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Cache Complexity

Once upon a time everything was slow in a computer
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Cache Complexity

But I/O complexity was already there

STOC ( Milwaukee 1981) , 3 2 6 - 3 3 3 ,  

I / 0  COMPLEXITY: 
THE RED-BLUE PEBBLE GAME 

tlong, Jia-Wei and 1I. T. Kung 

Department of Computer Science 
Carnegie-Mellon University 

Pittsburgh, Pennsylvania 15213 

In this paper, the red-blue pebble game is proposed to model the 

input-'output complexity of algorithms. Using the pebble game 

formulation, a number of  lower bound results for the I/O requirement 

are proven. For example, it is shown that to perform the n-point FF-F 

or the ordinary nxn matrix multiplication algorithm with O(S) memory, 

at least ~2(n log n/log S) or ~](n3/V'g'), respectively, time is needed for 

the 1/O. Similar results are obtained for algorithms for several other 

problems. All of the lower bounds presented are the best possible in 

the sense that they are achievable by certain decomposition schemes. 

Results of this paper may provide insight into the difficult task of  

balancing 1/O and computation in special-purpose system designs. For 

example, for the n-point FFI', the lower bound on I/O time hnplies 

that an S-point device achieving a speed-up ratio of  order log S over the 

conventional O(n log n) time implementation is all one can hope for. 

1. In t roduc t ion  
When a large computation is performed on a small device or 

memory, the computation must be decomposed into subcomputations. 

Executing subcomputations one at a time may reqnire a substantial 

;unount of I/O to store or retrieve intermediate results. Very often it is 

the I/O that dominates the speed of a computation. In fact, I/O is a 

typical bottleneck for performance at all levels of  a computer system. 

However, to the authors' knowledge the I/O problem was not 

previously modelled or studied in any systematic or abstract manner. 

Similar problems were studied only in a few isolated instances [2, 5]. 

This paper proposes a pebble game, called the red-blue pebble game, to 

model the problem, and presents a number of lower bound results for 

the 1/O requirement. All the lower bounds presented can be shown to 

be the best possible, in the sense that they are achieved by certain 
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decomposition schemes. The paper is organized according to the 

techniques used to derive these lower bounds. 

In Section 2 we formally define the pebble game and point out its 

relation to the I/O problem. In Section 3 we show that lower bounds 

tbr I/O in the pebble game can be established by studying the so-called 

S-partitioning problem. This is the key result of  the paper in the sense 

that it provides the basis for the derivation of all the lower bounds. In 

Section 4 we prove a lower bound for the FFT algorithm. Lower 

bounds in Section 5 arc based on the information speed function, which 

measures how fast the number of  vertices on which a given vertex 

"depends" can grow in a directed acyclic graph of  a certain type. We 

demonstrate the dramatic difference between the 1/O requirement for 

the odd-even transposition sorting network and that for the "snake- 

like" mesh graph. In contrast to the focus of  Section 5, Section 6 

studies independent computations for which there are very little 

information exchanges among vertices. ' lherc we obtain, for example, a 

lower bound for the ordinary matrix multiplication algorithm. In 

Section 7 we prove a general theorem on products of graphs. Using this 

theorem, one can determine the I/O required by a product of graphs, 

by examining only the individual graphs. A summary and concluding 

remarks are provided in Section 8. 

Results o f  this paper have the implication that they impose upper 

bounds on the maximum possible speed-up obtainable with a special- 

purpose hardware device. For example, our lower bound on the 1/O 

requirement for the n-point FF3' (Corollary 4.1) implies that an S-point 

device can achieve a speed-up ratio of at most O(log S) over the 
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Contract F33615-78-C-1551 (monitored by tile Air l='orce Office of  
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from Peking Municipal Computing Center, Peking, China and is 
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(ESI, is a subsidiary of TRW.) Most of the research for this paper was 
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Cache Complexity

The foundation paper of cache complexity

Cache-Oblivious Algorithms
EXTENDED ABSTRACT

Matteo Frigo Charles E. Leiserson Harald Prokop Sridhar Ramachandran
MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139fathena,cel,prokop,sridharg@supertech.lcs.mit.edu

Abstract This paper presents asymptotically optimal algo-
rithms for rectangular matrix transpose, FFT, and sorting on
computers with multiple levels of caching. Unlike previous
optimal algorithms, these algorithms arecache oblivious: no
variables dependent on hardware parameters, such as cache
size and cache-line length, need to be tuned to achieve opti-
mality. Nevertheless, these algorithms use an optimal amount
of work and move data optimally among multiple levels of
cache. For a cache with sizeZ and cache-line lengthL where
Z = Ω(L2) the number of cache misses for anm� n ma-
trix transpose isΘ(1+mn=L). The number of cache misses
for either ann-point FFT or the sorting ofn numbers is
Θ(1+(n=L)(1+ logZ n)). We also give anΘ(mnp)-work al-
gorithm to multiply anm� n matrix by ann� p matrix that
incursΘ(1+(mn+np+mp)=L+mnp=L

p
Z) cache faults.

We introduce an “ideal-cache” model to analyze our algo-
rithms. We prove that an optimal cache-oblivious algorithm
designed for two levels of memory is also optimal for multi-
ple levels and that the assumption of optimal replacement in
the ideal-cache model can be simulated efficiently by LRU re-
placement. We also provide preliminary empirical results on
the effectiveness of cache-oblivious algorithms in practice.

1. Introduction
Resource-oblivious algorithms that nevertheless use re-
sources efficiently offer advantages of simplicity and
portability over resource-aware algorithms whose re-
source usage must be programmed explicitly. In this
paper, we study cache resources, specifically, the hier-
archy of memories in modern computers. We exhibit
several “cache-oblivious” algorithms that use cache as
effectively as “cache-aware” algorithms.

Before discussing the notion of cache obliviousness,
we first introduce the(Z;L) ideal-cache model to study
the cache complexity of algorithms. This model, which
is illustrated in Figure 1, consists of a computer with a
two-level memory hierarchy consisting of an ideal (data)
cache ofZ words and an arbitrarily large main mem-
ory. Because the actual size of words in a computer is
typically a small, fixed size (4 bytes, 8 bytes, etc.), we

This research was supported in part by the Defense Advanced
Research Projects Agency (DARPA) under Grant F30602-97-1-0270.
Matteo Frigo was supported in part by a Digital Equipment Corpora-
tion fellowship.

Q
cache
misses

organized by
optimal replacement

strategy

Main
Memory

Cache

Z=L Cache lines

Lines
of lengthL

CPU

W
work

Figure 1: The ideal-cache model

shall assume that word size is constant; the particular
constant does not affect our asymptotic analyses. The
cache is partitioned intocache lines, each consisting of
L consecutive words which are always moved together
between cache and main memory. Cache designers typ-
ically useL > 1, banking on spatial locality to amortize
the overhead of moving the cache line. We shall gener-
ally assume in this paper that the cache istall:

Z = Ω(L2) ; (1)

which is usually true in practice.
The processor can only reference words that reside

in the cache. If the referenced word belongs to a line
already in cache, acache hit occurs, and the word is
delivered to the processor. Otherwise, acache miss oc-
curs, and the line is fetched into the cache. The ideal
cache isfully associative [20, Ch. 5]: cache lines can be
stored anywhere in the cache. If the cache is full, a cache
line must be evicted. The ideal cache uses the optimal
off-line strategy of replacing the cache line whose next
access is furthest in the future [7], and thus it exploits
temporal locality perfectly.

Unlike various other hierarchical-memory models
[1, 2, 5, 8] in which algorithms are analyzed in terms of
a single measure, the ideal-cache model uses two mea-
sures. An algorithm with an input of sizen is measured
by its work complexity W(n)—its conventional running
time in a RAM model [4]—and itscache complexity
Q(n;Z;L)—the number of cache misses it incurs as a
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Cache Complexity

The (Z , L) ideal cache model

The ideal cache is fully associative: cache lines can be stored
anywhere in the cache.

The ideal cache uses the optimal off-line strategy of replacing the
cache line whose next access is furthest in the future, and thus it
exploits temporal locality perfectly.
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Locality Issues in Sparse Matrix Vector Multiplication

An illustrative example (1/2)

Input matrix and vector

A x

 a0,0 0 0 0 a0,4 0
0 0 a1,2 0 0 a1,5

0 a2,1 0 a2,3 0 0

 ×



x0

x1

x2

x3

x4

x5


Cache misses due to x

Assume that the cache has 2 lines each of 2 words. Assume also that the
cache is dedicated to store the entries from x :[

ø ø
ø ø

] [
x0 x1

ø ø

] [
x0 x1

x4 x5

] [
x0 x1

x2 x3

] [
x4 x5

x2 x3

] [
x4 x5

x0 x1

] [
x2 x3

x0 x1

]
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Locality Issues in Sparse Matrix Vector Multiplication

An illustrative example (2/2)

After reordering the columns of A

A′ x ′

 a0,0 a0,4 0 0 0 0
0 0 a1,2 a1,5 0 0
0 0 0 0 a2,1 a2,3

 ×



x0

x4

x2

x5

x1

x3


Cache misses due to x ′

Assume that the cache has 2 lines each of 2 words. Assume also that the
cache is dedicated to store the entries from x :[

ø ø
ø ø

] [
x0 x4

ø ø

] [
x0 x4

ø ø

] [
x0 x4

x2 x5

] [
x0 x4

x2 x5

] [
x0 x4

x1 x3

] [
x0 x4

x1 x3

]
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Binary Reflected Gray Codes

Gray Codes

Definition

For N = 2n, an n-bit code Cn = (u1, u2, . . . , uN), where N = 2n, is a
Gray code if ui and ui+1 differ in exactly one bit, for all i .

This corresponds to a Hamiltonian path (cycle) in the n-dimensional
hypercube.

Binary Reflected Gray Codes

The reflected Gray code Γn is defined recursively by

Γ1 = (0, 1) and Γn+1 = 0 Γn, 1 ΓnR

Introduced by Frank Gray 1953 for shaft encoders

Γ3 = 000, 001, 011, 010, 110, 111, 101, 100.
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Binary Reflected Gray Codes

Gray Codes

Binary reflected Gray code for arithmetic operations

Integers of dimension m can be represented by a data structure that
uses m + logm + O(loglogm) bits so that increment and decrement
operations require at most logm + O(loglogm) bit inspections and 6
bit changes per operation. (M.Z. Rahman and J.I. Munro, 2007).

They have also good results for addition and subtraction.

Binary reflected Gray code for sorting big integers

A set of n binary strings of dimension m is sparse if any 2 strings are
very unlikely to have two consecutive 1’s at the same positions.

BRGC-Sorting a sparse set of n binary strings of dimension m requires

O(τ) index comparisons and O(τ + n) data-structure updates,
where τ is the total number of 1’s.

(Sardar Anisul Haque and M.M.M., 2010).

Thus, BRGC-sorting a sparse set of n big integers fits within O(τ +n).
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Binary Reflected Gray Codes

Gray Codes

Binary reflected Gray code for arithmetic operations

Integers of dimension m can be represented by a data structure that
uses m + logm + O(loglogm) bits so that increment and decrement
operations require at most logm + O(loglogm) bit inspections and 6
bit changes per operation. (M.Z. Rahman and J.I. Munro, 2007).

They have also good results for addition and subtraction.

Binary reflected Gray code for sorting big integers

A set of n binary strings of dimension m is sparse if any 2 strings are
very unlikely to have two consecutive 1’s at the same positions.

BRGC-Sorting a sparse set of n binary strings of dimension m requires

O(τ) index comparisons and O(τ + n) data-structure updates,
where τ is the total number of 1’s.

(Sardar Anisul Haque and M.M.M., 2010).

Thus, BRGC-sorting a sparse set of n big integers fits within O(τ +n).
(Haque, Hossain, Moreno Maza) Cache Friendly Sparse Matrix Vector Multilication PASCO 2010 13 / 21



Binary Reflected Gray Codes

From the University of Florida sparse matrix collection

0 0.5 1 1.5 2

x 10
5

0

2

4

6

x 10
4

nz = 465294
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Binary Reflected Gray Codes

Non-zero streams
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Cache Complexity Analyzes

Cache complexity estimates

Expected cache misses in accessing x when A is random

Recall that A is very sparse. Assume that n is large enough such that the
vector x does not fit into the cache, typically n ∈ O(Z 2)

Q1 = Z/L + (τ − Z/L)
n − Z/L

n
.

Indeed, no spatial locality should be expected in accessing x .

Expected cache misses in accessing x after BRGC-reordering A

Q2 = n/L + Z/L + (n − Z/L)
n/ρ− Z/L

n/ρ
+ (τ − 2n)

cn/ρ− Z/L

cn/ρ
,

where c is the average number of nonzero streams under one step of first
level nonzero stream and 1 ≤ c ≤ ρ.
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Cache Complexity Analyzes

How much do we save?

For our large test matrices and today’s L2 cache sizes, the following
conditions hold:

n ∈ O(Z 2) and

Z > 210.

Using MAPLE, we could prove the following relation:

Q1 −Q2 ≈ n.
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Experimentation

Experimentation

Matrix m n τ SPMxV SPMxV
name with BRGC without any

ordering ordering

fome21 67748 216350 465294 3.6 3.9

lp ken 18 105127 154699 358171 2.7 3.1

barrier2-10 115625 115625 3897557 19.0 19.1

rajat23 110355 110355 556938 3.0 3.0

hcircuit 105676 105676 513072 2.6 2.5

GL7d24 21074 105054 593892 3.0 3.2

matrix 9 103430 103430 2121550 8.4 8.0

GL7d17 1548650 955128 25978098 484.6 625.0

GL7d19 1911130 1955309 37322725 784.6 799.0

wiki-20051105 1634989 1634989 19753078 258.9 321.0

wiki-20070206 3566907 3566907 45030389 731.5 859.0
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Experimentation

Summary

1 Reordering columns or rows in SPMxV can improve locality
significantly.

2 Optimal reordering is computationally hard.

3 Preprocessing cost needs to be amortized against the SPMXVs in the
conjugate gradient type algorithms.

4 BRGC ordering improves locality.

5 BRGC ordering technique can be implemented in linear time w.r.t. τ .

6 The cost of BRGC ordering can be amortized before
√
n SPMXVs in

conjugate Gradient type algorithms.

7 The matrices used in our experimentation are very sparse but already
have nice structures, so they are far from the (ideal) random case.
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