Dense Arithmetic over Finite Fields with CUMODP CUMODPCUMOP

> Sardar Anisul Haque¹ Xin Li² Farnam Mansouri¹ Marc Moreno Maza¹ Wei Pan³ Ning Xie¹

> > ¹University of Western Ontario, Canada ²Universidad Carlos III, Spain ³Intel Corporation, Canada

> > > ICMS, August 8, 2014

Overview

- 2 A many-core machine model for minimizing parallelism overheads
- 3 Putting the MCM model into practice
- 4 Adaptive algorithms
- 5 Bivariate system solving

6 Conclusion

Background

Reducing everything to multiplication

- Polynomial multiplication and matrix multiplication are at the core of many algorithms in symbolic computation.
- Algebraic complexity is often estimated in terms of multiplication time
- At the software level, this reduction is also common (Magma, NTL)
- Can we do the same for SIMD-multithreaded algorithms?

Building blocks in scientific software

- The *Basic Linear Algebra Subprograms* (BLAS) is an inspiring and successful project providing low-level kernels in linear algebra, used by LINPACK, LAPACK, MATLAB, Mathematica, Julia (among others).
- Other BB's successful projects: FFTW, SPIRAL (among others).
- The *The GNU Multiple Precision Arithmetic Library* project plays a similar role for rational numbers and floating-point numbers.
- No symbolic computation software dedicated to *sequential* polynomial arithmetic managed to play the unification role of the BLAS.
- Could this work in the case of GPUs?

CUMODP Mandate (1/2)

Functionalities

- Level 1: basic arithmetic operations that are specific to a polynomial representation or a coefficient ring: multi-dimensional FFTs/TFTs, converting integers from CRA to mixed-radix representations
- Level 2: basic arithmetic operations for dense or sparse polynomials with coefficients in Z/pZ, Z or in floating point numbers: polynomial multiplication, polynomial division
- Level 3: advanced arithmetic operations on families of polynomials: operations based on subproduct trees, computations of subresultant chains.

CUMODP Mandate (2/2)

Targeted architectures

- Graphics Processing Units (GPUs) with code written in CUDA,
- CUMODP aims at supporting BPAS (Basic Polynomial Algebra Subprograms) which targets multi-core processors and which is written in CilkPlus.
- Thanks to our Meta_Fork framework, automatic translation between CilkPlus and OpenMP are possible, as well as conversions to C/C++.
- Unifiying code for CUMODP and BPAS is conceivable (see the SPIRAL project) but highly complex (multi-core processors enforce memory consistency while GPUs do not, etc.)

CUMODP Design

Algorithm choice

- Level 1 functions (n-D FFTs/TFTs) are highly optimized in terms of arithmetic count, locality and parallelism.
- Level 2 functions provide several algorithms or implementation for the same operation: coarse-grained & fine-grained, plain & FFT-based.
- Level 3 functions combine several Level 2 algorithms for achieving a given task.

Implementation techniques

- At Level 2, the user can choose between algorithms minimizing work or algorithms maximizing parallelism
- At Level 3, this leads to adaptive algorithms that select appropriate Level 2 functions depending on available resources (number of cores, input data size).

Main features

- developers and users have access to the same code.
- mainly 32bit arithmetic so far
- Regression tests and benchmark scripts are also distributed.
- Documentation is generated by doxygen.
- A manually written documentation is work in progress.
- Three student theses and about 10 papers present & document CUMODP.

Overview

- 2 A many-core machine model for minimizing parallelism overheads
 - 3 Putting the MCM model into practice
 - 4 Adaptive algorithms
- 5 Bivariate system solving

6 Conclusion

A many-core machine model

Many-core Machine

Similarly to a CUDA program, an MMM program specifies for each kernel the number of thread-blocks and the number of threads per thread-block.

A many-core machine model: programs

An MMM program \mathcal{P} is a directed acyclic graph (DAG), called **kernel DAG** of \mathcal{P} , whose vertices are kernels and edges indicate serial dependencies.

Since each kernel of the program \mathcal{P} decomposes into a finite number of thread-blocks, we map \mathcal{P} to a second graph, called **thread-block DAG** of \mathcal{P} , whose vertex set consists of all thread-blocks of \mathcal{P} .

Machine parameters

- Z: Size (expressed in machine words) of the local memory of any SM.
- U: Time (expressed in clock cycles) to transfer one machine word between the global memory and the local memory of any SM. (Assume U > 1.)

Thus, if α and β are the maximum number of words respectively read and written to the global memory by a thread of a thread-block, then the data transferring time T_D between the global and local memory of a thread-block satisfies $T_D \leq (\alpha + \beta) U$.

A many-core machine model: complexity measures (1/2)

For any kernel ${\mathcal K}$ of an MMM program,

- work $W(\mathcal{K})$ is the total number of local operations of all its threads;
- span $S(\mathcal{K})$ is the maximum number of local operations of one thread.

For the entire program \mathcal{P} ,

- work $W(\mathcal{P})$ is the total work of all its kernels;
- **span** $S(\mathcal{P})$ is the longest path, counting the weight (span) of each vertex (kernel), in the kernel DAG.

A many-core machine model: complexity measures (2/2)

For any kernel \mathcal{K} of an MMM program,

• parallelism overhead $O(\mathcal{K})$ is the total data transferring time among all its thread-blocks.

For the entire program \mathcal{P} ,

• parallelism overhead $O(\mathcal{P})$ is the total parallelism overhead of all its kernels.

A many-core machine model: running time estimates

A Graham-Brent theorem with parallelism overhead

Theorem. Let K be the maximum number of thread blocks along an anti-chain of the thread-block DAG of \mathcal{P} . Then the running time $T_{\mathcal{P}}$ of the program \mathcal{P} satisfies:

$$T_{\mathcal{P}} \leq (N(\mathcal{P})/K + L(\mathcal{P})) C(\mathcal{P}),$$

where

 $N(\mathcal{P})$: number of vertices in the thread-block DAG, $L(\mathcal{P})$: critical path length (where length of a path is the number of edges in that path) in the thread-block DAG.

Note: The Graham-Brent theorem: , a greedy scheduler operating with P processors executes a multithreaded computation with work T_1 and span T_{∞} in time

$$T_P \leq T_1/P + T_\infty$$

Overview

2 A many-core machine model for minimizing parallelism overheads

3 Putting the MCM model into practice

- 4 Adaptive algorithms
- 5 Bivariate system solving

6 Conclusion

Applying MCM to minimize parallelism overheads by determining an appropriate value range for a given program parameter

- In each case, a program P(s) depends on a parameter s which varies in a range S around an initial value s₀;
- the work ratio W_{s_0}/W_s remains essentially constant, meanwhile the parallelism overhead O_s varies more substantially, say $O_{s_0}/O_s \in \Theta(s s_0)$;
- Then, we determine a value $s_{\min} \in \mathcal{S}$ maximizing the ratio O_{s_0}/O_s .
- Next, we use our version of Graham-Brent theorem to check whether the upper bound for the running time of $\mathcal{P}(s_{\min})$ is less than that of $\mathcal{P}(s_o)$. If this holds, we view $\mathcal{P}(s_{\min})$ as a solution of our problem of algorithm optimization (in terms of parallelism overheads).

MCM applied to plain univariate polynomial division

Applying MCM to the polynomial division operation

Naive division algorithm of a thread-block with s = 1: each kernel performs 1 division step

Optimized division algorithm a thread-block with s > 1: each kernel performs s division

- steps
- $\frac{W_1}{W_s} = \frac{8(Z+1)}{9Z+7}, \quad \frac{O_1}{O_s} = \frac{20}{441}Z, \quad \frac{T_1}{T_s} = \frac{(3+5U)Z}{3(Z+21U)}.$
- $T_1/T_s > 1$ if and only if Z > 12.6 holds, which clearly holds on actual GPU architectures.
- Thus, the optimized algorithm (that is for s > 1) is overall better than the naive one (that is for s = 1).

MCM applied to plain univariate polynomial multiplication and the Euclidean algorithm (1/2)

Applying MCM to the plain multiplication and the Euclidean algorithm

- For plain polynomial multiplication, this analysis suggested to minimize *s*.
- For the Euclidean algorithm, our analysis suggested to maximize the program parameter *s*.
- Both are verified experimentally.

Plain polynomial multiplication

The Euclidean algorithm

MCM applied to plain univariate polynomial multiplication and the Euclidean algorithm (1/2)

CUMODP vs NTL

- CUMODP: plain but parallel algorithms
- NTL: asymptotically fast FFT-based but serial algorithms
- Our experimentations are executed on a NVIDIA Tesla M2050 GPU and an Intel Xeon X5650 CPU.

CUMODP plain Euclidean algorithm vs NTL FFT-based polynomial GCD.

FFT-based multiplication

Our GPU implementation relies on Stockham FFT algorithm

- Let *d* be the degree, then $n = 2^{\lceil \log_2(2d-1) \rceil}$.
- Based on the MCM, the work is $15 n \log_2(n) + 2 n$, the span is 15 n + 2, and the parallelism overhead is (36 n + 21) U.

Size	CUMODP	FLINT	Speedup
2 ¹²	0.0032	0.003	
2 ¹³	0.0023	0.008	3.441
2 ¹⁴	0.0039	0.013	3.346
2 ¹⁵	0.0032	0.023	7.216
2 ¹⁶	0.0065	0.045	6.942
2 ¹⁷	0.0084	0.088	10.475
2 ¹⁸	0.0122	0.227	18.468
2 ¹⁹	0.0198	0.471	23.738
2 ²⁰	0.0266	1.011	27.581
2 ²¹	0.0718	2.086	29.037
2 ²²	0.1451	4.419	30.454
2 ²³	0.3043	9.043	29.717

Table: Running time (in sec.) for FFT-based polynomial multiplication: CUMODP vs0/30

Overview

- 2 A many-core machine model for minimizing parallelism overheads
- 3 Putting the MCM model into practice
- 4 Adaptive algorithms
 - 5 Bivariate system solving

Conclusion

Challenging in parallel implementation:

- The divide-and-conquer formulation of operations is not sufficient to provide enough parallelism.
- One must parallelize the underlying polynomial arithmetic operations.
- The degrees of the involved polynomials vary greatly during the course of the execution of operations (subproduct tree, evaluation or interpolation).
- So does the work load of the tasks, which makes those algorithms complex to implement on many-core GPUs.

Subproduct trees

Subproduct tree technique

- Split the point set $U = \{u_0, \ldots, u_{n-1}\}$ with $n = 2^k$ into two halves of equal cardinality and proceed recursively with each of the two halves.
- This leads to a complete binary tree M_n of depth k having the points u₀,..., u_{n-1} as leaves.
- Let $m_i = x u_i$ and define each non-leaf node in the binary tree as a polynomial multiplication

$$M_{i,j} = m_{j \cdot 2^i} \cdot m_{j \cdot 2^i+1} \cdot \cdots \cdot m_{j \cdot 2^i+2^i-1} = \prod_{0 \le \ell < 2^i} m_{j \cdot 2^i+\ell}.$$

- For each level of the binary tree smaller than a threshold *H*, we compute the subproducts using plain multiplication.
- For each level of the binary tree larger than the threshold *H*, we compute the subproducts using FFT-based multiplication.

- Associated with the subproduct tree M_n $(n = 2^k)$, the subinverse tree $InvM_n$ is a complete binary tree with the same height as M_n .
- For *j*-th node of level *i* in $InvM_n$ for $0 \le i \le k$, $0 \le j < 2^{k-i}$,

 $InvM_{i,j} \cdot rev_{2^i}(M_{i,j}) \equiv 1 \mod x^{2^i},$

where $rev_{2^{i}}(M_{i,j}) = x^{2^{i}} M_{i,j}(1/x)$.

Multi-point evaluation & interpolation: estimates

Given a univariate polynomial $f \in K[x]$ of degree less than $n = 2^k$ and evaluation points $u_0, \ldots, u_{n-1} \in K$, compute $(f(u_0), \ldots, f(u_{n-1}))$. (Recall Recall the threshold H in the subproduct (subinverse) tree.)

- the work is $O(n \log_2^2(n) + n \log_2(n) + n 2^H)$,
- the span is $O(\log_2^2(n) + \log_2(n) + 2^H)$, and
- the parallelism overhead is $O((\log_2^2(n) + \log_2(n) + H) U)$.

Given distinct points $u_0, \ldots, u_{n-1} \in K$ and arbitrary values $v_0, \ldots, v_{n-1} \in K$, compute the unique polynomial $f \in K[x]$ of degree less than $n = 2^k$ that takes the value v_i at the point u_i for all i.

- the work is $O(n \log_2^2(n) + n \log_2(n) + n 2^H)$,
- the span is $O(\log_2^2(n) + \log_2(n) + 2^H)$, and
- the parallelism overhead is $O(\log_2^2(n) + \log_2(n) + H)$.

Multi-point evaluation & interpolation: benchmarks

		Evaluation			Interpolation	
Deg.	CUMODP	FLINT	${\sf SpeedUp}$	CUMODP	FLINT	${\sf SpeedUp}$
2 ¹⁴	0.2034	0.17		0.2548	0.22	
2 ¹⁵	0.2415	0.41	1.6971	0.3073	0.53	1.7242
2^{16}	0.3126	0.99	3.1666	0.4026	1.26	3.1294
2 ¹⁷	0.4285	2.33	5.4375	0.5677	2.94	5.1780
2 ¹⁸	0.7106	5.43	7.6404	0.9034	6.81	7.5379
2 ¹⁹	1.0936	12.63	11.5484	1.3931	15.85	11.3768
2 ²⁰	1.9412	29.2	15.0420	2.4363	36.61	15.0268
2 ²¹	3.6927	67.18	18.1923	4.5965	83.98	18.2702
2 ²²	7.4855	153.07	20.4486	9.2940	191.32	20.5851
2 ²³	15.796	346.44	21.9321	19.6923	432.13	21.9441

Table: Running time (in sec.) on NVIDIA Tesla C2050 for multi-point evaluation and interpolation: CUMODP vs FLINT.

Overview

- 2 A many-core machine model for minimizing parallelism overheads
- 3 Putting the MCM model into practice
- 4 Adaptive algorithms
- 5 Bivariate system solving

6 Conclusion

GPU support for bivariate system solving

Bivariate polynomial system solver (based on the theory of *regular chains*)

- Polynomial subresultant chains are calculated in CUDA.
- Univariate polynomial GCDs are computed in C either by means of the plain Euclidean algorithm or an asymptotically fast algorithm.

System	Pure C	Mostly CUDA code	SpeedUp
dense-70	5.22	0.50	10.26
dense-80	6.63	0.77	8.59
dense-90	8.39	1.16	7.19
dense-100	19.53	1.80	10.79
dense-110	21.41	2.57	8.33
dense-120	25.71	3.48	7.39
sparse-70	0.89	0.31	2.81
sparse-80	3.64	1.18	3.09
sparse-90	3.13	0.92	3.40
sparse-100	8.86	1.20	7.38

Table: Running time (in sec.) for bivariate system solving over a small prime field

Overview

- 2 A many-core machine model for minimizing parallelism overheads
- 3 Putting the MCM model into practice
- 4 Adaptive algorithms
- 5 Bivariate system solving

$CUMODular P^{\in \mathbf{F}_{p}[X_{1} \dots X_{s}]}_{ular}$

www.cumodp.org