
Computing Cylindrical Algebraic Decomposition
via Triangular Decomposition

Changbo Chen, Marc Moreno Maza, Bican Xia and Lu Yang

University of Western Ontario, Canada
Massachusetts Institute of Technology, USA

Peking University, China
East China Normal University, China

July 29, 2009



Background

Cylindrical algebraic decomposition (CAD) is a fundamental tool in
real algebraic geometry. It was introduced by Collins in 1973 and
has been followed by lots of improvements, like

◮ improved projection methods
(McCallum 88, 98, Hong 90, Brown 01)

◮ partially built CADs
(Collins and Hong 91, McCallum 93, Strzeboński 00)

◮ improved stack construction
(Collins, Johnson and Krandick 02)

◮ efficient projection orders
(Dolzmann, Seidl and Sturm 04)

◮ · · ·



Motivation

1. Understand the relations and possible interactions between
CAD and triangular decompositions of polynomial systems.



Motivation

1. Understand the relations and possible interactions between
CAD and triangular decompositions of polynomial systems.

2. Investigate the possibility of improving the practical efficiency
of CAD implementation by means of modular methods and fast
polynomial arithmetic, being developed for triangular
decompositions.



Cylindrical Algebraic Decomposition (I)

A cylindrical algebraic decomposition of Rn can be defined
inductively as follows.

• n = 1. A CAD of R is a finite partition of the real line into points
and open intervals.



Cylindrical Algebraic Decomposition (II)

• n > 1. Given a CAD D ′ of Rn−1, one builds a CAD D of Rn as
follows. Above each region R of D ′:

◮ consider finitely many disjoint graphs (called sections) of
continuous real-valued algebraic functions,

◮ decomposing the cylinder R × R1, into sections and sectors

(located between two consecutive sections), which form a
stack over R,

◮ then all the sections and sectors are the elements of D.



A Cylindrical Algebraic Decomposition of R2

Induced by the Tacnode Curve

Tacnode curve: y4 − 2y3 + y2 − 3x2y + 2x4 = 0.



Algorithm of Collins

Projection: Starting from the input Fn ⊂ Q[y1, . . . , yn],
repeatedly apply a projection operator to eliminate
the variables one by one until a set of univariate
polynomials are obtained

Fn → Fn−1 → · · · → F1

such that an Fk -invariant CAD of Rk can be
constructed from an Fk−1-invariant CAD of Rk−1, for
2 ≤ k ≤ n.

Lifting: One isolates the real roots of polynomial in F1 and
deduces a CAD of R1. For each region of the CAD of
R1, one evaluates the polynomials of F2 at a sample

point and isolates their real roots, from which one
produces a stack over the region. Continuing in this
manner, one finally obtains a CAD of Rn.



Another View of CAD

A CAD of Rn is a partition of Rn, where

◮ all the cells are cylindrically arranged, that is for all 1 ≤ j < n

the projections on the first j coordinates (y1, . . . , yj) of any
two cells are either identical or disjoint.

◮ each cell is a connected semi-algebraic subset, called a region

For Fn ⊂ Q[y1, . . . , yn], a CAD of Rn is Fn-invariant if above each
region of it, the sign of each f ∈ Fn is constant.



Our Method

Fn: a set of polynomials of Q[y1, . . . , yn].

Initial Partition: we decompose Cn into disjoint constructible sets
C1, . . . ,Ce such that for each f ∈ Fn, either f is
identically zero in Ci or f vanishes at no points of Ci .

Make Cylindrical: we transform the initial partition and obtain
another partition of Cn into disjoint constructible sets
such that this second decomposition is cylindrical.

Make Semi-Algebraic: from the previous decomposition we
produce an Fn-invariant CAD of Rn via real root
isolation of zero-dimensional regular chains.



The Three Phases

Fn ⊂ Q[y1, · · · , yn]
↓

Initial Partition
↓

C : a partition of Cn into constructible sets
↓

Make Cylindrical

↓
D : a cylindrically arranged partition of Cn into constructible sets

↓

Make SemiAlgebraic

↓
An Fn-invariant CAD of Rn



Representation of Constructible Sets

A pair R = [T , h] is called a regular system if T is a regular chain,
and h is a polynomial which is regular w.r.t sat(T ).

Theorem (CGLMP, CASC2007)

Every constructible set can be written as a finite union of the zero

sets of regular systems.

The constructible set






x(1 + y) − s = 0
y(1 + x) − s = 0

x + y − 1 6= 0
(1)

can be represented by two regular systems

R1 :
T1 =

{

(y + 1)x − s

y2 + y − s

h1 = y − 2s + 1
R2 :

T2 =







x + 1
y + 1
s

h2 = 1



Initial Partition

Let Fn = {f1, . . . , fs} be a finite subset of Q[y1 < · · · < yn]. We
compute an intersection free basis of the s + 1 sets
f1 = 0, . . . , fs = 0 and f1 · · · fs 6= 0, where each element is
represented a regular system and their sets from a partition of Cn.

Consider the parametric parabola p = ax2 + bx + c , where
x > c > b > a. InitialPartition decomposes C4 into four pairwise
disjoint sets, each of which is the zero set of a regular system.

r1 :=







c = 0
b = 0
a = 0

, r2 :=







bx + c = 0
b 6= 0
a = 0

,

r3 :=

{

ax2 + bx + c = 0
a 6= 0

, r4 :=
{

ax2 + bx + c 6= 0 .



The Three Phases

Fn ⊂ Q[y1, · · · , yn]
↓

Initial Partition
↓

C : a partition of Cn into constructible sets
↓

Make Cylindrical

↓
D : a cylindrically arranged partition of Cn into constructible sets

↓

Make SemiAlgebraic

↓
An Fn-invariant CAD of Rn



Separate Zeros

Let rs = [T , h] be a regular system of Q[y1 < · · · < yn]. We see
y1, . . . , yn−1 as parameters, denoted by u, and regard rs as a
parametric system in u, that we solve via comprehensive triangular
decomposition.

As a result, we obtain a partition of the projection onto the
u-space of Zero(rs) such that, above each cell R of the partition,
Zero(rs) equals the union of the zero sets of some polynomials
p1, . . . , pr ∈ R[y1, . . . , yn], where

◮ the initial of each pj does not vanish on R,

◮ the pj ’s are squarefree and pairwise coprime at any point of R.



For the regular system

r3 :=

{

ax2 + bx + c = 0
a 6= 0

Calling SeparateZeros(r3) will get

{a(4ac − b2) 6= 0} → {ax2 + bx + c}
{4ac − b2 = 0, a 6= 0} → {2ax + b}



Make Cylindrical

By calling SeparateZeros recursively, MakeCylindrical produces a
cylindrical decomposition of Cn, defined inductively as folows.



Make Cylindrical

By calling SeparateZeros recursively, MakeCylindrical produces a
cylindrical decomposition of Cn, defined inductively as folows.

• n = 1. A cylindrical decomposition of C is either C itself or of
the form p1 = 0, · · · , pr = 0 and p1 · · · pr 6= 0 where p1, . . . , pr are
nonconstant coprime squarefree polynomials of Q[y1].



Make Cylindrical

By calling SeparateZeros recursively, MakeCylindrical produces a
cylindrical decomposition of Cn, defined inductively as folows.

• n = 1. A cylindrical decomposition of C is either C itself or of
the form p1 = 0, · · · , pr = 0 and p1 · · · pr 6= 0 where p1, . . . , pr are
nonconstant coprime squarefree polynomials of Q[y1].

• n > 1. Given a cylindrical decomposition D′ of Cn−1, one builds
a cylindrical decomposition D of Cn. For each cell Di of Cn−1:



Make Cylindrical

By calling SeparateZeros recursively, MakeCylindrical produces a
cylindrical decomposition of Cn, defined inductively as folows.

• n = 1. A cylindrical decomposition of C is either C itself or of
the form p1 = 0, · · · , pr = 0 and p1 · · · pr 6= 0 where p1, . . . , pr are
nonconstant coprime squarefree polynomials of Q[y1].

• n > 1. Given a cylindrical decomposition D′ of Cn−1, one builds
a cylindrical decomposition D of Cn. For each cell Di of Cn−1:

◮ either Di × C is an element of D, or



Make Cylindrical

By calling SeparateZeros recursively, MakeCylindrical produces a
cylindrical decomposition of Cn, defined inductively as folows.

• n = 1. A cylindrical decomposition of C is either C itself or of
the form p1 = 0, · · · , pr = 0 and p1 · · · pr 6= 0 where p1, . . . , pr are
nonconstant coprime squarefree polynomials of Q[y1].

• n > 1. Given a cylindrical decomposition D′ of Cn−1, one builds
a cylindrical decomposition D of Cn. For each cell Di of Cn−1:

◮ either Di × C is an element of D, or

◮ there exists ri > 0 pi ,1, . . . , pi ,ri ∈ R[y1, . . . , yn] such that



Make Cylindrical

By calling SeparateZeros recursively, MakeCylindrical produces a
cylindrical decomposition of Cn, defined inductively as folows.

• n = 1. A cylindrical decomposition of C is either C itself or of
the form p1 = 0, · · · , pr = 0 and p1 · · · pr 6= 0 where p1, . . . , pr are
nonconstant coprime squarefree polynomials of Q[y1].

• n > 1. Given a cylindrical decomposition D′ of Cn−1, one builds
a cylindrical decomposition D of Cn. For each cell Di of Cn−1:

◮ either Di × C is an element of D, or

◮ there exists ri > 0 pi ,1, . . . , pi ,ri ∈ R[y1, . . . , yn] such that
◮ the initial of each pj does not vanish on Di and,



Make Cylindrical

By calling SeparateZeros recursively, MakeCylindrical produces a
cylindrical decomposition of Cn, defined inductively as folows.

• n = 1. A cylindrical decomposition of C is either C itself or of
the form p1 = 0, · · · , pr = 0 and p1 · · · pr 6= 0 where p1, . . . , pr are
nonconstant coprime squarefree polynomials of Q[y1].

• n > 1. Given a cylindrical decomposition D′ of Cn−1, one builds
a cylindrical decomposition D of Cn. For each cell Di of Cn−1:

◮ either Di × C is an element of D, or

◮ there exists ri > 0 pi ,1, . . . , pi ,ri ∈ R[y1, . . . , yn] such that
◮ the initial of each pj does not vanish on Di and,
◮ the pj ’s are squarefree and pairwise coprime at all u ∈ Di ,



Make Cylindrical

By calling SeparateZeros recursively, MakeCylindrical produces a
cylindrical decomposition of Cn, defined inductively as folows.

• n = 1. A cylindrical decomposition of C is either C itself or of
the form p1 = 0, · · · , pr = 0 and p1 · · · pr 6= 0 where p1, . . . , pr are
nonconstant coprime squarefree polynomials of Q[y1].

• n > 1. Given a cylindrical decomposition D′ of Cn−1, one builds
a cylindrical decomposition D of Cn. For each cell Di of Cn−1:

◮ either Di × C is an element of D, or

◮ there exists ri > 0 pi ,1, . . . , pi ,ri ∈ R[y1, . . . , yn] such that
◮ the initial of each pj does not vanish on Di and,
◮ the pj ’s are squarefree and pairwise coprime at all u ∈ Di ,
◮ Di × (p1 = 0) , · · · ,Di × (pr = 0) and Di × (p1 · · · pr 6= 0) are

in D.



The algorithm MakeCylindrical takes r1, r2, r3 and r4 as input and
outputs a cylindrical decomposition of C4. Let t = bx + c ,
q = 2ax + b, and r = 4ac − b2, the decomposition can be
described a tree. root

�
�

�
��+

Q
Q

Q
QQs

a = 0 a 6= 0
�

�
�

��+ ?
b = 0 b 6= 0

�
�

�
��+ ? ?

c = 0 c 6= 0 C

? ?




�
J
Ĵ

C C t = 0 t 6= 0

?
C







�

@
@@R

r = 0 r 6= 0




�

@
@R

q = 0 q 6= 0
?

HHHHj
p = 0 p 6= 0



The Three Phases

Fn ⊂ Q[y1, · · · , yn]
↓

Initial Partition
↓

C : a partition of Cn into constructible sets
↓

Make Cylindrical

↓
D : a cylindrically arranged partition of Cn into constructible sets

↓

Make SemiAlgebraic

↓
An Fn-invariant CAD of Rn



Make SemiAlgebraic (I)

Theorem (Collins)

Let p ∈ R[y1 < · · · < yn] and R be a region of Rn−1. If init(p)
does not vanish R and the number of distinct complex roots of p is

invariant on R, then p is delineable on R, that is, V (p) is the union

of finitely many disjoint graphs of continuous functions over R.



Make SemiAlgebraic (II)

Corollary

Let {p1, . . . , pr} ⊂ R[y1 < · · · < yn] and let R be a region of

Rn−1. Assume that for all α ∈ R:

◮ each init(pj) does not vanish at α;

◮ all pj(α, yn), as polynomials of R[yn], are squarefree and

coprime.

Then each pj is delineable on R and any two sections of the

cylinder over R, given by different pi and pj , are disjoint.

By Collins’ theorem and its corollary, one derives a CAD of Rn from
a cylindrical decomposition of Cn, by means real root isolation of
zero-dimensional regular chains.



Maple Demo

Special thanks to James H. Davenport and John May for the
piecewise construction.



Comparing with Collins’ Algorithm

Consider the parametric parabola p = ax2 + bx + c , where
x > c > b > a.

◮ Our algorithm produces a p-invariant CAD of R4 with 27
cells, which is minimal.

◮ By Collins-Hong or McCallum projection operator, one
produces the following polynomials during the projection
phase:

ax2 + bx + c , b2 − 4ac , c , b, a.

In the lifting phase, one then obtains a CAD of R4 with 115
cells (Brown 01)!

◮ If Brown-McCallum projection operator is applied, one could
also obtain a CAD of R4 with 27 cells (Brown 01). However,
this projection operator may fail in some (rare) cases.



Sys InitialPartition MakeCylindrical MakeSemiAlgebraic Total NR

1 0.024 0.096 0.024 0.144 27
2 1.184 2.856 1.048 5.088 895
3 0.004 7.512 0.704 8.220 233
4 0.264 1.368 1.080 2.716 421
5 0.016 0.052 0.116 0.184 55
6 0.108 0.156 0.120 0.384 41
7 2.704 3.600 1.360 7.664 893
8 0.380 1.608 1.196 3.184 365
9 0.288 0.532 0.264 1.084 209
10 5.668 48.079 18.833 72.640 3677
11 0.252 1.192 0.620 2.068 563
12 2.664 135.028 88.142 225.862 20143
13 10.576 35.846 6.905 53.335 4949
14 5.728 71.760 2520.354 2597.878 27547
15 690.731 2513.817 299.250 3503.954 66675
16 895.435 2064.469 - - -
17 0.052 - - - -
18 - - - - -

Table 1 Timing (s) and number of cells for CAD



Observation

◮ For most examples the steps of the algorithm dedicated to
computations in complex space, where GCDs of polynomials
modulo regular chains are computed intensively, dominate the
step taking place in the real space.

◮ The data suggests that the modular methods and efficient
implementation techniques being developed in
RegularChains library have a large potential for improving
our current implementation.



Conclusion

◮ We have introduced an intermediate concept, cylindrical
decomposition of the complex space, from which a CAD of Rn

can easily be extracted.

◮ W.r.t Collins-Hong projection operator, even for simple
examples, our approaches tends to produce much less cells
due to its case discussion feature.

◮ W.r.t Brown-McCallum projection operator, it can always
generate a CAD while the Brown-McCallum projection operator
may fail (rarely).



1. Parametric parabola: {ax2 + bx + c}, x > c > b > a.
2. Whitney umbrella: {x − uv , y − v , z − u2}, v > u > z > y > x .
3. Quartic: {x4 + px2 + qx + r}, x > p > q > r .
4. Sphere-Catastrophe: {z2 + y2 + x2 − 1, z3 + xz + y}, x > y > z .
5. Tacnode curve: {y4 − 2y3 + y2 − 3x2y + 2x4}, y > x .
6. Arnon-84-2: {144y2 + 96x2y + 9x4 + 105x2 + 70x − 98,
xy2 + 6xy + x3 + 9x}, y > x .
7. A real implicitization problem:
{x − uv , y − uv2, z − u2}, v > u > z > y > x .
8. Ball-circular-cylinder:
{x2 + y2 + z2 − 1, x2 + (y + z − 2)2 − 1}, z > y > x .
9. Termination of term rewrite system
{x − r , y − r , x2(1 + 2y)2 − y2(1 + 2x2)}, r > x > y .
10. Collins and Johnson: {3a2r + 3b2 − 2ar − a2 − b2,
3a2r + 3b2r − 4ar + r − 2a2 − 2b2 + 2a, a − 1/2, b, r , r − 1},
r > a > b.
11. Range of lower bounds
{a, az2 + bz + c , ax2 + bx + c − y}, z > c > b > a > x > y .



12. X -axis ellipse problem: {b2(x − c)2 + a2y2 − a2b2,
x2 + y2 − 1}, y > x > b > c > a.
13. Davenport and Heintz
{a − d , b − c , a − c , b − 1, a2 − b}, a > b > c > d .
14. Hong-90
{r + s + t, rs + st + tr − a, rst − b}, t > s > r > b > a.
15. Solotareff-3
{r , r − 1, u + 1, u − v , v − 1, 3u2 + 2ru − a, 3v2 + 2rv − a,
u3 + ru2 − au + a − r − 1, v3 + rv2 − av − 2b − a + r + 1},
b > u > v > r > a.
16. Collision problem
{17

16
t − 6, 17

16
t − 10, x − 17

16
t + 1, x − 17

16
t − 1, y − 17

16
t + 9,

y − 17
16

t + 7, (x − t)2 + y2 − 1}, t > x > y .
17. McCallum trivariate random polynomial
{(y − 1)z4 + xz3 + x(1 − y)z2 + (y − x − 1)z + y}, z > y > x .
18. Ellipse problem
{b2(x − c)2 + a2(y − d)2 − a2b2, a, b, x2 + y2 − 1},
y > x > d > c > b > a.


