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Tentative Plan

∎ Part 1: (Well-known) Motivations

∎ Part 2: (Well-known) Memory Models

∎ Part 3: A case study

∎ Part 4: Multi-measure models
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The BPAS library

A high-performance polynomial algebra library
∎ Core of library written in C, wrapped in C++ 11 interface for usability

and object-oriented programming

Optimized algorithms and data structures, data locality, and parallelism
∎ Sparse multivariate polynomials [3], dense univariate and bivariate [24]
∎ Triangular decomposition of polynomial systems [2, 4]

User-friendly, object-oriented interface based on template
meta-programming [5]
∎ A natural encoding of the algebraic hierarchy
∎ “Dynamic” creation of algebraic types through composition
∎ Compile-time type safety between algebraic types

Generic support for parallel programming and parallel patterns (this talk)

http://www.bpaslib.org/
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Outline

1. Motivations

2. Memory Models
2.1 The Ideal Cache Model

The model
Using the ideal cache model in computer algebra

2.2 The I/O Complexity Model

3. A case study targeting multi-cores

4. Multi-measure models targetting many-cores

5. Concluding remarks
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The CPU-Memory GAP

∎ In the 1980’s, a memory access and a CPU operation were both as
slow as the other

∎ CPU frequency increased between 1985 and 2005 has reduced CPU
op times much more than DRAM technology improvement could
reduce memory access times

∎ Even after the introduction of multicore processors, the gap is still
huge.
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A typical matrix multiplication C code

#define IND(A, x, y, d) A[(x)*(d)+(y)]
uint64_t testMM(const int x, const int y, const int z)
{

double *A; double *B; double *C;
long started, ended;
float timeTaken;
int i, j, k;
srand(getSeed());
A = (double *)malloc(sizeof(double)*x*y);
B = (double *)malloc(sizeof(double)*x*z);
C = (double *)malloc(sizeof(double)*y*z);
for (i = 0; i < x*z; i++) B[i] = (double) rand() ;
for (i = 0; i < y*z; i++) C[i] = (double) rand() ;
for (i = 0; i < x*y; i++) A[i] = 0 ;
started = example_get_time();
for (i = 0; i < x; i++)

for (j = 0; j < y; j++)
for (k = 0; k < z; k++)

// A[i][j] += B[i][k] * C[k][j];
IND(A,i,j,y) += IND(B,i,k,z) * IND(C,k,j,z);

ended = example_get_time();
timeTaken = (ended - started)/1.f;

return timeTaken;
}
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Issues with matrix representation

A

=

B

C
x

∎ Contiguous accesses are better:
ë Data fetch as cache line (Core 2 Duo: 64 byte per cache line)
ë With contiguous data, a single cache fetch supports 8 reads of doubles.
ë Transposing the matrix C should reduce L1 cache misses!
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Transposing for optimizing spatial locality

float testMM(const int x, const int y, const int z)
{

double *A; double *B; double *C; double *Cx;
long started, ended; float timeTaken; int i, j, k;
A = (double *)malloc(sizeof(double)*x*y);
B = (double *)malloc(sizeof(double)*x*z);
C = (double *)malloc(sizeof(double)*y*z);
Cx = (double *)malloc(sizeof(double)*y*z);
srand(getSeed());
for (i = 0; i < x*z; i++) B[i] = (double) rand() ;
for (i = 0; i < y*z; i++) C[i] = (double) rand() ;
for (i = 0; i < x*y; i++) A[i] = 0 ;
started = example_get_time();
for(j =0; j < y; j++)

for(k=0; k < z; k++)
IND(Cx,j,k,z) = IND(C,k,j,y);

for (i = 0; i < x; i++)
for (j = 0; j < y; j++)

for (k = 0; k < z; k++)
IND(A, i, j, y) += IND(B, i, k, z) *IND(Cx, j, k, z);

ended = example_get_time();
timeTaken = (ended - started)/1.f;

return timeTaken;
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Issues with data reuse

C

1024 1024384

4

A B

C= x
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4

∎ Naive calculation of a row of A, so computing 1024 coefficients: 1024
accesses in A, 384 in B and 1024 × 384 = 393, 216 in C. Total
= 394, 524.

∎ Computing a 32×32-block of A, so computing again 1024 coefficients:
1024 accesses in A, 384 × 32 in B and 32 × 384 in C. Total = 25, 600.

∎ The iteration space is traversed so as to reduce memory accesses.
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Blocking for optimizing temporal locality

float testMM(const int x, const int y, const int z)
{

double *A; double *B; double *C;
long started, ended; float timeTaken; int i, j, k, i0, j0, k0;
A = (double *)malloc(sizeof(double)*x*y);
B = (double *)malloc(sizeof(double)*x*z);
C = (double *)malloc(sizeof(double)*y*z);
srand(getSeed());
for (i = 0; i < x*z; i++) B[i] = (double) rand() ;
for (i = 0; i < y*z; i++) C[i] = (double) rand() ;
for (i = 0; i < x*y; i++) A[i] = 0 ;
started = example_get_time();
for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)
for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)
for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)
IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,k0,j0,y);

ended = example_get_time();
timeTaken = (ended - started)/1.f;

return timeTaken;
}

Marc Moreno Maza Cache Complexity in Computer Algebra École Polytechniques 202211 / 96



Transposing and blocking for optimizing data locality

float testMM(const int x, const int y, const int z)
{

double *A; double *B; double *C;
long started, ended; float timeTaken; int i, j, k, i0, j0, k0;
A = (double *)malloc(sizeof(double)*x*y);
B = (double *)malloc(sizeof(double)*x*z);
C = (double *)malloc(sizeof(double)*y*z);
srand(getSeed());
for (i = 0; i < x*z; i++) B[i] = (double) rand() ;
for (i = 0; i < y*z; i++) C[i] = (double) rand() ;
for (i = 0; i < x*y; i++) A[i] = 0 ;
started = example_get_time();
for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)
for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)
for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)
IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,j0,k0,z);

ended = example_get_time();
timeTaken = (ended - started)/1.f;
return timeTaken;

}
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Experimental results

Computing the product of two 𝑛 × 𝑛 matrices on my laptop (Core2 Duo
CPU P8600 @ 2.40GHz, L1 cache of 3072 KB, 4 GBytes of RAM)

𝑛 naive transposed speedup 64 × 64-tiled speedup t. & t. speedup
128 7 3 7 2
256 26 43 155 23
512 1805 265 6.81 1928 0.936 187 9.65
1024 24723 3730 6.62 14020 1.76 1490 16.59
2048 271446 29767 9.11 112298 2.41 11960 22.69
4096 2344594 238453 9.83 1009445 2.32 101264 23.15

Timings are in milliseconds.

The cache-oblivious multiplication (more on this later) runs within 12978
and 106758 for 𝑛 = 2048 and 𝑛 = 4096 respectively.
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Other performance counters

Hardware count events

∎ CPI – Clock cycles Per Instruction: the number of clock cycles that
happen when an instruction is being executed. With pipelining we can
improve the CPI by exploiting instruction level parallelism

∎ L1 and L2 Cache Miss Rate.
∎ Instructions Retired: In the event of a misprediction, instructions that

were scheduled to execute along the mispredicted path must be
canceled.

skip slide
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Analyzing cache misses in the naive and transposed
multiplication

A

=

B

C
x

∎ Let 𝐴, 𝐵 and 𝐶 have format (𝑚, 𝑛), (𝑚, 𝑝) and (𝑝, 𝑛) respectively.
∎ 𝐴 is scanned one, so 𝑚𝑛⇑𝐿 cache misses if 𝐿 is the number of

coefficients per cache line.
∎ 𝐵 is scanned 𝑛 times, so 𝑚𝑛𝑝⇑𝐿 cache misses if the cache cannot hold

a row.
∎ 𝐶 is accessed “nearly randomly” (for 𝑚 large enough) leading to 𝑚𝑛𝑝

cache misses.
∎ Since 2𝑚 𝑛 𝑝 arithmetic operations are performed, this means roughly

one cache miss for two flops!
∎ If 𝐶 is transposed, then the ratio improves to 1 for 𝐿.
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Analyzing cache misses in the tiled multiplication

C

1024 1024384
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∎ Let 𝐴, 𝐵 and 𝐶 are all square of order of 𝑛.
∎ Assume all tiles are square of order 𝑏 and three fit in cache.
∎ If 𝐶 is transposed, then loading three blocks in cache cost 3𝑏2⇑𝐿.
∎ This process happens 𝑛3⇑𝑏3 times, leading to 3𝑛3⇑(𝑏𝐿) cache misses.
∎ Three blocks fit in cache for 3𝑏2 < 𝑍, if 𝑍 is the cache size.
∎ So 𝑂(𝑛3⇑(

⌋︂
𝑍𝐿)) cache misses, if 𝑏 is well chosen, which is optimal.
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Overview

We will discuss
∎ the details of the ideal cache model proposed by Frigo, Leiserson,

Prokop and Ramachandran in [9],
∎ the principles of the I/O Complexity Model proposed by Jia-Wei Hong

and Hsiang-Tsung Kung in [17].
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The ideal cache model (1/5)

∎ Computer with a two-level memory hierarchy:
ë an ideal (data) cache of 𝑍 words partitioned into 𝑍⇑𝐿 cache lines,

where 𝐿 is the number of words per cache line.
ë an arbitrarily large main memory.

∎ Data moved between cache and main memory are always cache lines.
∎ The cache is tall, that is, 𝑍 is much larger than 𝐿, say 𝑍 ∈ Ω(𝐿2).
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The ideal cache model (2/5)

∎ The processor can only reference words that reside in the cache.
∎ If the referenced word belongs to a line already in cache, a cache hit

occurs, and the word is delivered to the processor.
∎ Otherwise, a cache miss occurs, and the line is fetched and installed

into the cache.
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The ideal cache model (3/5)

∎ The ideal cache is fully associative: cache lines can be stored
anywhere in the cache.

∎ The ideal cache uses the optimal off-line strategy of replacing the
cache line whose next access is furthest in the future, and thus it
exploits temporal locality perfectly.
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The ideal cache model (4/5)

∎ For an algorithm with an input of size 𝑛, the ideal-cache model uses
two complexity measures:

ë the work complexity 𝑊 (𝑛), which is its conventional running time in
a RAM model.

ë the cache complexity 𝑄(𝑛; 𝑍, 𝐿), the number of cache misses it
incurs (as a function of the size 𝑍 and line length 𝐿 of the ideal cache).

ë When 𝑍 and 𝐿 are clear from context, we simply write 𝑄(𝑛) instead of
𝑄(𝑛; 𝑍, 𝐿).
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The ideal cache model (5/5)

∎ An algorithm is said to be cache aware if its behavior (and thus
performances) can be tuned (and thus depend on) on the particular
cache size and line length of the targeted machine.

∎ Otherwise the algorithm is cache oblivious.
∎ Cache oblivious naturally performs well on hierarchical memories.
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Scanning

∎ Scanning 𝑛 words stored in a contiguous segment of memory with
cache-line size 𝐿 costs at most [︂𝑛⇑𝐿⌉︂ + 1 cache misses.

∎ If this vector of 𝑛 words is aligned in memory, then this estimate is
simply [︂𝑛⇑𝐿⌉︂.

Proof.
∎ Let (𝑞, 𝑟) be the quotient and remainder in the integer division of 𝑛 by 𝐿.

∎ Let 𝑢 (resp. 𝑤) be the total number of words stored in cache-lines fully (not fully) used
by those 𝑛 consecutive words. Thus, we have 𝑛 = 𝑢 +𝑤. Three cases arise.

1 if 𝑤 = 0 then (𝑞, 𝑟) = (⟨︀𝑛⇑𝐿⧹︀, 0) and the scanning costs exactly 𝑞; thus the
conclusion is clear since [︂𝑛⇑𝐿⌉︂ = ⟨︀𝑛⇑𝐿⧹︀ in this case.

2 if 0 < 𝑤 < 𝐿 then (𝑞, 𝑟) = (⟨︀𝑛⇑𝐿⧹︀, 𝑤) and the scanning cost is at most 𝑞 + 2; the
conclusion is clear since [︂𝑛⇑𝐿⌉︂ = ⟨︀𝑛⇑𝐿⧹︀ + 1 in this case.

3 if 𝐿 ≤ 𝑤 < 2𝐿 then (𝑞, 𝑟) = (⟨︀𝑛⇑𝐿⧹︀, 𝑤 −𝐿) and the scanning cost is at most 𝑞 + 1;
the conclusion is clear again. skip slide
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Adding vectors

∎ Consider 𝑚 ≥ 2 vectors 𝑉1, . . . , 𝑉𝑚 of size 𝑛 ≥ 1 aligned in memory.
∎ Consider 𝑚 − 1 scalars 𝛼1, . . . , 𝛼𝑚−1, stored in a contiguous segment

of memory in 𝑚 − 1 words.
∎ Assume that the ideal cache has at least [︂𝑚⇑𝐿⌉︂ + 4 cache-lines.
∎ Then, computing the linear combination 𝛼1𝑉1 +⋯ + 𝛼𝑚−1𝑉𝑚−1 and

writing it to 𝑉𝑚 can be done in no more cache misses than those
required for scanning 𝑉1, . . . , 𝑉𝑚, 𝛼1, . . . , 𝛼𝑚−1,

∎ thus, within 𝑚[︂𝑛⇑𝐿⌉︂ + [︂𝑚⇑𝐿⌉︂ + 1 cache misses.

Proof.
∎ We first load 𝛼1, . . . , 𝛼𝑚−1 into the cache, thus using at most [︂𝑚⇑𝐿⌉︂ + 1 cache-lines.

∎ In the pseudo-code below, vector indexing starts at 0.
1 For 𝑏 with 0 ≤ 𝑏 ≤ ⟨︀𝑛⇑𝐿⧹︀, for each 𝑗 with 1 ≤ 𝑗 < 𝑚, for each 𝑖 with 0 ≤ 𝑖 < 𝐿 do:

1 𝑘 := 𝑏 ∗𝐿 + 𝑖,
2 if 𝑘 < 𝑛 then 𝑉𝑚(︀𝑘⌋︀ := 𝑉𝑚(︀𝑘⌋︀ + 𝛼𝑗𝑉𝑗(︀𝑘⌋︀

∎ Use the optimal replacement policy and the fact that vectors are aligned in memory
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Counting sort: the algorithm
allocate an array Count[0..k]; initialize each array cell to zero
for each input item x:

Count[key(x)] = Count[key(x)] + 1
total = 0
for i = 0, 1, ... k:

c = Count[i]
Count[i] = total
total = total + c

allocate an output array Output[0..n-1]
for each input item x:

store x in Output[Count[key(x)]]
Count[key(x)] = Count[key(x)] + 1

return Output

∎ Counting sort takes as input a collection of n items, each of which
known by a key in the range 0⋯𝑘.

∎ The algorithm computes a histogram of the number of times each key
occurs.

∎ Then performs a prefix sum to compute positions in the output.
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Counting sort: poor spatial locality

allocate an array Count[0..k]; initialize each array cell to zero
for each input item x:

Count[key(x)] = Count[key(x)] + 1
total = 0
for i = 0, 1, ... k:

c = Count[i]
Count[i] = total
total = total + c

allocate an output array Output[0..n-1]
for each input item x:

store x in Output[Count[key(x)]]
Count[key(x)] = Count[key(x)] + 1

return Output

∎ For 𝑛 large enough: 𝑄(𝑛; 𝑍, 𝐿) = 3𝑛 + 3𝑛⇑𝐿 + 2𝑘⇑𝐿 cache misses
(worst case).

∎ The possibly random distribution of the input values creates possibly
many non-cold misses, see counting_sort.pdf for an animation.
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Counting sort: improved by a blocking strategy
alloacate an array bucketsize[0..m-1]; initialize each array cell to zero
for each input item x:

bucketsize[floor(key(x) m/(k+1))] := bucketsize[floor(key(x) m/(k+1))] + 1
total = 0
for i = 0, 1, ... m-1:

c = bucketsize[i]
bucketsize[i] = total
total = total + c

alloacate an array bucketedinput[0..n-1];
for each input item x:

q := floor(key(x) m/(k+1))
bucketedinput[bucketsize[q] ] := key(x)
bucketsize[q] := bucketsize[q] + 1

return bucketedinput

∎ Split the input value range into 𝑚 buckets (given by well-chosen pivot
values) so that counting sort can be applied in succession to several
smaller input arrays, with smaller value ranges, incurring cold misses
only, see counting_sort_bucket.pdf for an animation.

∎ This yields 𝑄(𝑛; 𝑍, 𝐿) = 9𝑛⇑𝐿 + 3𝑚⇑𝐿 +𝑚 + 2𝑘⇑𝐿 (assuming
𝑚 < 𝑍⇑(1 +𝐿)) improving on 3𝑛 + 3𝑛⇑𝐿 + 2𝑘⇑𝐿.
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Counting sort: experimentation

∎ Experimentation on an Intel(R) Core(TM) i7 CPU @ 2.93GHz. It has
L2 cache of 8MB.

∎ CPU times in seconds for both classical and cache-friendly counting
sort algorithm.

∎ The keys are random machine integers in the range (︀0, 𝑛⌋︀.

n classical cache-friendly
counting counting sort

sort (bucketing + sorting)
100000000 13.74 4.66 (= 3.04 + 1.62 )
200000000 30.20 9.93 (= 6.16 + 3.77)
300000000 50.19 16.02 (= 9.32 + 6.70)
400000000 71.55 22.13 (= 12.50 +9.63)
500000000 94.32 28.37 (= 15.71 + 12.66)
600000000 116.74 34.61 (= 18.95 + 15.66)
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Cache-friendly counting sort: extension to sample sort

1 Split the input array into
⌋︂

𝑛 contiguous subarrays of size
⌋︂

𝑛 and
sort those subarrays recursively.

2 Choose 𝑚 ∶=
⌋︂

𝑛 − 1 “good” pivot values 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑚.
3 Distribute subarrays into buckets 𝐵1, . . . , 𝐵𝑚+1 according to pivots.

Bucket 𝐵𝑖 has size 𝑛𝑖 ≃
⌋︂

𝑛, expectedly.
4 Recursively sort the buckets
5 Copy-concatenate the buckets back to the input array.

Cache complexity analysis of Sample sort

∎ Step 1 costs
⌋︂

𝑛𝑄(
⌋︂

𝑛), Step 4 (expectedly) costs
⌋︂

𝑛𝑄(
⌋︂

𝑛) also
and Steps 2, 3, 5 cost Θ(𝑛⇑𝐿). Thus, we have:

𝑄(𝑛) = { 𝑛⇑𝐿 if 𝑛 < 𝑍 (base case)
2
⌋︂

𝑛𝑄(
⌋︂

𝑛) +Θ(𝑛⇑𝐿) if 𝑛 ≥ 𝑍 (recurrence)

∎ This yields 𝑄(𝑛) ∈ Θ(𝑛
𝐿 log𝑍(𝑛)).
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Transposition of a matrix

∎ Assume that multi-dimensional arrays (and in particular dense
rectangular matrices) are stored in memory using a row-major layout.

∎ Assume that each array coefficient is stored on a single word.
∎ Therefore, reading a 𝑘×𝑘 block may incur 𝑘([︂𝑘⇑𝐿⌉︂+1) caches misses.
∎ In this exercise sheet, determine the cache complexity of the proposed

algorithms for transposing a square matrix of order 𝑛. Assume 𝑛 large
(say 𝑛 > 𝑍) and 𝑛 is a power of 2.

∎ Algo 1: Θ(𝑛2). Algo 2: Θ(log2( 𝑛
𝑍 )

𝑛2

𝐿 ). Algo 3: Θ(𝑛2⇑𝐿). Proofs
and precise estimates below. skip slide
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Matrix transposition: various algorithms

∎ Matrix transposition problem: Given an 𝑚 × 𝑛 matrix 𝐴 stored in a
row-major layout, compute and store 𝐴𝑇 into an 𝑛 ×𝑚 matrix 𝐵 also
stored in a row-major layout.

∎ We shall describe a recursive cache-oblivious algorithm which uses
Θ(𝑚𝑛) work and incurs Θ(1+𝑚𝑛⇑𝐿) cache misses, which is optimal.

∎ The straightforward algorithm employing doubly nested loops incurs
Θ(𝑚𝑛) cache misses on one of the matrices when 𝑚 ≫ 𝑍⇑𝐿 and
𝑛 ≫ 𝑍⇑𝐿.

∎ We shall start with an apparently good algorithm and use complexity
analysis to show that it is even worse than the straightforward
algorithm.
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Matrix transposition: a first divide-and-conquer (1/4)

∎ For simplicity, assume that our input matrix 𝐴 is square of order 𝑛
and that 𝑛 is a power of 2, say 𝑛 = 2𝑘.

∎ We divide 𝐴 into four square quadrants of order 𝑛⇑2 and we have

𝐴 = ( 𝐴1,1 𝐴1,2
𝐴2,1 𝐴2,2

) ⇒ 𝑡𝐴 = (
𝑡𝐴1,1

𝑡𝐴2,1
𝑡𝐴1,2

𝑡𝐴2,2
) .

∎ This observation yields an “in-place” algorithm:
1 If 𝑛 = 1 then return 𝐴.
2 If 𝑛 > 1 then

1 recursively compute 𝑡𝐴1,1,𝑡 𝐴2,1,𝑡 𝐴1,2,𝑡 𝐴2,2 in place as

(
𝑡𝐴1,1

𝑡𝐴1,2
𝑡𝐴2,1

𝑡𝐴2,2
)

2 exchange 𝑡𝐴1,2 and 𝑡𝐴2,1.

∎ What is the number 𝑀(𝑛) of memory accesses to 𝐴, performed by
this algorithm on an input matrix 𝐴 of order 𝑛?
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Matrix transposition: a first divide-and-conquer (2/4)

∎ 𝑀(𝑛) satisfies the following recurrence relation

𝑀(𝑛) = { 0 if 𝑛 = 1
4𝑀(𝑛⇑2) + 2(𝑛⇑2)2 if 𝑛 > 1.

∎ Unfolding the tree of recursive calls or using the Master’s Theorem,
one obtains:

𝑀(𝑛) = 2(𝑛⇑2)2 log2(𝑛).
∎ This is worse than the straightforward algorithm (which employs

doubly nested loops). Indeed, for this latter, we have 𝑀(𝑛) = 𝑛2 − 𝑛.
Explain why!

∎ Despite of this negative result, we shall analyze the cache complexity
of this first divide-and-conquer algorithm. Indeed, it provides us with
an easy training exercise

∎ We shall study later a second and efficiency-optimal
divide-and-conquer algorithm, whose cache complexity analysis is
more involved.
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Matrix transposition: a first divide-and-conquer (3/4)

∎ We shall determine 𝑄(𝑛) the number of cache misses incurred by our
first divide-and-conquer algorithm on a (𝑍, 𝐿)-ideal cache machine.

∎ For 𝑛 small enough, the entire input matrix or the entire block (input of
some recursive call) fits in cache and incurs only the cost of a scanning.
Because of possible misalignment, that is, 𝑛([︂𝑛⇑𝐿⌉︂ + 1).

∎ Important: For simplicity, some authors write 𝑛⇑𝐿 instead of [︂𝑛⇑𝐿⌉︂.
This can be dangerous.

∎ However: these simplifications are fine for asymptotic estimates,
keeping in mind that 𝑛⇑𝐿 is a rational number satisfying

𝑛⇑𝐿 − 1 ≤ ⟨︀𝑛⇑𝐿⧹︀ ≤ 𝑛⇑𝐿 ≤ [︂𝑛⇑𝐿⌉︂ ≤ 𝑛⇑𝐿 + 1.

Thus, for a fixed 𝐿, the functions ⟨︀𝑛⇑𝐿⧹︀, 𝑛⇑𝐿 and [︂𝑛⇑𝐿⌉︂ are
asymptotically of the same order of magnitude.

∎ We need to translate “for 𝑛 small enough” into a formula. We claim
that there exists a real constant 𝛼 > 0 s.t. for all 𝑛 and 𝑍 we have

𝑛2 < 𝛼𝑍 ⇒ 𝑄(𝑛) ≤ 𝑛2⇑𝐿 + 𝑛.
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Matrix transposition: a first divide-and-conquer (4/4)

∎ 𝑄(𝑛) satisfies the following recurrence relation

𝑄(𝑛) = {
𝑛2⇑𝐿 + 𝑛 if 𝑛2 < 𝛼𝑍 (base case)

4𝑄(𝑛⇑2) + 𝑛2

2𝐿 + 𝑛 if 𝑛2 ≥ 𝛼𝑍 (recurrence)

∎ Indeed, exchanging 2 blocks amount to 2((𝑛⇑2)2⇑𝐿+𝑛⇑2) accesses.
∎ Unfolding the recurrence relation 𝑘 times (more details in class) yields

𝑄(𝑛) = 4𝑘 𝑄( 𝑛

2𝑘
) + 𝑘

𝑛2

2𝐿
+ (2𝑘 − 1)𝑛.

∎ The minimum 𝑘 for reaching the base case satisfies 𝑛2

4𝑘 = 𝛼𝑍, that is,
4𝑘 = 𝑛2

𝛼𝑍 , that is, 𝑘 = log4( 𝑛2

𝛼𝑍 ). This implies 2𝑘 = 𝑛⌋︂
𝛼𝑍

and thus

𝑄(𝑛) ≤ 𝑛2

𝛼𝑍 (𝛼𝑍⇑𝐿 +
⌋︂

𝛼𝑍) + log4( 𝑛2

𝛼𝑍 )
𝑛2

2𝐿 + 𝑛⌋︂
𝛼𝑍

𝑛

≤ 𝑛2⇑𝐿 + 2 𝑛2
⌋︂

𝛼𝑍
+ log4( 𝑛2

𝛼𝑍 )
𝑛2

2𝐿 .
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A matrix transposition cache-oblivious algorithm (1/2)

∎ If 𝑛 ≥ 𝑚, the Rec-Transpose algorithm partitions

𝐴 = (𝐴1 𝐴2) , 𝐵 = (𝐵1
𝐵2

)

and recursively executes Rec-Transpose(𝐴1, 𝐵1) and
Rec-Transpose(𝐴2, 𝐵2).

∎ If 𝑚 > 𝑛, the Rec-Transpose algorithm partitions

𝐴 = (𝐴1
𝐴2

) , 𝐵 = (𝐵1 𝐵2)

and recursively executes Rec-Transpose(𝐴1, 𝐵1) and
Rec-Transpose(𝐴2, 𝐵2).
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A matrix transposition cache-oblivious algorithm (2/2)

∎ Recall that the matrices are stored in row-major layout.

∎ Let 𝛼 be a constant sufficiently small such that the following two
conditions hold:
(𝑖) two sub-matrices of size 𝑚 × 𝑛 and 𝑛 ×𝑚, where max {𝑚, 𝑛} ≤ 𝛼𝐿, fit

in cache
(𝑖𝑖) even if each row starts at a different cache line.

∎ We distinguish three cases for the input matrix 𝐴:
ë Case I: max {𝑚, 𝑛} ≤ 𝛼𝐿.
ë Case II: 𝑚 ≤ 𝛼𝐿 < 𝑛 or 𝑛 ≤ 𝛼𝐿 < 𝑚.
ë Case III: 𝑚, 𝑛 > 𝛼𝐿.
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Case I: max {𝑚, 𝑛} ≤ 𝛼𝐿.

∎ Both matrices fit in 𝑂(1) + 2𝑚𝑛⇑𝐿 lines.

∎ From the choice of 𝛼, the number of lines required for the entire
computation is at most 𝑍⇑𝐿.

∎ Thus, no cache lines need to be evicted during the computation.
Hence, it feels like we are simply scanning 𝐴 and 𝐵.

∎ Therefore 𝑄(𝑚, 𝑛) ∈ 𝑂(1 +𝑚𝑛⇑𝐿).
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Case II: 𝑚 ≤ 𝛼𝐿 < 𝑛 or 𝑛 ≤ 𝛼𝐿 <𝑚.

∎ Consider 𝑛 ≤ 𝛼𝐿 < 𝑚. The Rec-Transpose algorithm divides the
greater dimension 𝑚 by 2 and recurses.

∎ At some point in the recursion, we have 𝛼𝐿⇑2 ≤ 𝑚 ≤ 𝛼𝐿 and the
whole computation fits in cache. At this point:

ë the input array resides in contiguous locations, requiring at most
Θ(1 + 𝑛𝑚⇑𝐿) cache misses

ë the output array consists of 𝑛𝑚 elements in 𝑛 rows, where in the worst
case every row starts at a different cache line, leading to at most
Θ(𝑛 + 𝑛𝑚⇑𝐿) cache misses.

∎ Since 𝑚⇑𝐿 ∈ (︀𝛼⇑2, 𝛼⌋︀, the total cache complexity for this base case is
Θ(1 + 𝑛), yielding the recurrence (where the resulting 𝑄(𝑚, 𝑛) is a
worst case estimate)

𝑄(𝑚, 𝑛) = { Θ(1 + 𝑛) if 𝑚 ∈ (︀𝛼𝐿⇑2, 𝛼𝐿⌋︀ ,
2𝑄(𝑚⇑2, 𝑛) +𝑂(1) otherwise ;

whose solution satisfies 𝑄(𝑚, 𝑛) = Θ(1 +𝑚𝑛⇑𝐿).
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Case III: 𝑚, 𝑛 > 𝛼𝐿.

∎ As in Case II, at some point in the recursion both 𝑛 and 𝑚 fall into
the range (︀𝛼𝐿⇑2, 𝛼𝐿⌋︀.

∎ The whole problem fits into cache and can be solved with at most
Θ(𝑚 + 𝑛 +𝑚𝑛⇑𝐿) cache misses.

∎ The worst case cache miss estimate satisfies the recurrence

𝑄(𝑚, 𝑛) =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

Θ(𝑚 + 𝑛 +𝑚𝑛⇑𝐿) if 𝑚, 𝑛 ∈ (︀𝛼𝐿⇑2, 𝛼𝐿⌋︀ ,
2𝑄(𝑚⇑2, 𝑛) +𝑂(1) if 𝑚 ≥ 𝑛 ,
2𝑄(𝑚, 𝑛⇑2) +𝑂(1) otherwise;

whose solution is 𝑄(𝑚, 𝑛) = Θ(1 +𝑚𝑛⇑𝐿).
∎ Therefore, the Rec-Transpose algorithm has optimal cache

complexity.
∎ Indeed, for an 𝑚 × 𝑛 matrix, the algorithm must write to 𝑚𝑛 distinct

elements, which occupy at least [︂𝑚𝑛⇑𝐿⌉︂ cache lines.
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1-D FFTs: classical cache friendly algorithm

Cache friendly 1-D FFT

∎ If the input vector does not fit in cache, a recursive algorithm is
applied

∎ Once the vector fits in cache, an iterative algorithm (not requiring
shuffling) takes over.

∎ On an ideal cache of 𝑍 words with 𝐿 words per cache line this yields a
cache complexity of Ω(𝑛⇑𝐿(log2(𝑛)− log2(𝑍))) which is not optimal.
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1-D FFTs: cache complexity optimal algorithm

Cache optimal 1-D FFT

∎ Instead of processing row-by-row, one computes as deep as possible
while staying in cache (resp. registers): this yields a blocking strategy.

∎ On the left picture, assuming 𝑍 = 4, on the first (resp. last) two rows,
we successively compute the red, green, blue, orange 4-point blocks.

∎ On an ideal cache of 𝑍 words with 𝐿 words per cache line the cache
complexity drops to 𝑂(𝑛⇑𝐿(log2(𝑛)⇑ log2(𝑍))) which is optimal.
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1-D FFTs in BPAS

Figure: 1-D modular FFTs: Modpn (serial) vs BPAS (serial).

∎ In addition to the above optimal blocking strategy, instruction level
parallelism (ILP) is carefully considered: vectorized instructions are
explicitly used and instruction pipeline usage is highly optimized.

∎ BPAS 1-D FFT code automatically generated by configurable Python
scripts.
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Notations

∎ For two positive integers 𝑎, 𝑏, we write 𝑎⇑𝑏 instead of ⟨︀𝑎⇑𝑏⧹︀.
∎ Let K be a finite field so that each element of K can be stored in a

machine word.
∎ We assume that each polynomial 𝑃 of K(︀𝑥⌋︀ is stored in a vector 𝑉𝑃

of 𝑑 + 1 words, aligned in memory, where 𝑑 is the degree of 𝑃 , and so
that the coefficient of 𝑥𝑖 in 𝑃 is stored in the (𝑑− 𝑖)-th slot of 𝑉𝑃 , for
0 ≤ 𝑖 ≤ 𝑑.

∎ Let 𝐴 = ∑𝑖=𝑚−1
𝑖=0 𝑎𝑖𝑥

𝑖 and 𝐵 = ∑𝑖=𝑛−1
𝑖=0 𝑏𝑖𝑥

𝑖 be in K(︀𝑥⌋︀ with 𝑚 ≥ 𝑛.
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Plain polynomial multiplication

∎ Recall 𝐴 = ∑𝑖=𝑚−1
𝑖=0 𝑎𝑖𝑥

𝑖 and 𝐵 = ∑𝑖=𝑛−1
𝑖=0 𝑏𝑖𝑥

𝑖 in K(︀𝑥⌋︀ with 𝑚 ≥ 𝑛.
∎ Counting cache misses, the plain multiplication incurs

𝑂((𝑚⇑𝐿 + 1)𝑛)
∎ This estimate can be substantially improved by performing the plain

multiplication in a divide-and-conquer manner, following the scheme
of the matrix multiplication algorithm of [9].

∎ This recursive algorithm is presented in [7]; it runs within
𝑂(𝑚𝑛⇑(𝑍𝐿))

∎ It leads to clear gains on Graphics Processing Units (GPUs) due to
the fine grained control of hardware resources.

∎ However, with a CPU implementation, for relatively small 𝑛 and 𝑚,
any plain multiplication algorithm is outperformed by an FFT-based
polynomial multiplication.
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Plain polynomial division

∎ Let 𝑄 = quo(𝐴, 𝐵) and 𝑅 = rem(𝐴, 𝐵)
∎ The schoolbook plain Euclidean division, using a two-loop nest,

computes 𝑄 and 𝑅, within
𝑂((𝑚 − 𝑛 + 1)(𝑛⇑𝐿 + 3))

∎ By means of a blocking strategy, this estimate can be improved to
𝑂(((2𝑍 + 9𝐿)(𝑚 − 𝑛 + 1)(𝑛⇑(𝑍2𝐿) + 1))

See [15, 16].
∎ This strategy is inspired by the Half-Gcd algorithm, see Lemma 11.1

in Chapter 11 of [11]. See [DBLP:conf/issac/Maza21].
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DAG encodings of computations

By computation, we mean the execution of a program, not a program
itself, similarly to the instruction stream DAG of a Cilk program.

Notations
From now on we consider a connected directed acyclic graph 𝐺 = (𝑉, 𝐸):
∎ Each vertex represents an operation and its result.
∎ An edge from a vertex 𝑣1 to a vertex 𝑣2 indicates that the result of 𝑣1

is needed for performing the operation of 𝑣2.
∎ A vertex 𝑣 of 𝐺 is an input (resp. output) if it has no predecessors

(resp, no successors).
∎ The sets of inputs and outputs are respectively denoted by 𝐼(𝐺) and

𝑂(𝐺). Note that these sets are disjoint.
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The Red-Blue Pebble Game (1/3)

The red-blue pebble game is played on a directed and connected acyclic
graph 𝐺 = (𝑉, 𝐸).
∎ At any point of the game, some vertices have red pebbles, others

have blue, others have pebbles of both types, others have no pebbles.
∎ A configuration is a pair of subsets (𝑅, 𝐵) of the vertex set 𝑉 such

that any vertex 𝑣 ∈ 𝑅 (resp. 𝑣 ∈ 𝐵) has a blue pebble (resp. red
pebble).

∎ The initial configuration is the one given by (∅, 𝐼(𝐺)).
∎ The final configuration is the one given by (∅, 𝑂(𝐺)).

Marc Moreno Maza Cache Complexity in Computer Algebra École Polytechniques 202253 / 96



The Red-Blue Pebble Game (2/3)

The rules of the red-blue pebble game are as follows.
(𝑅1) Input rule: A red pebble may be placed on any vertex that has a

blue pebble.
(𝑅2) Output rule: A blue pebble may be placed on any vertex that has a

red pebble.
(𝑅3) Compute rule: If all immediate predecessors of a vertex 𝑣 have red

pebbles then a red pebble may be placed on 𝑣.
(𝑅4) Delete rule: A pebble red or blue may be removed at any time from

any vertex.
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The Red-Blue Pebble Game (3/3)

Key concepts:
∎ A transition is an ordered pair of configurations, the second of which

follows from the first according to one of the rules (𝑅1) to (𝑅4).

∎ A caculation is a sequence of configurations, each successive pair of
which form a transition.

∎ A complete caculation is one that begins with the initial
configuration and ends with the final configuration.
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Application to cache complexity (1/4)

∎ A DAg on which the red-blue pebble game is played can model a
computation performed on a two-level memory structure, say, a fast
memory (or cache) and a slow memory.

∎ Recall: Each vertex represents an operation and its result.
∎ Recall: An edge from a vertex 𝑣1 to a vertex 𝑣2 indicates that the

result of 𝑣1 is needed for performing the operation of 𝑣2.
∎ An operation can be performed only if all operands reside in cache

(or fast memory).
∎ The maximum allowable number of red (or blue) pebbles on the

DAG at any point in the game corresponds to the number of words
available for use in the fast (or slow) memory, respectively.
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Application to cache complexity (2/4)

∎ Placing a red pebble using Rule (𝑅3) corresponds to performing an
operation and storing the result in cache

∎ Placing a blue pebble using Rule (𝑅2) corresponds to storing a copy
of a result (currently in the fast memory) into the slow memory.

∎ Placing a red pebble using Rule (𝑅1) corresponds to retrieving a copy
of a result (currently in the slow memory) into the fast memory.

∎ Removing a red or red or blue pebble using Rule (𝑅4) means freeing
a memory location in the fast or slow memory respectively.
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Application to cache complexity (3/4)

∎ In what follows, the fast memory can only hold 𝑆 words, where 𝑆 is a
constant, while the slow memory is arbitrarily large.

∎ For any given connected DAG, we are interested in the I/O time,
denoted by 𝑄, which is the minimum number of transitions according
to Rules (𝑅1) or (𝑅2) required by any complete calculation.

∎ In the original work of (J.W. Hong, H.T. Kung, 1981) a “static
problem” is associated with the red-blue pebble game, the
𝑆-Partitioning Problem. Then lower bounds for the 𝑆-Partitioning
Problem lead to lower bounds for the red-blue pebble game.

∎ To establish bounds like those (but weaker) of (J.W. Hong, H.T.
Kung, 1981) a simpler approach due to J.E. Savage (see his book
Models of Computations) [27] reducing to simpler the red pebble
game.
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Application to cache complexity (4/4)

Theorem. Assume 𝑆 ≥ 3. For the 𝑛-point FFT graph we have
𝑄 log(𝑆) ∈ Ω(𝑛 log(𝑛)). Moreover, there is a pebbling strategy for which
𝑄 log(𝑆) ∈ Θ(𝑛 log(𝑛)) holds.
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Overview

∎ In [24], the authors show that multiplying dense polynomials
𝑓, 𝑔 ∈ 𝑍⇑𝑝𝑍(︀𝑥1, . . . , 𝑥𝑛⌋︀ makes an optimal use of multicore processors
when 𝑛 = 2, deg(𝑓, 𝑥1) = deg(𝑔, 𝑥1) and deg(𝑓, 𝑥2) = deg(𝑔, 𝑥2).

∎ Under some assumption, the authors of [24] give a practical heuristic
reducing multivariate multiplication to multiplying a balanced pair of
bivariate polynomials. The authors of [25] relax their assumption.

Strategy

1 Since performance is, in practice, hardware-dependent, we focus on a
specific architecture, namely multi-core processors.

2 We aim at optimizing the implementation of an algebraic algorithm in
terms of parallelism and, thus in terms of memory accesses.

3 To do so, we reshape the input data at a cost which is amortized by
the performance benefits.

Marc Moreno Maza Cache Complexity in Computer Algebra École Polytechniques 202261 / 96



Recursive representation of multivariate polynomials

Example. Let 𝑓 ∈ K(︀𝑧 > 𝑦 > 𝑥⌋︀ where K = Z⇑41Z, with 𝑑𝑥 = 𝑑𝑦 = 1, 𝑑𝑧 = 3.
A recursive dense representation (RDR) of 𝑓 is:

∎ the coefficients are stored in a contiguous array.
∎ the coefficient of the monomial 𝑥𝑒1𝑦𝑒2𝑧𝑒3 has index

𝑒1 + 𝑠𝑥𝑒2 + 𝑠𝑥𝑠𝑦𝑒3, where 𝑠𝑥 and 𝑠𝑦 are integers satisfying
𝑠𝑥 > deg(𝑓, 𝑥) and 𝑠𝑦 > deg(𝑓, 𝑦).
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Multi-dimensional TFTs and ITFTs (1/2)

∎ To minimize algebraic complexity, our dense polynomial multiplication
relies on TFTs and ITFTs.

∎ Targeting multi-core processors, we need to extract coarse-grained
parallelism, thus we apply the row-column algorithm (illustrated
above) on multi-dimensional TFTs, thus 𝑛 ≥ 2.

∎ To minimize cache complexity, we transpose the data between TFTs
along 𝑥 (resp. 𝑦) and TFTs along 𝑦 (resp. 𝑧) in order to maintain
spatial locality.
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Multi-dimensional TFTs and ITFTs (2/2)

∎ Let 𝑇 (𝑠) be the number of cache misses for transposing a matrix of 𝑠
elements using the (optimal) REC-TRANPOSE algorithm of [9]
with an ideal cache of cache-line size 𝐿.

∎ The cache complexity 𝑄(𝑛, 𝑠) of 𝑛-D TFT satisfies
𝑛𝑇 (𝑠) + 𝑛 𝑠

𝐿+1 ≤ 𝑄(𝑛, 𝑠) ≤ 𝑛𝑇 (𝑠) + 2𝑛 𝑠
𝐿 .

∎ For a fixed 𝑠, this estimate suggests to minimize 𝑛, so letting 𝑛 = 2.
∎ The parallelism 𝑃 (𝑛, 𝑠) of 𝑛-D TFT satisfies 𝑃 (𝑛, 𝑠) ≥ 𝑠

max𝑖=1⋯𝑛(𝑠𝑖) ,
where 𝑠1, . . . , 𝑠𝑛 are the dimension sizes w.r.t. 𝑥1, . . . , 𝑥𝑛.

∎ When 𝑛 = 2, this estimate suggests 𝑠1 = 𝑠2 =
⌋︂

𝑠. (Balanced case)
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Balanced multiplication

1 Mapping monomials of K(︀𝑥1, . . . , 𝑥𝑚, . . . , 𝑥𝑛⌋︀ to
K(︀𝑥1, . . . , 𝑥𝑢, 𝑥𝑣, . . . , 𝑥𝑛⌋︀:

𝑥𝑒1
1 𝑥𝑒2

2 . . . 𝑥𝑒𝑛
𝑛 z→ 𝑥𝑒1

1 . . . 𝑥𝑒𝑚−1
𝑚−1 𝑥𝑒𝑢

𝑢 𝑥𝑒𝑣
𝑣 𝑥𝑒𝑚+1

𝑚+1 . . . 𝑥𝑒𝑛
𝑛 , where ∶

ë 𝑒𝑢 and 𝑒𝑣 are the quotient and the remainder in the Euclidean division
of 𝑒𝑚 by 𝑏,

ë 𝑚 and 𝑏 are parameters to be determined later.

2 Mapping monomials of K(︀𝑥1, . . . , 𝑥𝑢, 𝑥𝑣, . . . , 𝑥𝑛⌋︀ to K(︀𝑥, 𝑦⌋︀:
𝑥𝑒1

1 . . . 𝑥𝑒𝑚−1
𝑚−1 𝑥𝑒𝑢

𝑢 𝑥𝑒𝑣
𝑣 𝑥𝑒𝑚+1

𝑚+1 . . . 𝑥𝑒𝑛
𝑛 z→ 𝑥𝑐1𝑦𝑐2 , where ∶

𝑐1 = 𝛼1𝑒1 + 𝛼2𝑒2 + . . . + 𝛼𝑚−1𝑒𝑚−1 + 𝛼𝑢𝑒𝑢

𝑐2 = 𝛼𝑣𝑒𝑣 + 𝛼𝑚+1𝑒𝑚+1 + 𝛼𝑚+2𝑒𝑚+2 + . . . + 𝛼𝑛𝑒𝑛

with:
𝛼1 = 𝛼𝑚+1 = 1 and 𝛼𝑖+1 = 𝛼𝑖(𝑑𝑖 + 𝑑′𝑖 + 1) otherwise.

so that the bivariate images of 𝑓, 𝑔 form a (nearly) balanced pair.
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Determination of the parameters 𝑚 and 𝑏

∎ Consider multiplying 𝑓, 𝑔 ∈ K(︀𝑥1, . . . , 𝑥𝑛⌋︀ and let h = fg.
∎ Let h ∶= fg. We define 𝑠

(𝑓)
𝑖 ∶= 𝑑𝑖 + 1 and 𝑠

(𝑔)
𝑖 ∶= 𝑑′𝑖 + 1, so that we

have 𝑠
(ℎ)
𝑖 ∶= 𝑠𝑖 ≥ 𝑠

(𝑓)
𝑖 + 𝑠

(𝑔)
𝑖 − 1, for 1 ≤ 𝑖 ≤ 𝑛. That is, ℎ can be stored

in an RDR with dimension sizes 𝑠
(ℎ)
1 , 𝑠

(ℎ)
2 , . . . , 𝑠

(ℎ)
𝑛 .

∎ The bivariate images of 𝑓 and 𝑔 will be represented with an 𝑠-RDR,
where 𝑠 = (𝑠𝑥, 𝑠𝑦), 𝑠𝑥 ∶= 𝑠𝑢Π𝑚−1

𝑖=1 𝑠𝑖, 𝑠𝑦 ∶= 𝑠𝑣Π𝑛
𝑖=𝑚+1𝑠𝑖, thus we have

𝑠𝑥𝑠𝑦 = 𝑠𝑢𝑠𝑣

𝑠𝑚
Π𝑛

𝑖=1𝑠𝑖.
∎ Define 𝜎1 = Π𝑚−1

𝑖=1 𝑠
(ℎ)
𝑖 and 𝜎2 = Π𝑛

𝑖=𝑚+1𝑠
(ℎ)
𝑖 ,

∎ The size difference w.r.t. 𝑥 and 𝑦 of the bivariate image of ℎ is:
𝐷 = 𝑠

(ℎ)
𝑥 − 𝑠

(ℎ)
𝑦 = 𝑠

(ℎ)
𝑢 𝜎1 − 𝑠

(ℎ)
𝑣 𝜎2.

∎ After simplification, we have:
𝐷 = 𝜎1(𝑠(𝑓)𝑚 ⇑𝑏 + 𝑠

(𝑔)
𝑚 ⇑𝑏 − 1) − 𝜎2(2𝑏 − 1).

∎ there is only one 𝑚 satisfying
Π𝑚−1

𝑖=1 𝑠
(ℎ)
𝑖 <

⌉︂
Π𝑛

𝑖=1𝑠
(ℎ)
𝑖 and Π𝑚

𝑖=1𝑠
(ℎ)
𝑖 ≥

⌉︂
Π𝑛

𝑖=1𝑠
(ℎ)
𝑖 .

∎ Then, there is one integer 𝑏 making 𝐷 is as close as possible to 0.
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Experimentation: Test Case # 2

In this test, we multiply two 8-variate polynomials 𝑓 and 𝑔 where all
partial degrees of are equal and the partial degrees range in 1 . . . 5.

Table: Performance analysis: Balanced bivariate multiplication Vs. 8-D
TFT-based multiplication

Method Balanced bivariate 8-D TFT-based
CPU-cycles 69,321,767,227 255,290,461,510
Instructions 118,622,179,258 316,889,335,524

CPI 0.58 0.80
Branch miss rate 0.11% 0.69%

MPKI 1.07 1.28

MPKI stands for misses per one thousand instructions.
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Test Case

Running time comparison on Intel Xeon multi-core (12 cores).
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Experimentation: summary

∎ In most of cases the proposed strategy outperforms the direct
approach based on multi-dimensional TFTs.

∎ The unfavourable cases happen when the number of variables is
small, while

∎ the most favourable cases occur when the number of variables
increases and the input pair of polynomials is far from balanced.
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Overview

∎ We present a model of multithreaded computation with an emphasis
on estimating parallelism overheads of programs written for modern
many-core architectures.

∎ We evaluate the benefits of our model with fundamental algorithms
from scientific computing.

ë For two case studies, our model is used to minimize parallelism
overheads by determining an appropriate value range for a given
program parameter.

ë For the others, our model is used to compare different algorithms
solving the same problem.

∎ In each case, the studied algorithms were implemented1 and the
results of their experimental comparison are coherent with the
theoretical analysis based on our model.

∎ This work is published in ParCo’15 as [15].
1Publicly available written in CUDA from http://www.cumodp.org/
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Models of computation

The fork-join model: 4-th Fibonacci number The PRAM model

∎ The classical models of parallel computation, the fork-join
concurrency model and the parallel random access machine (PRAM)
model do not distinguish between the task-based and data-based
parallelism.

∎ Recent many-core machine models:
ë Lin Ma, Kunal Agrawal, and Roger D. Chamberlain. A memory access model

for highly-threaded many-core architectures. Future Generation Computer
Systems, 30:202-215, 2014.

ë Sunpyo Hong and Hyesoon Kim. An analytical model for a GPU architecture
with memory-level and thread-level parallelism awareness. In ACM SIGARCH
Computer Architecture News, volume 37, pages 152-163. ACM, 2009.
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The MCM model

We propose a many-core machine (MCM) model which aims at
∎ tuning program parameters to minimize parallelism overheads of

algorithms targeting GPU-like architectures as well as
∎ comparing different algorithms independently of the value of machine

parameters of the targeted hardware device.

In the design of this model, we insist on the following features:
∎ Two-level DAG programs
∎ Parallelism overhead
∎ A Graham-Brent theorem
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Characteristics of the abstract many-core machines (1/2)

Figure: A many-core machine

∎ It has a global memory with high latency, while private memories have
low latency.
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Characteristics of the abstract many-core machines (2/2)

Figure: Overview of a many-core machine program, also called kernel DAG
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Machine parameters of the abstract many-core machines

Z: Private memory size of any SM
It sets up an upper bound on several program parameters (number of
threads of a thread-block, number of words in a data transfer between the
global memory and the private memory of a Sm).

U: Data transfer time

∎ Time (expressed in clock cycles) to transfer one machine word
between the global memory and the private memory of any SM.

∎ As an abstract machine, the MCM aims at capturing either the best
or the worst scenario for data transfer time of a thread-block, that is,

𝑇𝐷 ≤ (𝛼 + 𝛽)𝑈, if coalesced accesses occur;
or ℓ (𝛼 + 𝛽)𝑈, otherwise,

where 𝛼 and 𝛽 are the numbers of words respectively read and
written to the global memory by one thread of a thread-block 𝐵 and
ℓ be the number of threads per thread-block.
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Complexity measures for the many-core machine model

For any kernel 𝒦 of an MCM program,
∎ work 𝑊 (𝒦) is the total number of local operations of all its threads;
∎ span 𝑆(𝒦) is the maximum number of local operations of one thread;
∎ parallelism overhead 𝑂(𝒦) is the total data transfer time among all

its thread-blocks.
For the entire program 𝒫,
∎ work 𝑊 (𝒫) is the total work of all its kernels;
∎ span 𝑆(𝒫) is the longest path, counting the weight (span) of each

vertex (kernel), in the kernel DAG;
∎ parallelism overhead 𝑂(𝒫) is the total parallelism overhead of all its

kernels.
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Characteristic quantities of the thread-block DAG

Figure: Thread-block DAG of a many-core machine program

N(𝒫): number of vertices in the thread-block DAG of 𝒫,
L(𝒫): critical path length (where length of a path is the number of
edges in that path) in the thread-block DAG of 𝒫.
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Complexity measures for the many-core machine model

Theorem (A Graham-Brent theorem with parallelism overhead)
We have the following estimate for the running time 𝑇P of the program 𝒫
when executed on P SMs:

𝑇P ≤ (N(𝒫)⇑P + L(𝒫))C(𝒫) (1)

where C(𝒫) is the maximum running time of local operations (including
read/write requests) and data transfer by one thread-block.

Corollary
Let K be the maximum number of thread-blocks along an anti-chain of the
thread-block DAG of 𝒫. Then the running time 𝑇𝒫 of the program 𝒫
satisfies:

𝑇𝒫 ≤ (N(𝒫)⇑K + L(𝒫))C(𝒫) (2)
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Plain univariate polynomial multiplication (1/3)
Tuning the parameter 𝑠
Multiplication phase: every coefficient of 𝑎 is multiplied with every
coefficients of 𝑏; each thread accumulates 𝑠 partial sums into an auxiliary
array 𝑀 .

Addition phase: these partial sums are added together repeatedly to form
the polynomial 𝑓 .
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Plain univariate polynomial multiplication (2/3)
The work, span and parallelism overhead ratios between 𝑠0 = 1 (initial
program) and an arbitrary 𝑠 are, respectively2,

W1
W𝑠

= 𝑛

𝑛 + 𝑠 − 1
,

S1
S𝑠

= log2(𝑚) + 1
𝑠 (log2 (𝑚⇑𝑠) + 2 𝑠 − 1)

,

O1
O𝑠

= 𝑛 𝑠2 (7 𝑚 − 3)
(𝑛 + 𝑠 − 1) (5 𝑚 𝑠 + 2 𝑚 − 3 𝑠2)

.

∎ Let 𝑚 esacpe to infinity with 𝑚 ≤ 𝑛.
∎ Increasing 𝑠 leaves work essentially constant, while span increases and

parallelism overhead decreases in the same order when 𝑚→∞.
∎ Hence, should 𝑠 be large or close to 𝑠0 = 1?

2See the detailed analysis in the form of executable Maple worksheets of three
applications: http://www.csd.uwo.ca/~nxie6/projects/mcm/
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Plain univariate polynomial multiplication (3/3)
Applying our version of the Graham-Brent theorem, the ratio 𝑅 of the
estimated running times on Θ( (𝑛+𝑠−1)𝑚

ℓ 𝑠2 ) SMs is

𝑅 = (𝑚 log2(𝑚) + 3 𝑚 − 1) (1 + 4 𝑈)
(𝑚 log2(𝑚

𝑠 ) + 3 𝑚 − 𝑠) (2 𝑈 𝑠 + 2 𝑈 + 2 𝑠2 − 𝑠)
,

which is asymptotically equivalent to 2 𝑈 log2(𝑚)
𝑠 (𝑠+𝑈) log2 (𝑚⇑𝑠) . This latter ratio is

less than 1 for 𝑠 > 1, since 𝑈 > 0.

Figure: Running time of the plain polynomial multiplication algorithm with
polynomials 𝑎 (deg(𝑎) = 𝑛 − 1) and 𝑏 (deg(𝑏) = 𝑚 − 1) and the parameter 𝑠 on
GeForce GTX 670.
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The Euclidean algorithm
Let 𝑠 > 0. We proceed by repeatedly calling a subroutine which
∎ takes as input a pair (𝑎, 𝑏) of polynomials and
∎ returns another pair (𝑎′, 𝑏′) of polynomials such that

gcd(𝑎, 𝑏) = gcd(𝑎′, 𝑏′) and, either 𝑏′ = 0 or we have
deg(𝑎′) + deg(𝑏′) ≤ deg(𝑎) + deg(𝑏) − 𝑠.

∎ When 𝑠 = Θ(ℓ) (the number of threads per thread-block), the work is
increased by a constant factor and the parallelism overhead will
reduce by a factor in Θ(𝑠).

∎ Further, the estimated running time ratio 𝑇1⇑𝑇𝑠 on Θ(𝑚
ℓ ) SMs is

greater than 1 if and only if 𝑠 > 1.
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Fast Fourier Transform (FFT) (1/3)

Let 𝑓 be a vector with coefficients in a field (either a prime field like 𝑍⇑𝑝𝑍
or C) and size 𝑛, which is a power of 2. Let 𝜔 be a 𝑛-th primitive root of
unity.

The 𝑛-point Discrete Fourier Transform (DFT) at 𝜔 is the linear map
defined by 𝑥 z→ DFT𝑛 𝑥 with

DFT𝑛 = (︀𝜔𝑖𝑗⌋︀0≤𝑖, 𝑗<𝑛.

We are interested in comparing popular algorithms for computing DFTs on
many-core architectures:
∎ Cooley & Tukey FFT algorithm
∎ Stockham FFT algorithm
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FFT: Cooley & Tukey vs Stockham (2/3)

The work, span and parallelism overhead ratios between Cooley & Tukey’s
and Stockham’s FFT algorithms are, respectively,

W𝑐𝑡

W𝑠ℎ
∼ 4 𝑛 (34 log2(𝑛) ℓ log2(ℓ) + 47 log2(𝑛) ℓ)

172 𝑛 log2(𝑛) ℓ + 𝑛 + 48 ℓ2 ,

S𝑐𝑡

S𝑠ℎ
∼ 34 log2(𝑛) log2(ℓ) + 47 log2(𝑛)

43 log2(𝑛) + 16 log2(ℓ)
,

O𝑐𝑡

O𝑠ℎ
= 8 𝑛 (4 log2(𝑛) + ℓ log2(ℓ) − log2(ℓ) − 15)

20 𝑛 log2(𝑛) + 5 𝑛 − 4 ℓ
,

where ℓ is the number of threads per thread-block.

∎ Both the work and span of the algorithm of Cooley & Tukey are
increased by Θ(log2(ℓ)) factor w.r.t their counterparts in Stockham
algorithm.
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FFT: Cooley & Tukey vs Stockham (3/3)
The ratio 𝑅 = 𝑇𝑐𝑡⇑𝑇𝑠ℎ of the estimated running times (using our
Graham-Brent theorem) on Θ(𝑛

ℓ ) SMs is3:

𝑅 ∼ log2(𝑛)(2 𝑈 ℓ + 34 log2(ℓ) + 2 𝑈)
5 log2(𝑛) (𝑈 + 2 log2(ℓ))

,

when 𝑛 escapes to infinity. This latter ratio is greater than 1 iff ℓ > 1.

Table: Running time (secs) with input size 𝑛 on GeForce GTX 670.

𝑛 Cooley & Tukey Stockham
214 0.583296 0.666496
215 0.826784 0.7624
216 1.19542 0.929632
217 2.07514 1.24928
218 4.66762 1.86458
219 9.11498 3.04365
220 16.8699 5.38781

3ℓ is the number of threads per thread-block.
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Univariate polynomial multiplication: Plain vs FFT-based
Polynomial multiplication can be done either via the long (= plain)
scheme or via FFT computations.
Let 𝑛 be the largest size of an input polynomial and ℓ be the number of
threads per thread-block.
∎ The theoretical analysis of our model indicates that the plain

multiplication performs more work and parallelism overhead.
∎ However, on 𝑂(𝑛2

ℓ ) SMs, the ratio 𝑇𝑝𝑙𝑎𝑖𝑛⇑𝑇𝑓𝑓𝑡 of the estimated
running times is essentially constant.

∎ On the other hand, the running time ratio 𝑇𝑝𝑙𝑎𝑖𝑛⇑𝑇𝑓𝑓𝑡 on Θ(𝑛
ℓ ) SMs

suggests FFT-based multiplication outperforms plain multiplication
for 𝑛 large enough.
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Optimizing cache complexity

∎ For all results discussed above, the key towards cache-oblivious or
cache optimal algorithms is a blocking strategy.

∎ This blocking strategy may take different forms: from the buckets of
counting sort to matrix blocks in dense linear algebra.

∎ While blocking strategies naturally lead to recursive algorithms, the
implementation of the latter are often made in the form of for-loop
nests, which is more suitable for compiler optimization.
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In the context of multi/many-core processors

∎ When multiple threads are cooperating, cores executing those threads
share a common physical address space, causing a cache coherence
problem.

∎ Two well-known consequences of this problem are true sharing and
false sharing:

ë In the former, two cores are accessing the same memory address, with
at least one of them for writing.

ë In the latter, two cores are accessing the same cache-line (but not the
same memory address), with at least one of them for writing.

∎ Other parallel overheads should be watched like memory contention,
scheduling and synchronization costs, which are very hard to take into
account in complexity analysis [15, 18, 21].

∎ Nevertheless, on multicore processors, a good practical indication
about what to expect in 𝑊 (𝑛)⇑𝑄(𝑛; 𝑍, 𝐿), in addition to the more
standard ration 𝑇1(𝑛)⇑𝑇∞(𝑛).
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Data reshaping

∎ Other performance degradation can come from for-loop overheads.
∎ If a loop has a few iterations, then overheads due to branch

misprediction can have an impact, since a misprediction delay can be
between 10 and 35 clock cycles [8].

∎ Trying to avoid those issues with for-loop nests has several
advantages, including reducing overheads due to loop counter
manipulation.

∎ In the context of dense multivariate polynomials over finite fields, this
idea was studied in [22, 24] for multi-threaded multi-dimensional
FFTs (and TFTs) and their application to polynomial multiplication.

∎ The authors systematically reduce multivariate polynomials to
balanced bivariate polynomials. Balanced here means that partial
degrees are equal or as close as possible.

∎ A theoretical study, supported by extensive experimentation, shows
that this approach minimizes cache misses and maximizes parallelism.
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Multi-measure models for many-core machines

∎ Two types of models:
ë predictor models (TMM, MCM) which can be used to design the

implementation of a many-core programs; these models estimate
running times from DAG characteristics.

ë profiler models (MWP-CWP) which can be used to understand
performance issues; these models estimate running times from
performance counters.

∎ Of course, those models (and their usage described above) have
limitations that users should be aware of.

∎ Nevertheless, they can help understand experimental observations.
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Thank You!

http://www.bpaslib.org/
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