Computing Cylindrical Algebraic Decomposition via Triangular

Overview

Cylindrical algebraic decomposition (CAD) is a fundamental tool
in real algebraic geometry. For F, C R|yi,...,y,| an F,-invariant
CAD of r" is a partition C1, ..., C, of R" together with one sample
point S; € C;, for all 1 < ¢ < e, such that the sign of each f € F,
does not change in C; and can be determined at .S;.

The original algorithm of Collins and its subsequent ameliorations

are based on a projection and lifting scheme which computes from F,
a set Fl,_1 C Ry, ...,Yn_1] such that an F,-invariant CAD of rR"
results from an F),,_i-invariant CAD of R”~!. This construction and
the case n = 1 rely on real root isolation of univariate polynomials.
We propose a different approach which proceeds by transforming
successive partitions of the complex n-dimensional space. Our fu-
ture goal i1s to investigate whether fast polynomial arithmetic and
modular methods available for triangular decomposition could im-
prove the practical efficiency of CAD implementation.

Our Method

Initial Partition: we decompose ¢" into disjoint constructible sets
Ci,...,C, such that for all 1 < ¢ < e, for each f € F,, either
f 1s identically zero in C; or f vanishes at no points of C}.

Make Cylindrical: we transform the initial partition and obtain an-
other partition of " into disjoint constructible sets such that this
second decomposition is cylindrical in the following sense: for all
1 < j < n the projections on the first j coordinates (yy, ..., y;)
of any two constructible sets are either identical or disjoint.

Make Semi-Algebraic: from the previous decomposition we produce
an F-invariant CAD of r".

Zero Separation

We describe our core routine: SeparateZeros. Let rs = [T, h] be
< yn|. We regard rs as a para-
metric system in u = vy, ..., Yy,_1, that we solve via comprehensive

a regular system of kljy; < ---

triangular decomposition. As a result, we obtain a partition of the
projection onto the u-space of zero-set Z(rs) := W(T) \ V(h) such
that, above each cell R of the partition, Z(rs) equals the union of
the zero sets of polynomials py,...,p, € Rly1, ..., y,|, where

e the mitial of each p; does not vanish on R,

e the p;’s are squarelree and pairwise coprime at any point of f.
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Make Cylindrical

We apply SeparateZeros to the regular systems in the output of

InitialPartition recursively. Finally we produce a cylindrical decom-

position of ¢", that is, a finite partition of c" into constructible sets,
called cells and satistying the following.

e n = 1. A cylindrical decomposition of ¢ is either ¢ itselt or of
the form p;y = 0, .... p, = 0, p1---p- # 0 where py,...,p, are
nonconstant squarefree and pairwise coprime polynomials of k|y].

n—1

e n > 1. From a cylindrical decomposition D’ of ¢, one builds a

cylindrical decomposition D of ¢” as follows. For each cell D; of D"
(1) either D; x ¢ is an element of D, or
(2) there exist polynomials p;1,...,Dir. € Ry, ..., y,| such that

(a) the initial of each p; does not vanish on D; and,
t

(b) the p,’s are squarefree and pairwise coprime at all u € D;,
(c)D;xp1=0,---,D; xp,=0and D; X (p;---p, # 0) are in D.

Make SemiAlgebraic

Let p € r[u]ly,] be nonconstant and R be a region of "', If

lc(p, y,) does not vanish on R and the number of distinct complex
roots of p is invariant on R, then p is delineable on R, that is,
V(p) is the union of finitely many disjoint graphs of continuous
functions over R.

From this theorem of Collins, we derive derive a CAD of R" from
a cylindrical decomposition of ¢, by means of real root isolation
of zero-dimensional regular chains.

Consider the polynomial p = ax?® + bx + ¢, where z > ¢ > b > a.

The first step, InitialPartition, decomposes ¢* into four pairwise dis-
joint sets, each of which is the zero set of a regular system.

c=0 bz + ¢ =0 ar® +bxr +c=0
ri=<3b=0, r9: =1 b0, r3:= 040
a=0 \ a =10

and 74 := {ax® + bx + ¢ # 0}.

The algorithm MakeCylindrical takes 1,79, 73 and 74 as input and
outputs a cylindrial decomposition of ¢*. Let t = bx+c, ¢ = 2ax+0,
and r = 4ac — b*, the decomposition can be described by a tree.
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From the above tree, the algorithm MakeSemiAlgebraic finally pro-
duces a CAD of r* with 27 cells.

By Collins-Hong or McCallum projection operator, one produces
the following polynomials during the projection phase:

ax’ + bx + ¢, b* — dac, ¢, b, a.

In the lifting phase, one then obtains a CAD of r* with 115 cells!

A CAD with 27 cells is obtained by McCallum-Brown projection
operator. However, this operator fails in some (rare) cases.

Concluding Remarks

e Our preliminary implementation, realized with the RegularChains
library, involves only high-level MAPLE interpreted code. In the
table, Ng denotes the number of elements in our CAD.

e Our experimental results show that our method can already pro-
cess well-known test examples from the literature, see our IS-
SAC’09 paper for details. Our data also show that polynomial
GCDs and resultants modulo regular chains are the dominant cost.

e T'his suggests that the modular methods and efficient implementa-
tion techniques being developed in RegularChains library have
a large potential for improving our current implementation.

Svs InitialPartition MakeCylindrical MakeSemiAlgebraic. Total | Ny
7 2.704 3.600 1.360 7.664 | 893
8 0.380 1.608 1.196 3.184 | 365
9 0.288 0.532 0.264 1.084 | 209
10 5.668 48.079 18.833 72.640 | 3677
11 0.252 1.192 0.620 2.068 | 563
12 2.6064 135.028 88.142 225.862 120143
13 10.576 35.846 6.905 53.335 | 4949
14 D.728 71.760 2520.354 2097.878 27547
15 690.731 2513.817 299.250 3503.954 66675
16 895.435 2064.469 > 7200 > 7200 | N/A




