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Overview

Cylindrical algebraic decomposition (CAD) is a fundamental tool

in real algebraic geometry. For Fn ⊂ R[y1, . . . , yn] an Fn-invariant

CAD of R
n is a partition C1, . . . , Ce of R

n together with one sample

point Si ∈ Ci, for all 1 ≤ i ≤ e, such that the sign of each f ∈ Fn

does not change in Ci and can be determined at Si.

The original algorithm of Collins and its subsequent ameliorations

are based on a projection and lifting scheme which computes from Fn

a set Fn−1 ⊂ R[y1, . . . , yn−1] such that an Fn-invariant CAD of R
n

results from an Fn−1-invariant CAD of R
n−1. This construction and

the case n = 1 rely on real root isolation of univariate polynomials.

We propose a different approach which proceeds by transforming

successive partitions of the complex n-dimensional space. Our fu-

ture goal is to investigate whether fast polynomial arithmetic and

modular methods available for triangular decomposition could im-

prove the practical efficiency of CAD implementation.

Our Method

Initial Partition:we decompose C
n into disjoint constructible sets

C1, . . . , Ce such that for all 1 ≤ i ≤ e, for each f ∈ Fn either

f is identically zero in Ci or f vanishes at no points of Ci.

Make Cylindrical:we transform the initial partition and obtain an-

other partition of C
n into disjoint constructible sets such that this

second decomposition is cylindrical in the following sense: for all

1 ≤ j < n the projections on the first j coordinates (y1, . . . , yj)

of any two constructible sets are either identical or disjoint.

Make Semi-Algebraic: from the previous decomposition we produce

an Fn-invariant CAD of R
n.

Zero Separation

We describe our core routine: SeparateZeros. Let rs = [T, h] be

a regular system of k[y1 < · · · < yn]. We regard rs as a para-

metric system in u = y1, . . . , yn−1, that we solve via comprehensive

triangular decomposition. As a result, we obtain a partition of the

projection onto the u-space of zero-set Z(rs) := W (T ) \ V (h) such

that, above each cell R of the partition, Z(rs) equals the union of

the zero sets of polynomials p1, . . . , pr ∈ R[y1, . . . , yn], where

• the initial of each pj does not vanish on R,

• the pj’s are squarefree and pairwise coprime at any point of R.

Make Cylindrical

We apply SeparateZeros to the regular systems in the output of

InitialPartition recursively. Finally we produce a cylindrical decom-

position of C
n, that is, a finite partition of C

n into constructible sets,

called cells and satisfying the following.

• n = 1. A cylindrical decomposition of C is either C itself or of

the form p1 = 0, . . . , pr = 0, p1 · · · pr 6= 0 where p1, . . . , pr are

nonconstant squarefree and pairwise coprime polynomials of k[y1].

• n > 1. From a cylindrical decomposition D′ of C
n−1, one builds a

cylindrical decomposition D of C
n as follows. For each cell Di of D′:

(1) either Di × C is an element of D, or

(2) there exist polynomials pi,1, . . . , pi,ri
∈ R[y1, . . . , yn] such that

(a) the initial of each pj does not vanish on Di and,

(b) the pj’s are squarefree and pairwise coprime at all u ∈ Di,

(c)Di × p1 = 0, · · · , Di × pr = 0 and Di × (p1 · · · pr 6= 0) are in D.

Make SemiAlgebraic

Let p ∈ R[u][yn] be nonconstant and R be a region of R
n−1. If

lc(p, yn) does not vanish on R and the number of distinct complex

roots of p is invariant on R, then p is delineable on R, that is,

V (p) is the union of finitely many disjoint graphs of continuous

functions over R.

From this theorem of Collins, we derive derive a CAD of R
n from

a cylindrical decomposition of C
n, by means of real root isolation

of zero-dimensional regular chains.

Example

Consider the polynomial p = ax2 + bx + c, where x > c > b > a.

The first step, InitialPartition, decomposes C
4 into four pairwise dis-

joint sets, each of which is the zero set of a regular system.

r1 :=
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c = 0

b = 0

a = 0

, r2 :=



















bx + c = 0

b 6= 0

a = 0

, r3 :=







ax2 + bx + c = 0

a 6= 0
,

and r4 := {ax2 + bx + c 6= 0}.

The algorithm MakeCylindrical takes r1, r2, r3 and r4 as input and

outputs a cylindrial decomposition of C
4. Let t = bx+c, q = 2ax+b,

and r = 4ac − b2, the decomposition can be described by a tree.
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From the above tree, the algorithm MakeSemiAlgebraic finally pro-

duces a CAD of R
4 with 27 cells.

By Collins-Hong or McCallum projection operator, one produces

the following polynomials during the projection phase:

ax2 + bx + c, b2 − 4ac, c, b, a.

In the lifting phase, one then obtains a CAD of R
4 with 115 cells!

A CAD with 27 cells is obtained by McCallum-Brown projection

operator. However, this operator fails in some (rare) cases.

Concluding Remarks

•Our preliminary implementation, realized with the RegularChains

library, involves only high-level Maple interpreted code. In the

table, NR denotes the number of elements in our CAD.

•Our experimental results show that our method can already pro-

cess well-known test examples from the literature, see our IS-

SAC’09 paper for details. Our data also show that polynomial

GCDs and resultants modulo regular chains are the dominant cost.

•This suggests that the modular methods and efficient implementa-

tion techniques being developed in RegularChains library have

a large potential for improving our current implementation.

Sys InitialPartition MakeCylindrical MakeSemiAlgebraic Total NR

7 2.704 3.600 1.360 7.664 893

8 0.380 1.608 1.196 3.184 365

9 0.288 0.532 0.264 1.084 209

10 5.668 48.079 18.833 72.640 3677

11 0.252 1.192 0.620 2.068 563

12 2.664 135.028 88.142 225.862 20143

13 10.576 35.846 6.905 53.335 4949

14 5.728 71.760 2520.354 2597.878 27547

15 690.731 2513.817 299.250 3503.954 66675

16 895.435 2064.469 > 7200 > 7200 N/A


