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Solving systems of non-linear, algebraic or differential equations, is a fundamental problem in math-
ematical science. It has been studied for centuries and has stimulated many research developments.
Algorithmic solutions can be classified into three categories: numeric, symbolic and hybrid numeric-
symbolic. The choice for one of them depends on the characteristics of the system of equations to solve.
For instance, it depends on whether the coefficients are known exactly or are approximations obtained
from experimental measurements.This choice depends also on the expected answers, which could be a
complete description of all the solutions, or only the real solutions, or just one sample solution among all
of them.

Symbolic solvers are powerful tools in scientific computing: they are well suited for problems where
the desired output must be exact and they have been applied successfully in areas like digital signal
processing, robotics, theoretical physics, cryptology, dynamical systems, with many important outcomes.
See [7] for an overview of these applications.

Symbolic solvers are also highly complex software. First, they implement sophisticated algorithms,
which are generally at the level of on-going research. Moreover, in most computer algebra systems, the
solve command involves nearly the entire set of libraries in the system, challenging the most advanced
operations on matrices, polynomials, algebraic and modular numbers, polynomial ideals, etc.

Secondly, algorithms for solving systems of polynomial equations are by nature of exponential-space
complexity. Consequently, symbolic solvers are extremely time-consuming when applied to large examples.
Even worse, intermediate expressions can grow to enormous size and may halt the computations, even if
the result is of moderate size. The implementation of symbolic solvers, then, requires techniques that go
far beyond the manipulation of algebraic or differential equations, such as efficient memory management,
data compression, parallel and distributed computing, etc.

Last, but not least, the precise output specifications of a symbolic solver can be quite involved. Indeed,
given an input polynomial system F , defining what a symbolic solver should return implies describing
what the geometry of the solution set V(F ) of F can be. For an arbitrary F , the set V(F ) may consist
of components of different natures and sizes: points, lines, curves, surfaces. This leads to the following
difficult challenge.

Given a polynomial system F and a set of components C1, . . . , Ce, it is hard, in general, to tell
whether the union of C1, . . . , Ce corresponds exactly to the solution set V(F ) or not. Actually, solving
this verification problem is generally (at least) as hard as solving the system F itself.

Because of the high complexity of symbolic solvers, developing verification algorithms and reliable
verification software tools is a clear need. However, this verification problem has received little attention
in the literature. In this paper, we present new techniques for verifying a large class of symbolic solvers.
We also report on intensive experimentation illustrating the high efficiency of our approach w.r.t. known
techniques.

We assume that each component of the solution set V(F ) is given by a so-called regular system.
This is a natural assumption in symbolic computations, well-developed in the literature under different
terminologies, see [1, 22] and the references therein. In broad words, a regular system consists of several
polynomial equations with a triangular shape

p1(x1) = p2(x1, x2) = · · · = pi(x1, x2, . . . , xn) = 0

and a polynomial inequality
h(x1, . . . , xn) 6= 0

such that there exists (at least) one point (a1, . . . , an) satisfying the above equations and inequality. Note
that these polynomials may contain parameters.

Let us consider the following well-known system F taken from [5]. x31 − x6 − x − y = 0
x8 − z = 0
x10 − t = 0
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We aim at solving this system for x > y > z > t, that is, expressing x as a function of y, z, t, then y as a
function of z, t and z as a function of t. One possible decomposition is given by the three regular systems
below: 

(
t4 − t

)
x − ty − z2 = 0

t3y2 + 2t2z2y +
(
−t6 + 2t3 + t − 1

)
z4 = 0

z5 − t4 = 0
t4 − t 6= 0

,


x2 − z4 = 0
y + t2z2 = 0

z5 − t = 0
t3 − 1 = 0

,


x = 0
y = 0
z = 0
t = 0

Another decomposition is given by these other three regular systems:


(
t4 − t

)
x − ty − z2 = 0

tzy2 + 2z3y − t8 + 2t5 + t3 − t2 = 0
z5 − t4 = 0

z
(
t4 − t

)
6= 0

,


zx2 − t = 0
ty + z2 = 0
z5 − t = 0
t3 − 1 = 0

tz 6= 0

,


x = 0
y = 0
z = 0
t = 0

These two decompositions look slightly different (in particular, the second components) and one could
think that, if each of them was produced by a different solver, then at least one of these solvers has a bug.
In fact, both decompositions are valid, but proving respectively that they encode the solution set V(F )
is not feasible without computer assistance. However, proving that they define the same set of points can
be achieved by an expert hand without computer assistance. This is an important observation that we
will guide us in this paper.

Let us consider now an arbitrary input system F and a set of components C1, . . . , Ce encoded by regular
systems S1, . . . , Se respectively. The usual approach for verifying that C1, . . . , Ce correspond exactly to
the solution set V(F ) is as follows.

(1) First, one checks that each candidate component Ci is actually contained in V(F ). This essentially
reduces to substitute the coordinates of the points given by Ci into the polynomials of F : if all
these polynomials vanish at these points, then Ci is a component of V(F ), otherwise, (and up to
technical details that we will skip in this introduction) Ci is not a component of V(F ).

(2) Secondly, one checks that V(F ) is contained in the union of the candidate components C1, . . . , Ce

by:

(2.1) computing a polynomial system G such that V(G) corresponds exactly to C1, . . . , Ce, and

(2.2) checking that every solution of V(F ) cancels the polynomials of G.

Steps (2.1) and (2.2) can be performed using standard techniques based on computations of Gröbner
bases. These calculations are very expensive, as shown by our experimentation.

In this poster, we propose a different approach. The main idea is as follows. Instead of comparing a
candidate set of components C1, . . . , Ce against the input system F , we compare it against the output
D1, . . . , Df produced by another solver. Both this solver and the comparison process are assumed to
be validated. Hence, the candidate set of components C1, . . . , Ce corresponds exactly to the solution set
V(F ) if and only if the comparison process shows that D1, . . . , Df and C1, . . . , Ce define the same solution
set.

We summarize the different verification procedures that are available for triangular decompositions,
including our new approach. We report on experimentation with these verification procedures. Our data
illustrate the high efficiency of our new approach.
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