Cache Friendly Sparse Matrix Vector Multilication J

Sardar Anisual Haque!, Shahadat Hossain?, Marc Moreno Maza®

tUniversity of Western Ontario, London, Ontario (Canada)

2Department of Computer Science, University of Lethbridge,
Lethbridge, Alberta (Canada)

PASCO 2010

1/21

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz PASCO 2010

Plan

© Cache Complexity

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz PASCO 2010 2/21

Cache Complexity

Once upon a time everything was slow in a computer

The CPU-Memory Gap

The increasing gap between DRAM, disk, and CPU

speeds.

100,000,000 *

10,000,000 D —

1,000,000

100,000
10,000

ns

—— Disk seek time
DRAM access time

—A— SRAM access time

—8— CPU cycle time

1,000
100 gx‘\
10

1980 1985 1990 1995
Cache Friendly Sparse Matrix Vector Multilice

1 \‘%‘

2000

PASCO 2010 3/21

But 1/O complexity was already there

STOC(Milwaukee 1981),326-333,

1/0 COMPLEXITY:
THE RED-BLUE PEBBLE GAME

Hong, Jia-Wei and IL T. Kung

Department of Computer Science
Carnegie-Meton University
Pittsbucgh, Pennsylvania 15213

In this paper, the red-blue pebble game is proposed to model the
input-output complexity of algorithms. Using the pebble game
formulation, a number of fower bound results for the 170 requirement.
are proven. For example, it is shown that to perform the n-point FFT
or the ordinary nxn matrix multiplication algorithm with O(S) memory,
at least 2(n fog n/log S) or Qe’/VT), respectively, time is needed for
the 170. Similar results are obtained for algorithins for several other
problems. All of the lower bounds presented are the best possible in
the sense that they are achievable by certain decomposition schemes.

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz

decomposition schemes. The paper is organized according to the
techniques used to derive these lower bounds.

In Section 2 we formally define the pcbble game and point out its
relation to the 170 problent. In Section 3 we show that lower bounds
for 17Q in the pebble game can be established by studying the so-called
S-partitioning problem. This is the key result of the paper in the sense
that it provides the basis for the derivation of all the lower bounds. Tn
Scction 4 we prove a lower bound for the FFT algorithm. Lower
bounds in Scction 5 arc based on the information speed function, which

PASCO 2010

4 /21

Cache Complexity

The foundation paper of cache complexity

Cache-Oblivious Algorithms
EXTENDED ABSTRACT

Matteo Frigo Charles E. Leiserson Harald Prokop Sridhar Ramachandran
MIT Laboratory for Computer Sciencg45 Technology Squar€ambridge, MA 02139
{athena,cel,prokop,sridhar}@supertech.lcs.mit.edu

Main
Abstract This paper presents asymptotically optimal algo- _ organized by Memory
rithms for rectangular matrix transpose, FFT, and sorting o optimal feplg?g{ggyl

computers with multiple levels of caching. Unlike previous

optimal algorithms, these algorithms as@he oblivious: no

variables dependent on hardware parameters, such as cache

size and cache-line length, need to be tuned to achieve opti-

mality. Nevertheless, these algorithms use an optimal amou

of work and move data optimally among multiple levels of

cache. For a cache with siZeand cache-line length where

Z = Q(L?) the number of cache misses for amx n ma- :.I"i"scsh:s

trix transpose i®(1+ mn/L). The number of cache misses of IelngtshL

for either ann-point FFT or the sorting ofh numbers is
(1+ n/L)(l+ IcrgZ n)). We also give a@(mng -work al-

matriv th a 1- Tha idaal_rarha madal

triv v ann at in
Cache Fnendly Sparse Matrix Vector MLI|tI|IC(PASCO 2010 5/21

Cache ‘

(Haque, Hossai

The (Z, L) ideal cache model

Main
organized by ~ Memory
optimal replacement
strategy

Z/L Cache lines
cache

misses [

of length L

Figure 1: The ideal-cache model

@ The ideal cache is fully associative: cache lines can be stored
anywhere in the cache.

@ The ideal cache uses the optimal off-line strategy of replacing the
cache line whose next access is furthest in the future, and thus it
exploits temporal locality perfectly.

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz PASCO 2010 6 /21

Plan

@ Cache Complexity

© Locality Issues in Sparse Matrix Vector Multiplication
© Binary Reflected Gray Codes

@ Cache Complexity Analyzes

© Experimentation

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz PASCO 2010 7/21

Locality Issues in Sparse Matrix Vector Multiplication

© Locality Issues in Sparse Matrix Vector Multiplication

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz PASCO 2010 8/21

An illustrative example (1/2)

Input matrix and vector

X0
X1
0 0 a2 0 0 a5 | x | ™
X3
, X4

X5

Cache misses due to x

Assume that the cache has 2 lines each of 2 words. Assume also that the
cache is dedicated to store the entries from x:

g @ X0 X1 X0 X1 X0 X1 X4 Xs X4 Xs
g @ g @ X4 Xs X2 X3 X2 X3 X0 X1

| SE—

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz PASCO 2010 9/21

An illustrative example (2/2)

After reordering the columns of A

Al x!
X0
X4

a00 aos O 0 0 0
0 0 aip a5 O 0 X
0 0 0 0 a1 a3

) Xl

X2
X5

X3

Cache misses due to x’

Assume that the cache has 2 lines each of 2 words. Assume also that the
cache is dedicated to store the entries from x:

g @ X0 X4 X0 X4 X0 X4 X0 Xa X0 Xa
g @ g @ g @ X2 X5 X2 Xs X1 X3

| EE—

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz PASCO 2010 10 / 21

Plan

© Binary Reflected Gray Codes

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz PASCO 2010 11 /21

Gray Codes

Definition
e For N =2", an n-bit code C, = (u1, t, ..., uy), where N =2", is a
Gray code if u; and uj;1 differ in exactly one bit, for all i.
@ This corresponds to a Hamiltonian path (cycle) in the n-dimensional

hypercube.

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz PASCO 2010 12 /21

Gray Codes

Definition
e For N =2", an n-bit code C, = (u1, t, ..., uy), where N =2", is a
Gray code if u; and uj;1 differ in exactly one bit, for all i.
@ This corresponds to a Hamiltonian path (cycle) in the n-dimensional
hypercube.

Binary Reflected Gray Codes
The reflected Gray code I'" is defined recursively by

t=(0,1) and r"t=or", 1r"®

Introduced by Frank Gray 1953 for shaft encoders

3 = 000,001,011,010,110,111,101, 100.

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz PASCO 2010 12 /21

Gray Codes

Binary reflected Gray code for arithmetic operations

@ Integers of dimension m can be represented by a data structure that
uses m + logm + O(loglogm) bits so that increment and decrement
operations require at most logm + O(loglogm) bit inspections and 6
bit changes per operation. (M.Z. Rahman and J.I. Munro, 2007).

@ They have also good results for addition and subtraction.

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz

PASCO 2010

13 /21

Gray Codes

Binary reflected Gray code for arithmetic operations
@ Integers of dimension m can be represented by a data structure that
uses m + logm + O(loglogm) bits so that increment and decrement
operations require at most logm + O(loglogm) bit inspections and 6
bit changes per operation. (M.Z. Rahman and J.I. Munro, 2007).

@ They have also good results for addition and subtraction.

Binary reflected Gray code for sorting big integers
@ A set of n binary strings of dimension m is sparse if any 2 strings are
very unlikely to have two consecutive 1's at the same positions.
@ BRGC-Sorting a sparse set of n binary strings of dimension m requires

e O(7) index comparisons and O(7 + n) data-structure updates,
e where 7 is the total number of 1's.

(Sardar Anisul Haque and M.M.M., 2010).
e Thus, BRGC-sorting a sparse set of n big integers fits within O(7 + n).

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz PASCO 2010 13 /21

From the University of Florida sparse matrix collection

x 10

T ———— T

nz = 465294 x10° nz = 465294 x10°

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz PASCO 2010

14 /21

Binary Reflected Gray Codes

Non-zero streams

zero entries

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz

- [
| L --
-
= ||
L] |
|
|
PASCO 2010

15 / 21

Plan

@ Cache Complexity Analyzes

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz PASCO 2010 16 / 21

Cache complexity estimates

Expected cache misses in accessing x when A is random

Recall that A is very sparse. Assume that n is large enough such that the
vector x does not fit into the cache, typically n € O(Z?)

Q=2/L+(r- Z/L)n_nZ/L.

Indeed, no spatial locality should be expected in accessing x.

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz PASCO 2010 17 /21

Cache complexity estimates

Expected cache misses in accessing x when A is random

Recall that A is very sparse. Assume that n is large enough such that the
vector x does not fit into the cache, typically n € O(Z?)

Q=2/L+(r- Z/L)n_nZ/L.

Indeed, no spatial locality should be expected in accessing x.

Expected cache misses in accessing x after BRGC-reordering A

n/p—Z/L+(T_2n)cn/p—Z/L

Q=n/L+Z/L+(n—2Z/L) 7o pyp

where c is the average number of nonzero streams under one step of first
level nonzero stream and 1 < ¢ < p.

v

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz PASCO 2010 17 /21

Cache Complexity Analyzes

How much do we save?

For our large test matrices and today’s L2 cache sizes, the following
conditions hold:

e ne O(Z?) and
o Z>210

Using MAPLE, we could prove the following relation:

Q1 —Q2~n.

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz PASCO 2010 18 / 21

Plan

© Experimentation

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz PASCO 2010 19 /21

Experimentation

Experimentation

Matrix m n T SPMxV SPMxV
name with BRGC | without any
ordering ordering
fome21 67748 216350 465294 3.6 3.9
Ip_ken_18 105127 | 154699 358171 2.7 3.1
barrier2-10 115625 | 115625 | 3897557 19.0 19.1
rajat23 110355 | 110355 556938 3.0 3.0
hcircuit 105676 | 105676 513072 2.6 2.5
GL7d24 21074 105054 593892 3.0 3.2
matrix_9 103430 | 103430 | 2121550 8.4 8.0
GL7d17 1548650 | 955128 | 25978098 484.6 625.0
GL7d19 1911130 | 1955309 | 37322725 784.6 799.0
wiki-20051105 | 1634989 | 1634989 | 19753078 258.9 321.0
wiki-20070206 | 3566907 | 3566907 | 45030389 7315 859.0

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz PASCO 2010 20 /21

Summary

© 00

Reordering columns or rows in SPMxV can improve locality
significantly.
Optimal reordering is computationally hard.

Preprocessing cost needs to be amortized against the SPMXVs in the
conjugate gradient type algorithms.

BRGC ordering improves locality.
BRGC ordering technique can be implemented in linear time w.r.t. 7.

The cost of BRGC ordering can be amortized before v/n SPMXVs in
conjugate Gradient type algorithms.

The matrices used in our experimentation are very sparse but already
have nice structures, so they are far from the (ideal) random case.

(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilicz PASCO 2010 21 /21

	Cache Complexity
	Locality Issues in Sparse Matrix Vector Multiplication
	Binary Reflected Gray Codes
	Cache Complexity Analyzes
	Experimentation

