leads to adaptive algorithms that select appropriate
Level 2 functions depending on available resources (number of cores,
input data size).

6 / 30



Code organization

Main features

developers and users have access to the same code.
mainly 32bit arithmetic so far
Regression tests and benchmark scripts are also distributed.
Documentation is generated by doxygen.
A manually written documentation is work in progress.
Three student theses and about 10 papers present & document
CUMODP.

7 / 30



Outline

1 Overview

2 A many-core machine model for minimizing parallelism overheads

3 Putting the MCM model into practice

4 Adaptive algorithms

5 Bivariate system solving

6 Conclusion

8 / 30



A many-core machine model

Similarly to a CUDA program, an MMM program specifies for each kernel
the number of thread-blocks and the number of threads per thread-block.

9 / 30



A many-core machine model: programs

An MMM program P is a directed acyclic graph (DAG), called kernel
DAG of P, whose vertices are kernels and edges indicate serial
dependencies.

Since each kernel of the program P decomposes into a finite number of
thread-blocks, we map P to a second graph, called thread-block DAG of
P, whose vertex set consists of all thread-blocks of P. 10 / 30



A many-core machine model: machine parameters

Machine parameters

Z : Size (expressed in machine words) of the local memory of any SM.
U: Time (expressed in clock cycles) to transfer one machine word

between the global memory and the local memory of any SM.
(Assume U > 1.)

Thus, if α and β are the maximum number of words respectively read and
written to the global memory by a thread of a thread-block, then the data
transferring time TD between the global and local memory of a
thread-block satisfies TD ≤ (α + β)U.

11 / 30



A many-core machine model: complexity measures (1/2)

For any kernel K of an MMM program,

work W (K) is the total number of local operations of all its threads;

span S(K) is the maximum number of local operations of one thread.

For the entire program P,

work W (P) is the total work of all its kernels;

span S(P) is the longest path, counting the weight (span) of each
vertex (kernel), in the kernel DAG.

12 / 30



A many-core machine model: complexity measures (2/2)

For any kernel K of an MMM program,

parallelism overhead O(K) is the total data transferring time among
all its thread-blocks.

For the entire program P,

parallelism overhead O(P) is the total parallelism overhead of all its
kernels.

13 / 30



A many-core machine model: running time estimates

A Graham-Brent theorem with parallelism overhead

Theorem. Let K be the maximum number of thread blocks along an
anti-chain of the thread-block DAG of P. Then the running time TP of
the program P satisfies:

TP ≤ (N(P)/K + L(P))C (P),

where
N(P): number of vertices in the thread-block DAG,
L(P): critical path length (where length of a path is the number of

edges in that path) in the thread-block DAG.

Note: The Graham-Brent theorem: , a greedy scheduler operating with P processors
executes a multithreaded computation with work T1 and span T∞ in time

TP ≤ T1/P + T∞

.
14 / 30



Outline

1 Overview

2 A many-core machine model for minimizing parallelism overheads

3 Putting the MCM model into practice

4 Adaptive algorithms

5 Bivariate system solving

6 Conclusion

15 / 30



Applying the MCM model

Applying MCM to minimize parallelism overheads by determining an
appropriate value range for a given program parameter

In each case, a program P(s) depends on a parameter s which varies
in a range S around an initial value s0;

the work ratio Ws0/Ws remains essentially constant, meanwhile the
parallelism overhead Os varies more substantially, say
Os0/Os ∈ Θ(s − s0);

Then, we determine a value smin ∈ S maximizing the ratio Os0/Os .

Next, we use our version of Graham-Brent theorem to check whether
the upper bound for the running time of P(smin) is less than that of
P(so). If this holds, we view P(smin) as a solution of our problem of
algorithm optimization (in terms of parallelism overheads).

16 / 30



MCM applied to plain univariate polynomial division

Applying MCM to the polynomial division operation

Naive division algorithm of a

thread-block with s = 1: each

kernel performs 1 division step

Optimized division algorithm a thread-block

with s > 1: each kernel performs s division

steps

W1

Ws
= 8 (Z+1)

9 Z+7 ,
O1

Os
= 20

441Z ,
T1

Ts
= (3+5U) Z

3 (Z+21U) .

T1/Ts > 1 if and only if Z > 12.6 holds, which clearly holds on actual GPU
architectures.

Thus, the optimized algorithm (that is for s > 1) is overall better than the
naive one (that is for s = 1).

17 / 30



MCM applied to plain univariate polynomial multiplication
and the Euclidean algorithm (1/2)

Applying MCM to the plain multiplication and the Euclidean algorithm

For plain polynomial multiplication, this analysis suggested to
minimize s.

For the Euclidean algorithm, our analysis suggested to maximize the
program parameter s.

Both are verified experimentally.

Plain polynomial multiplication The Euclidean algorithm

18 / 30



MCM applied to plain univariate polynomial multiplication
and the Euclidean algorithm (1/2)

CUMODP vs NTL

CUMODP: plain but parallel algorithms

NTL: asymptotically fast FFT-based but serial algorithms

Our experimentations are executed on a NVIDIA Tesla M2050 GPU
and an Intel Xeon X5650 CPU.

CUMODP plain polynomial division vs NTL

FFT-based polynomial division.

CUMODP plain Euclidean algorithm vs NTL

FFT-based polynomial GCD.

19 / 30



FFT-based multiplication

Our GPU implementation relies on Stockham FFT algorithm

Let d be the degree, then n = 2dlog2(2 d−1)e.

Based on the MCM, the work is 15 n log2(n) + 2 n, the span is
15 n + 2, and the parallelism overhead is (36 n + 21)U.

Size CUMODP FLINT Speedup

212 0.0032 0.003
213 0.0023 0.008 3.441
214 0.0039 0.013 3.346
215 0.0032 0.023 7.216
216 0.0065 0.045 6.942
217 0.0084 0.088 10.475
218 0.0122 0.227 18.468
219 0.0198 0.471 23.738
220 0.0266 1.011 27.581
221 0.0718 2.086 29.037
222 0.1451 4.419 30.454
223 0.3043 9.043 29.717

Table: Running time (in sec.) for FFT-based polynomial multiplication: CUMODP vs
FLINT.

20 / 30



Outline

1 Overview

2 A many-core machine model for minimizing parallelism overheads

3 Putting the MCM model into practice

4 Adaptive algorithms

5 Bivariate system solving

6 Conclusion

21 / 30



Parallelizing subproduct-tree technniques

Challenging in parallel implementation:

The divide-and-conquer formulation of operations is not sufficient to
provide enough parallelism.

One must parallelize the underlying polynomial arithmetic operations.

The degrees of the involved polynomials vary greatly during the
course of the execution of operations (subproduct tree, evaluation or
interpolation).

So does the work load of the tasks, which makes those algorithms
complex to implement on many-core GPUs.

22 / 30



Subproduct trees

Subproduct tree technique

Split the point set U = {u0, . . . , un−1} with n = 2k into two halves of
equal cardinality and proceed recursively with each of the two halves.

This leads to a complete binary tree Mn of depth k having the points
u0, . . . , un−1 as leaves.

Let mi = x − ui and define each non-leaf node in the binary tree as a
polynomial multiplication

Mi ,j = mj ·2i · mj ·2i+1 · · · mj ·2i+2i−1 =
∏

0≤`<2i

mj ·2i+`.

For each level of the binary tree smaller than a threshold H, we
compute the subproducts using plain multiplication.

For each level of the binary tree larger than the threshold H, we
compute the subproducts using FFT-based multiplication.

23 / 30



Subinverse tree

Associated with the subproduct tree Mn (n = 2k), the subinverse tree
InvMn is a complete binary tree with the same height as Mn.

For j-th node of level i in InvMn for 0 ≤ i ≤ k, 0 ≤ j < 2k−i ,

InvMi ,j · rev2i (Mi ,j) ≡ 1 mod x2
i
,

where rev2i (Mi ,j) = x2
i
Mi ,j(1/x).

24 / 30



Multi-point evaluation & interpolation: estimates

Given a univariate polynomial f ∈ K[x ] of degree less than n = 2k and
evaluation points u0, . . . , un−1 ∈ K, compute (f (u0), . . . , f (un−1)). (Recall
Recall the threshold H in the subproduct (subinverse) tree.)

the work is O(n log22(n) + n log2(n) + n 2H),

the span is O(log22(n) + log2(n) + 2H), and

the parallelism overhead is O((log22(n) + log2(n) + H)U).

Given distinct points u0, . . . , un−1 ∈ K and arbitrary values
v0, . . . , vn−1 ∈ K, compute the unique polynomial f ∈ K[x ] of degree less
than n = 2k that takes the value vi at the point ui for all i .

the work is O(n log22(n) + n log2(n) + n 2H),

the span is O(log22(n) + log2(n) + 2H), and

the parallelism overhead is O(log22(n) + log2(n) + H).

25 / 30



Multi-point evaluation & interpolation: benchmarks

Evaluation Interpolation
Deg. CUMODP FLINT SpeedUp CUMODP FLINT SpeedUp

214 0.2034 0.17 0.2548 0.22
215 0.2415 0.41 1.6971 0.3073 0.53 1.7242
216 0.3126 0.99 3.1666 0.4026 1.26 3.1294
217 0.4285 2.33 5.4375 0.5677 2.94 5.1780
218 0.7106 5.43 7.6404 0.9034 6.81 7.5379
219 1.0936 12.63 11.5484 1.3931 15.85 11.3768
220 1.9412 29.2 15.0420 2.4363 36.61 15.0268
221 3.6927 67.18 18.1923 4.5965 83.98 18.2702
222 7.4855 153.07 20.4486 9.2940 191.32 20.5851
223 15.796 346.44 21.9321 19.6923 432.13 21.9441

Table: Running time (in sec.) on NVIDIA Tesla C2050 for multi-point evaluation and
interpolation: CUMODP vs FLINT.

26 / 30



Outline

1 Overview

2 A many-core machine model for minimizing parallelism overheads

3 Putting the MCM model into practice

4 Adaptive algorithms

5 Bivariate system solving

6 Conclusion

27 / 30



GPU support for bivariate system solving

Bivariate polynomial system solver (based on the theory of regular chains)

Polynomial subresultant chains are calculated in CUDA.

Univariate polynomial GCDs are computed in C either by means of
the plain Euclidean algorithm or an asymptotically fast algorithm.

System Pure C Mostly CUDA code SpeedUp

dense-70 5.22 0.50 10.26
dense-80 6.63 0.77 8.59
dense-90 8.39 1.16 7.19

dense-100 19.53 1.80 10.79
dense-110 21.41 2.57 8.33
dense-120 25.71 3.48 7.39
sparse-70 0.89 0.31 2.81
sparse-80 3.64 1.18 3.09
sparse-90 3.13 0.92 3.40

sparse-100 8.86 1.20 7.38

Table: Running time (in sec.) for bivariate system solving over a small prime field

28 / 30



Outline

1 Overview

2 A many-core machine model for minimizing parallelism overheads

3 Putting the MCM model into practice

4 Adaptive algorithms

5 Bivariate system solving

6 Conclusion

29 / 30



Summary

www.cumodp.org

30 / 30


	Overview
	A many-core machine model for minimizing parallelism overheads
	Putting the MCM model into practice
	Adaptive algorithms
	Bivariate system solving
	Conclusion

