
Math 506: Complex Variables

James D. Lewis

Winter Term

Detailed Syllabus

Part I: Single Variables: Review and extensions. CR equations and analytic-
ity; Cauchy-Goursat theorem and Cauchy integral formula, Louiville’s theorem;
Morera’s theorem; maximum modulus principle; Laurent series and singularities;
Riemann extension theorem; residues; Schwartz’s lemma; open mapping theorem;
analytic continuation and the dilogarithm; linear fractional transformations; spaces
of analytic functions: Normal families and Montel’s theorem; Riemann mapping
theorem; Picard theorems.

Part II: Several variables. Complex linearity and holomorphicity in several vari-
ables; Hartog’s theorem; Weierstrass preparation theorem; Riemann extension the-
orem; Weierstrass division theorem; Applications: On a UFD, analytic Nullstel-
lensatz; implicit and inverse function theorems; complex manifolds and analytic
subvarieties; meromorphic maps.

Part III: Applications of sheaf theory to complex analysis. Introduction to
sheaves, coherent sheaves, and motivation for sheaf cohomology theory: First and
second Cousin problems [these include the classical Mittag-Leffler and Weierstrass
theorems]; Stein manifold theory and the holomorphic de Rham complex; Dolbeault
cohomology and applications; Riemann surface theory.

Reference Texts: 1. John B. Conway, Functions of One Complex variable; 2.
Serge Lang, Complex Analysis.

Notes will be provided in this course.

Grading: Midterm Exam (40%), Final Exam (60%).
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MATH 506: COMPLEX ANALYSIS

James D. Lewis

§1. Review

Notation

C = R ⊕ iR, i2 = −1, z = x + i y, x = Re(z), y = Im(z), z = r(cos θ +

i sin θ) = rei θ (polar form), θ = tan−1( yx ) = arg(z), r = |z| =
√
zz. Note the real

isomorphism:

C ≃ R2

z 7→ (x, y)

Any map f : C → C can be written in the form f = µ + i ν, µ(x, y), ν(x, y) :
R2 → R. f of type C1 ⇔ µ, ν of type C1, i.e. µx, µy, νx, νy are continuous. A
domain D ⊂ C is an open connected set.

Complex differentiation

We will assume f is of type C1. We introduce the following derivative operators:

∂

∂z
=

1

2

{
∂

∂x
− i

∂

∂y

}

∂

∂z
=

1

2

{
∂

∂x
+ i

∂

∂y

}

One also has differentials:

dz = dx+ i dy

dz = dx− i dy

Define ∂f = ∂f
∂z dz, ∂f = ∂f

∂z dz, df = ∂f
∂xdx+ ∂f

∂y dy.

Claim. df = ∂f + ∂f , viz. d = ∂ + ∂.

Proof. Write f = µ+ i ν. We compute: f = µ+ i ν; by definition df = dµ+ i dν.

df = µxdx+ µydy + i νxdx+ i νydy

= (µx + i νx)dx+ (µy + i νy)dy

∂f =
1

2
(µx − iµy)(dx+ i dy) +

i

2
(νx − i νy)(dx+ i dy)

=

(
µx + νy − i(µy − νx)

2

)
dx+ i

(
µx + νy − i(µy − νx)

2

)
dy

∂f =
1

2
(µx + iµy)(dx− i dy) +

i

2
(νx + i νy)(dx− i dy)

=

[
(µx − νy) + i(µy + νx)

2

]
dx− i

[
(µx − νy) + i(µy + νx)

2

]
dy

(∂ + ∂)f = [µx + i νx]dx+ [µy + i νy]dy

= df
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Definition 1.0. f is complex analytic on a domain D ⊂ C, if ∂f = 0 on D, i.e.
∂f
∂z = 0.

Remarks 1.1.

1)

∂f

∂z
=

1

2
{µx + iµy}+

1

2
{i νx − νy} = 0

⇔ µx = νy
µy = −νx

⇔ CR equations hold.

2) f complex analytic on D ⇔ f ′(z) ∃ on D1, viz.,

∀z ∈ D, lim
∆z→0

f(z +∆z)− f(z)
∆z

exists.

3) Analytic at z ∈ C def⇒ analytic on an open D ∋ z.

Examples.

ez = ex(cos y + i sin y), log z = log |z|+ i arg(z),

sin z =
ei z − e− i z

2 i
, cos(z) =

ei z + e− i z

2
, etc.

are analytic (on their respective domains).

4) Analytic on C⇔ entire.

Complex Integration. Let f : C→ C be of type C1, z(t) : I = [a, b] ⊂ R→ C ⊂
C a piecewise C1 curve

∫

C

fdz
def
=

∫ b

a

f(z(t))z′(t)dt.

Note that

∣∣∣∣
∫

C

fdz

∣∣∣∣ ≤
∫

C

|f ||dz| ≤
(
maxC |f |

)
•
(
Arclength(C)

)

1This is in fact the precise definition of complex analytic, where one only assumes a priori

that f is continuous (It will later follow that f is C∞, using f analytic ⇒ f ′ analytic) . By

choosing ∆z = ∆x or i∆y, the limit process gives f ′(z) = µx + i νx = νy − iµy , hence the CR
equations hold. Conversely, if f is of type C1 on D and if the CR equations hold, then f is
complex analytic in the sense of (1.1)(2). The reason is this: Using the mean value theorem,

one can write ∆µ = µ(x + ∆x, y + ∆y) − µ(x, y) = µx(x, y)∆x + µy(x, y)∆y + |∆z|ǫ1, ∆ν =
ν(x + ∆x, y + ∆y) − ν(x, y) = νx(x, y)∆x + νy(x, y)∆y + |∆z|ǫ2, where ∆z = ∆x + i∆y and
lim∆z→0 ǫj = 0. Using the CR equations, one has lim∆z→0 ∆f/∆z = µx + i νx.
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Details

∫

C

fdz =

∫ b

a

f(z(t))z′(t)dt = rei θ

r =

∣∣∣∣
∫

C

fdz

∣∣∣∣ = e− i θ

∫

C

fdz =

∫ b

a

e− i θf(z)(t))z′(t)dt

=

∫ b

a

Re
(
e− i θf(z(t))z′(t)

)
dt

≤
∫ b

a

|
(
e− i θf(z(t))z′(t)

)
|dt

=

∫ b

a

|f(z(t)||z′(t)|dt

:=

∫

C

|f ||dz|

Let z(t) : [a, b] → C ⊂ C define a simple-closed curve C in C. Then we have
C = ∂D some region D.

Facts from exterior algebra:

dz = dx = i dy, dz = dx− i dy, dx∧ dx = dy∧ dy = 0, dx∧ dy = −dy∧ dx. Thus
dz ∧ dz = (dx− i dy) ∧ (dx+ i dy) = 2 i dx ∧ dy. dz ∧ dz = dz ∧ dz = 0.

∫

C

fdz
Stokes’
=

∫∫

D

df ∧ dz

=

∫∫

D

(∂ + ∂)f ∧ dz

=

∫∫

D

∂f

∂z
dz ∧ dz︸ ︷︷ ︸

=0

+

∫∫

D

∂f

∂z
dz ∧ dz

= 2 i

∫∫

D

∂f

∂z
dx ∧ dy

=: 2 i

∫∫

D

∂f

∂z
dxdy

Upshot:

Cauchy-Goursat Theorem 1.2. Assume given f analytic on D, viz., analytic
on and inside a simple-closed curved C ⊂ C. Then:

∫

C

fdz = 0.

[Alternatively, recall Greens’ Theorem:
∫

C

Pdx+Qdy =

∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA
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Thus:

∫

C

fdz =

∫

C

(µ+ i ν)(dx+ i dy) =

∫

C

µdx︸︷︷︸
Pdx

+(−νdy)︸ ︷︷ ︸
Qdy

+ i

∫

C

νdx︸︷︷︸
Pdx

+ µdy︸︷︷︸
Qdy

= −
∫∫

D

(
νx + µy︸ ︷︷ ︸

=0

)
dA +

∫∫

D

(
µx − νy︸ ︷︷ ︸

=0

)
dA = 0.]

Remark 1.2.1 Assuming only f continuous and that f ′(z) exists on D in the
sense of (1.1)(2), one can still prove the Cauchy-Goursat theorem in this case.
The idea is this: Firstly, the theorem holds if f(z) = zn, n an integer ≥ 0 and
where C is any closed curve (and is still true for n any integer 6= −1 if C is any
closed curve not passing through 0). This uses the existence of an antiderivative
F (z) = zn+1/(n + 1). Next, for a simple-closed curve C ⊂ C, let D be C

⋃

region inside C. D is contained in a rectangle R which can be subdivided into
subrectangles Rij . Put Dij = Rij ∩D, and choose any pij ∈ Dij . Then

∫

C

fdz =
∑

i,j

∫

∂Dij

fdz =
∑

i,j

∫

∂Dij

fijdz,

where
fij = f(z)− f(pij)−∆zijf

′(pij), ∆zij = z − pij ,

and where we use the fact that ∂Dij is a closed curve. UsingD compact, a sequential
compactness argument gives us the following: For any given ǫ > 0, there is a
subdivision R =

⋃
ij Rij for which |fij | ≤ |∆zij |ǫ. The rest of the proof uses

standard estimates, and is left to the reader.

Corollary 1.3. [Cauchy-Integral Formula (CIF)] (Same assumption as in Cauchy-
Goursat) Let p ∈ int(D). Then

f(p) =
1

2π i

∫

C

f(z)

(z − p)dz,

where the orientation on the curve C is counterclockwise.

Proof. By the extended Cauchy-Goursat Theorem,

∫

C

f(z)

z − pdz = lim
ǫ→0

∫

|z−p|=ǫ

f(z)

z − pdz

= lim
ǫ→0

i

∫ 2π

0

f(p+ ǫeit)dt (z(t) = p+ ǫeit)

= 2π i f(p)

Corollary 1.4. [Cauchy-Integral Formula, Version II]

f (n)(p) =
n!

2π i

∫

C

f(z)

(z − p)n+1
dz.
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Proof. By usual CIF & w ∈ int(D),

f(w) =
1

2π i

∫

C

f(z)

(z − w)dz.

Thus

f ′(w) =
1

2π i

∫

C

(
d

dw

f(z)

(z − w)

)
dz =

1

2π i

∫

C

f(z)

(z − w)2 dz

The rest is induction. . .

Corollary 1.5. f analytic ⇒ f ′ analytic.

Corollary 1.6. [Louiville’s Theorem] The only bounded entire functions are con-
stants.

Proof. Assume given entire f(z) with |f(z)| ≤M on C. Then ∀p ∈ C,

f ′(p) = lim
R→∞

1

2π i

∫

|z−p|=R

f(z)

(z − p)2 dz.

Thus

|f ′(p)| ≤ lim
R→∞

M

2π

2πR

R2
= lim
R→∞

M

R
= 0.

[Thus f ′ ≡ 0 on C with f = µ + i ν ⇒ 0 = f ′ = µx + i νx
CR
= νy − iµy, hence

µx ≡ µy ≡ νx ≡ νy ≡ 0 on C. Hence µ, ν ∈ R⇒ f = µ+ i ν ∈ C.]

Corollary 1.7. [Maximum-Modulus Principle] Let f(z) be analytic on an open
connected set D ∈ C. Fix p ∈ D. If |f(z)| ≤ |f(p)|∀z ∈ D, then f(z) is constant
on D.

Proof. We have f(p) = 1
2π i

∫
|z−p|=ǫ

f(z)
z−pdz. Thus

|f(p)| ≤ 1

2π

∫

|z−p|=ǫ

|f(z)|
|z − p| |dz| ≤

1

2π

∫

|z−p|=ǫ

|f(p)|
|z − p| |dz| = |f(p)|.

Therefore ∀ǫ-circles in D centered at p, |f(z)| = |f(p)| on |z − p| = ǫ, and hence
|f(z)| = |f(p)| is constant on an ǫ-disk ∆ǫ(p) centered at p. But f(z), |f(z)| =
|f(p)| are analytic on ∆ǫ(p) ⇒ f(z) = |f(p)|2/f(z) is analytic on ∆ǫ(p) (provided
non-zero), hence f(z) ≡ C on ∆ǫ(p). Finally {z ∈ D

∣∣ |f(z)| = |f(p)|} is both open
and closed in D, and hence is all of D since D is connected. �

Remark 1.7.1. Lets assume the setting in 1.7 above with the added assumptions
that D is bounded and that f extends to a continuous function f : D → C. Let
C := D\D be the boundary. By the Heine-Borel theorem, |f(z)| attains a maximum
at some point p ∈ D. Then the maximum-modulus principle implies that if f is
nonconstant on D, then p ∈ C.

Application of Louiville
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Corollary 1.8. [Fundamental Theorem of Algebra] Let p(z) ∈ C[z] be a polynomial
of degree ≥ 1, i.e. a non-constant polynomial. then ∃r ∈ C such that p(r) = 0.

Proof. Otherwise q(z) := 1
p(z) is entire on C. But

lim
z→∞

q(z) = 0,

hence |q(z)| ≤ 1 on |z| ≥ R for some R. Therefore by continuity, q(z) is bounded,
hence constant, therefore p(z) is constant.

Corollary 1.9.

deg p(z) = n ⇒ p(z) = λ

n∏

j=1

(z − rj), λ ∈ C.

Proof. Euclid division and induction.

Morera’s Theorem 1.10. If f is continuous throughout a domain D ∈ C [viz.
open connected set] and if

∫
C
f(z)dz = 0∀ closed contours C lying in D, then f is

analytic throughout D.

Proof. Fix p ∈ D and define

F (z) =

∫ z

p

f(z)dz, z ∈ D,

i.e. by choosing any path from p to z. This is well defined by the hypothesis, and
using the connectedness of D. Then:

lim
∆z→0

F (z +∆z)− F (z)
∆z

=
1

∆z

∫ z+∆z

z

f(z)dz

= lim
∆z→0

1

∆z

∫ 1

0

f(z + t∆z)∆zdt,
(using

z(t) = z + t∆z,
0 ≤ t ≤ 1)

= lim
∆z→0

∫ 1

0

f(z + t∆z)dt

=

∫ 1

0

lim
∆z→0

f(z + t∆z)dt

= f(z)t

∣∣∣∣
1

0

= f(z)

Thus F ′(z)∃ ⇒ F analytic ⇒ f = F ′ analytic by a previous Corollary (1.5).

Corollary 1.11. Suppose that f(z) is analytic on r < |z − p| < R. [Here 0 ≤ r <
R ≤ ∞.] Then f(z) is equal to a Laurent series on this annular region, i.e.

f(z) =
∞∑

n=1

bn(z − p)−n

︸ ︷︷ ︸
principal part

+
∞∑

n=0

an(z − p)n

︸ ︷︷ ︸
analytic part
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Proof. for r′ < |z − p| < R′ r′ > r R′ < R,

f(z)
CIF
=

1

2π i

∫

|w−p|=R′
︸ ︷︷ ︸

(I)

f(w)

w − z dw −
1

2π i

∫

|w−p|=r′︸ ︷︷ ︸
(II)

f(w)

w − z dw

Term I:

1

2π i

∫

|w−p|=R′

f(w)

w − z dw =
1

2π i

∫

|w−p|=R′

f(w)

(w − p)− (z − p)dw

=
1

2π i

∫

|w−p|=R′

f(w)

(w − p)
[
1−

(
z−p
w−p

)]dw

and using |z − p| < |w − p| :

=

∞∑

n=0

[
1

2π i

∫

|w−p|=R′

f(w)

(w − p)n+1
dw

]

︸ ︷︷ ︸
call this an

(z − p)n

i.e., using

∣∣∣∣
z − p
w − p

∣∣∣∣ < 1, & interchanging

∫
&

∑

Term II:

− 1

2π i

∫

|w−p|=r′

f(w)

w − z dw =
1

2π i

∫

|w−p|=r′

f(w)

(z − p)− (w − p)dw

=
1

2π i

∫

|w−p|=r′

f(w)

(z − p)
[
1−

(
w−p
z−p

)]dw

=

∞∑

n=0

[
1

2π i

∫

|w−p|=r′
f(w)(w − p)ndw

]
(z − p)−n−1

using
|w − p|
|z − p| < 1

=

∞∑

n=1

[
1

2π i

∫

|w−p|=r′
f(w)(w − p)n−1

]

︸ ︷︷ ︸
bn

(z − p)−n

Corollary 1.12. [Riemann Extension Theorem] Suppose that f(z) is analytic and
bounded on 0 < |z − p| < R. Then f(z) extends analytically to z = p.

Proof. f(z) bounded ⇒ |f(z)| ≤M . Thus using Cauchy-Goursat:

bn = lim
ǫ→0

1

2π i

∫

|z−p|=ǫ
f(z)(z − p)n−1dz,

hence

|bn| ≤
1

2π
lim
ǫ→0

∫

|z−p|=ǫ
|f(z)||z − p|n−1|dz| ≤ 2πǫ

2π
Mǫn−1 =Mǫn

ǫ→0−−→ 0,

where n ≥ 1. Thus bn = 0 ∀n ≥ 1 ⇒ no principal part. �
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Corollary 1.13. Same hypothesis as in previous corollary. Then

f(z) =

∞∑

n=0

f (n)(p)

n!
(z − p)n on |z − p| < R.

Proof.

an =
1

2π i

∫

|z−p|=R′<R

f(z)

(z − p)n+1
dz

CIF
=

2π i

n!

f (n)(p)

2π i
=
f (n)(p)

n!
∀n ≥ 0,&bn = 0,

∀n ≥ 1.

Corollary 1.14. f entire ⇒ f(z) =
∑∞
n=0

f(n)(0)
n! zn on C.

Notes 1.

|an| ≤
1

2π

∫

|w−p|=R′

|f(w)|
|w − p|n+1

|dw| ≤ M

2π

2πR′

(R′)n+1
=

M

(R′)n
,

using |f(w)| ≤M on r′ ≤ |z − p| ≤ R′
︸ ︷︷ ︸

cpt

Thus for |z − p| < R′, |an(z − p)n| ≤Mλn,

λ = |z−p|
R′ < 1. ⇒ abs convergence on limiting subdisks of radius → R; ⇒ uniform

convergence on limiting subdisks of radius → R or |Remainder term| n→∞−−−→ 0.

Thus e.g. fN (z) :=
∑N
n=0 an(z − p)n

Uniform−−−−−→ f(z) on |z − p| ≤ R′.
2. C closed in |z − p| ≤ R′ ⇒:

0 =

∫

C

fN (z)dz 7→
∫

C

f(z)dz.

Now use Morera and R′ 7→ R to deduce that f(z) is analytic on on |z − p| < R.

Isolated Zeros/Poles/and Essential Singularities

Assume given f(z) analytic on 0 < |z − p| < R,

⇒ f(z) =

∞∑

n=1

bn(z − p)n +

∞∑

n=0

an(z − p)n.

(i) f(z) is said to have a removeable singularity at p, if bn = 0∀n ≥ 1 [i.e. f(z)
extends analytically to p.]

(ii) f(z) is said to have a pole at p if bn 6= 0 for some n ≥ 1 and bn = 0 ∀n >> 1,
i.e. a truncated principal part.

(iii) f(z) is said to have an essential singularity at p if bn 6= 0 for infinitely many
n ∈ N.
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Theorem 1.15. Assume given the setting above. Then

(i) p is removeable ⇔ limz→p f(z)∃. (E.g. sin z
z .)

(ii) p is a pole ⇔ limz→p f(z) =∞. (E.g. cos z
z2 .)

(iii) p is an essential singularity ⇔ limz→p f(z) 6 ∃. (E. g. e1/z has essential
singularity at z = 0.)

Proof. Part (iii) is a consequence of the Picard theorem (to be dicussed later),
but will be proven directly later. Thus the theorem will following from showing
that if p is a pole, then limz→p f(z) = ∞. Thus f(z) = bM

(z−p)M + · · · + b1
(z−p) +

analytic part g(z), (where bM 6= 0),

⇒ |f(z)| ≥
∣∣∣∣
∣∣ bM
(z − p)M

∣∣−
(∣∣ bM−1

(z − p)M−1
+ · · ·+ b1

(z − p) + g(z)
∣∣
)∣∣∣∣

|z−p| small

≥
R=|z−p|−1

|bM |
|z − p|M −

( |bM−1|
|z − p|M−1

+ · · ·+ |b1|
|z − p| + |g(z)|

)

= |bM |RM −
(
|bM−1|RM−1 + · · ·

)
→∞.

Definitions 1.15.1.

(1) In the above, p is a pole of order M , i.e. M is the largest integer for which
bM 6= 0 [M = 1⇔ p = simple pole.]

(2) Suppose f(z) is analytic on |z − p| < R, and that f(p) = 0 but f 6≡ 0 in a
neighbourhood of p. Then f(z) = aN (z − p)N+ higher order terms (h.o.t.), where
aN 6= 0 & N ≥ 1. In this case p is a zero of order N . Note that

f(z) = (z − p)N (aN + (z − p)h(z))︸ ︷︷ ︸
g(z) analytic

,

where g(p) 6= 0. Hence the zeros of a nonvanishing analytic function on a connected
open set are isolated (hence no limit points in the zero set).

Note that f analytic at p⇒ f(z) =
∑∞
n=0

f(n)(p)
n! (z − p)n in a neighbourhood of

p, therefore f (n)(p) = 0 ∀n ≥ 0 ⇒ f ≡ 0 in a neighbourhood of p. Note that the
subset of the domain of f where f ≡ 0 is both open and closed.

Proposition 1.16. Let D ⊂ C be a domain (i.e. an open connected set), and
assume given analytic f(z) : D → C. Then the following are equivalent:

1) f ≡ 0 on D.

2) ∃p ∈ D such that f (n)(p) = 0 ∀n ≥ 0.

3) {z ∈ D | f(z) = 0} has a limit point in D.
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Remark 1.16.1. Let P1 = C ∪ ∞ be the extended complex plane. Note ez has
an essential singularity at ∞, where the coordinate at infinity is given by w = 1/z,
viz., z = ∞ ⇔ w = 0. In contrast to this is the following: We say that f is
meromorphic2 on P1, if the only singularities of f on P1 are poles [⇒ f has isolated
poles and zeros, if nonvanishing on P1, hence only a finite number, since P1 ≈ S2

is compact]. We claim that f is a rational function on C, i.e. f(z) = P (z)/Q(z),
where P (z) & Q(z) are polynomials.

Proof. We can assume that {p1, . . . , pN} with nj = multiplicity of pj , are the poles
of f on C. It is obvious then that

f(z)

M∏

j=1

(z − pj)nj

is entire, which we can write in the form:

f(z)

M∏

j=1

(z − pj)nj =

∞∑

n=0

anz
n,

on C. But f meromorphic at ∞ ⇒ f(1/w) has a pole at w = 0. Thus
∑∞
n=0 anz

n

is a polynomial (i.e. an = 0 for n >> 0). Hence f must be a rational function.

Casorati-Weierstrass Theorem 1.17. Suppose f is analytic on 0 < |z− p| < δ,

with an essential singularity at p. Then f(0 < |z − p| < δ) = C.

Proof. Assume to the contrary, then ∃c ∈ C such that |f(z) − c| > s, some s > 0,
on 0 < |z − p| < δ, therefore g(z) := 1

f(z)−c is holomorphic on 0 < |z − p| < δ

and bounded, ⇒ g is analytic on |z − p| < δ by the Riemann Extension Theorem.
Therefore 1

g(z) = f(z)− c has at worst a pole at p, ⇒ same for f .

Corollary 1.18. p is essential ⇔ limz→p f(z) 6 ∃.

Corollary 1.18.1. The only analytic automorphisms [= biholomorphisms] of C
are the functions of the form f(z) = az + b, a, b ∈ C, a 6= 0.

Proof. Without loss of generality (by replacing f(z) by f(z)−f(0)), f(0) = 0.Must
show f(z) = az. Set h(z) = f( 1z ), z 6= 0.We claim that h does not have an essential
singularity at z = 0. Since f is an analytic isomorphism and f(0) = 0, f takes a
neigbourhood of 0 onto a neighbourhood of 0 (bijectively.) Thus f an automorphism
of C ⇒ |f(w)| > c for |w| > 1

δ , some δ, c > 0. Thus for w = 1
z , |h(z)| > c for

0 < |z| < δ. Therefore from the above theorem, z = 0 is not an essential singularity
of h. Therefore f(z) is a polynomial of degN for some N ∈ N. Therefore all roots
of f are the same, ⇒ f(z) = a(z − z0)N , therefore N = 1.

Application of the Max-Mod Principle and Schwartz’s Lemma

2Let D ⊂ C be an open set, and f : D → C a map. We say that f is meromorphic on

D if for any p ∈ D, there is an ǫ > 0 such that ∆ǫ(p) := {0 < |z − p| < ǫ} ⊂ D and that

f(z) =
∑N

n=1
bn/(z − p)n +

∑∞

n=0
an(z − p)n on ∆ǫ(p), i.e. a truncated principal part.
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Lemma 1.19. [Schwartz] Let D = {z ∈ C
∣∣ |z| < 1}, and assume given an analytic

f on D with:

(a) |f(z)| ≤ 1 on D,

(b) f(0) = 0.

Then |f ′(0)| ≤ 1 and |f(z)| ≤ |z| on D. Moreover if |f ′(0)| = 1 or if |f(z)| = |z|,
for some z 6= 0, then ∃c with |c| = 1, such that f(w) = cw ∀w ∈ D, i.e. f(w) = ei tw
for some t ∈ R (rotation by t).

Proof. Define

g(z) =

{
f(z)/z if z 6= 0

f ′(0) if z = 0

Then g(z) is analytic on D by the Riemann Extension Theorem. Fix 0 < r < 1.

Even though a priori, | f(z)z | ≤ 1
|z| has the potential of being > r−1 for |z| < r,

by the max-mod principle, |g(z)| ≤ r−1 ∀|z| ≤ r and 0 < r < 1. Thus r 7→ 1 ⇒
|g(z)| ≤ 1 ∀z ∈ D, i.e. |f(z)| ≤ |z|; and |g(0)| ≤ 1 i.e. |f ′(0)| ≤ 1. Next, If
|f(z)| = |z|, some z 6= 0 or if |f ′(0)| = 1, then |g| assumes its maximum value inside
D. Therefore by max-mod, g(z) = c with |c| = 1. Therefore f(z) = cz with |c| = 1.

Corollary 1.20. D as above. Let f(z) : D → D be a 1−1 analytic map of D onto
itself and let a ∈ D be given such that f(a) = 0. Then ∃ a c ∈ C, |c| = 1, such that
f = cϕa, where

ϕa(z) =
z − a
1− az .

Proof. Clearly ϕa(z) is analytic for |z| < |a|−1, ⇒ ϕa(z) analytic on an open disk
⊃ D (closure). Note that for t ∈ R,

|ϕa(ei t)| =
|ei t − a|
|1− aei t| =

|ei t − a|
|e− i t − a| =

|ξ|
|ξ|

= 1, where ξ = ei t − a.

Thus ϕa(∂D) = ∂D, hence ϕa(D) ⊂ D by the maximum-modulus principle. Next,
for |z| < 1, one verifies that ϕa(ϕ−a(z)) = z = ϕ−a(ϕa(z)), hence ϕa : D → D is
1 − 1 and onto, i.e. an analytic isomorphism. Next, assume for the moment that
more generally α = f(a), and consider g(z) := ϕα ◦ f ◦ ϕ−a. Then g : D

∼−→ D and
g(0) = 0, hence by Schwartz, |g′(0)| ≤ 1. By the chain rule,

g′(0) = (ϕα ◦ f)′
(
ϕ−a(0)

)
ϕ′
−a(0)

= (ϕα ◦ f)′(a)[1− |a|2]
= ϕ′

α(α)f
′(a)[1− |a|2]

=
[1− |α|2]
[1− |α|2]2 f

′(a)[1− |a|2]

=

(
[1− |a|2]
[1− |α|2]

)
f ′(a).
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Next, if |g′(0)| = 1, then the above calculation gives

|f ′(a)| = [1− |α|2]
[1− |a|2] .

Further, if |g′(0)| = 1, then g(z) = cz on D, where |c| = 1, i.e. when α = 0, viz.,
f(a) = 0, then f ◦ ϕ−a(z) = g(z) = cz, or equivalently f ◦ ϕ−a ◦ ϕa(z) = cϕa(z),

i.e. f = cϕa(z). Now since f : D
∼−→ D is an analytic isomorphism, the inverse

h : D
∼−→ D will later be shown to be analytic as well. Note by definition of inverse,

h ◦ f(z) = z, f ◦ h(z) = z, ∀z ∈ D. Moreover since f(a) = 0, we have h(0) = a.
Now by the above calculation applied to both f and h, |f ′(a)| ≤ 1

1−|a|2 (as α = 0),

and |h′(0)| ≤ 1− |a|2 (since h(0) = a). But since 1 = h′(0)f ′(a) by the chain rule,
we must have |f ′(a)| = 1

1−|a|2 . Thus indeed |g′(0)| = 1, and hence f = cϕa, for

some c with |c| = 1.

Residues

Lets assume given f(z) analytic on 0 < |z − p| < R and write

f(z) =

∞∑

n=1

bn(z − p)−n +

∞∑

n=0

an(z − p)n.

Using uniform convergence on compact subannuli, it follows that ∀ simple-closed
C ⊂ {0 < |z − p| < R}, oriented counterclockwise,

1

2π i

∫

C

f(z)dz = b1.

Definition 1.21. Respf(z) := b1 is called the residue of f(z) at p.

Note. It is better to say Respf(z)dz, i.e. as a differential (1-form).

Example 1.21.1. Consider f(z) =
∑∞
n=M cn(z − p)n for some M ∈ Z. On

0 < |z − p| < R, M = multiplicity of a zero or pole. Then by uniform convergence
on compact subannuli,

f ′(z) =
∞∑

n=M

ncn(z − p)n−1.

In fact, we can write f(z) = (z− p)Mg(z) where g(p) 6= 0 and g(z) is analytic at p.
So

f ′(z) =M(z − p)M−1g(z) + (z − p)Mg′(z).

Thus
f ′(z)

f(z)
=

M

(z − p) +
(
g′(z)

g(z)

)

︸ ︷︷ ︸
analytic

⇒ Resp

(
f ′(z)

f(z)

)
=M.
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Residue Theorem I (1.22). f(z) analytic on and inside a simple-closed curve
C, except for a finite number of singularities {p1, . . . , pk} inside C [C oriented

counterclockwise]. Then
∫
C
f(z)dz = 2π i

∑k
j=1 Respjf(z).

Proof. Draw small circles Cj centered at pj (j = 1, . . . , k) and oriented counter-
clockwise, inside C. By the Cauchy-Goursat theorem:

∫

C

f(z)dz −
k∑

1

∫

Cj

f(z)dz = 0.

Thus: ∫

C

f(z)dz =

k∑

1

∫

Cj

f(z)dz = 2π i

k∑

1

Respjf(z).

Notation For a residue of a function f(z) at p, it is better to view this as the
residue at p of the 1-form ω = f(z)dz. So for example, for p ∈ C, Respω = Respf(z).
At ∞, this works out very well:

ω

(
z =

1

w

)
= f

(
1

w

)
d

(
1

w

)
= − 1

w2
f

(
1

w

)
dw.

We define

Res∞(ω) = Res0

(
− 1

w2
f

(
1

w

))
.

Residue Theorem II (1.23). Suppose that ω is a meromorphic 1-form on P1,
viz. ω = f(z)dz, where f(z) is meromorphic on P1. Then

∑

p∈{sing(f)∪∞}
Respω = 0.

Proof. Since f is meromorphic, and the reciprocal of a pole is a zero, it follows that
the poles are isolated and by compactness of C∪∞, there are only a finite number
of singular points. Let p1, . . . , pk be all the (pole) singularities of f in C, and

R > max{|p1|, . . . , |pk|}

given. Then by the Residue Theorem I:

∫

|z|=R
f(z)dz = 2π i

k∑

j=1

Respjf(z) = 2π i

k∑

j=1

Respj (ω).

But

f(z) = f

(
1

w

)
,
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dz = d

(
1

w

)
= −dw

w2
,

z(t) = Rei t ⇒ w(t) = R−1e− i t.

Thus
∫

|z|=R
f(z)dz

︸ ︷︷ ︸
counterclockwise

=

∫

|w|=R−1

f

(
1

w

)(
−dw
w2

)

︸ ︷︷ ︸
clockwise

=

∫

|w|=R−1

f

(
1

w

)
dw

w2

︸ ︷︷ ︸
counterclockwise

= −2π iRes∞(ω)

⇒
∑

p∈{sing(f)∪∞}
Resp(ω) = 0

[Could also choose a circle not containing any singularity of ω in P1 to get the
residue theorem.] �

Remark 1.24. (i) This result is valid on any compact Riemann Surface (to be
defined later), using Stokes’ theorem.

(ii) The same result holds for a function f with only a finite number of singula-
rieties on C.

Example ∫

|z|=2

z9e1/z

z10 + 2
dz =?

Put f(z) = z9e1/z

z10+2 . Then:

∫

|z|=2

z9e1/z

z10 + 2
dz = 2π i Resw=0

(
1

w2
f

(
1

w

))
= 2π i .

Here are the details:

1

w2
f

(
1

w

)
=

ew

w11
(

1
w10 + 2

) =
1

w

(
ew

1 + 2w10

)

Thus:

2π i
ew

1 + 2w10

∣∣∣∣
w=0

= 2π i .

Another approach is by Laurent series:

z9e1/z

z10 + 2
=

z9

z10
1(

1 + 2
z10

)e1/z

(|z|=2>10
√

2)
=

e1/z

z

∞∑

n=0

(−1)n2n
z10n

=

( ∞∑

m=0

1

m!zm+1

)( ∞∑

n=0

(−1)n2n
z10n

)

=
1

z
+ · · ·

Thus:

2π i =

∫

|z|=2

dz

z
=

∫

|z|=2

f(z)dz.

Argument principle and Rouche’s theorem
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Argument Principle 1.25. Assume given a simple closed curve C, oriented coun-
terclockwise, and f meromorphic in the interior of C, and analytic and non-zero
on C. Then

1

2π
∆C arg(f(z)) = Nzero,C(f)−Npole,C(f),

where Nzero,C(f) is the number of zeros (including multiplicity) of f inside C,
Npole,C(f) is the number of poles (including multiplicity) of f inside C, and where
the LHS 1

2π∆C arg(f(z)) is interpreted to mean the winding number of f(C) (about
0). [Note C ∪ {interior of C} is compact, hence there are only a finite number of
zeros and poles of f inside C.]

Proof. By local analytic continuation, the winding number 1
2π∆C arg(f(z)) is given

by:
1

2π
∆C arg(f(z)) =

log f(z)

2π i

∣∣∣∣
C

=
1

2π i

∫

C

f ′(z)

f(z)
dz

Residue thm
= Nzero,C(f)−Npole,C(f),

where the latter equality also uses example 1.21.1.

Example. f(z) = zn, n ∈ Z, and C := {|z| = 1} (counterclockwise orientation).
Then 1

2π∆C arg(f(z)) = n.

Rouche’s Theorem I (1.26). Assume given two functions f(z) and g(z) analytic
inside and on a simple closed curve C, and assume that |f(z)| > |g(z)| on C. Then
f(z), and f(z)+g(z) have the same number of zeros (counting multiplicities) inside
C.

Proof. Note that f(z) 6= 0 on C. Further, |f(z) + g(z)| ≥
∣∣|f(z)| − |g(z)|

∣∣ > 0 on
C, hence f(z) + g(z) 6= 0 on C as well. Next, by the argument principle:

1

2π
∆C arg

(
f(z) + g(z)

f(z)

)

︸ ︷︷ ︸
LHS

= Nzeros,C(f + g)−Nzeros,C(f).

But:
f(z) + g(z)

f(z)
= 1 +

g

f
, moreover

∣∣∣∣
g

f

∣∣∣∣ < 1 on C.

Hence: {
f(z) + g(z)

f(z)

}
(C)

doesn’t wind around 0. Thus LHS = 0.

Rouche’s Theorem II (1.27). Assume given f, g meromorphic in a neighbour-
hood of {z ∈ C

∣∣ |z − p| ≤ R}, with no zeros or poles on {z ∈ C
∣∣ |z − p| = R}.

Then:

|f(z) + g(z)| < |f(z)|+ |g(z)| on |z − p| = R⇒ Zf − Pf = Zg − Pg,
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where Z = number of zeros (including multiplicity), and P = number of poles
(including multiplicity).

Proof. By assumption

∣∣∣∣
f(z)

g(z)
+ 1

∣∣∣∣ =
∣∣∣∣
f(z) + g(z)

g(z)

∣∣∣∣ =
|f(z) + g(z)|
|g(z)|

<
|f(z)|+ |g(z)|
|g(z)| =

|f(z)|
|g(z)| + 1 on |z − p| = R.

If λ := f(z)/g(z) ∈ (0,∞), then from the above, we arrive at λ+1 < λ+1, which
is impossible. Hence f(z)/g(z) maps {|z − p| = R} into Ω := C\{[0,∞)}. Thus

log(f(z)/g(z)) is a well-defined anti-derivative of (f(z)/g(z))′

f(z)/g(z) in a neigbourhood of

{|z − p| = R}. Note that:

[f ′g − g′f ]
g2

• g
f
=
f ′

f
− g′

g
.

Thus:

0 =
1

2π i

∫

|z−p|=R

(f(z)/g(z))′

f(z)/g(z)
dz =

1

2π i

∫

|z−p|=R

[
f ′

f
− g′

g

]
dz

=
(
Zf − Pf

)
−

(
Zg − Pg

)
.

Miscellaneous Results

Cauchy’s Theorem - homotopic version

Definition 1.28. Let γ0, γ1 : [0, 1] → D = open connected subset ⊂ C be 2
closed curves. Then γ0 is homotopic to γ1 in D if ∃ a continuous function Γ :
[0, 1]× [0, 1]→ D such that

Γ(s, 0) = γ0(s), Γ(s, 1) = γ1(s); (0 ≤ s ≤ 1)

Γ(0, t) = Γ(1, t); (0 ≤ t ≤ 1)

Taking ∂[0, 1]2 and applying this to Γ, we arrive at ∂Γ = γ1 − γ0. Note that for
f analytic on D:

0 =

∫

Γ

(df) ∧ dz =
∫

∂Γ

fdz =

∫

γ1

fdz −
∫

γ0

fdz

i.e. ∫

γ0

fdz =

∫

γ1

fdz

[Thus if γ is a curve in D such that γ ∼ 0, i.e. γ is homotopic to the constant
curve, then

∫
γ
fdz = 0.]
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Definition 1.29. A connected open region D ⊂ C is simply-connected, if every
closed curve in D is homotopic to zero.

Corollary 1.30. Let D ⊂ C be simply-connected and f : D → C analytic. Then∫
γ
fdz = 0 ∀ closed curves γ ⊂ D.

Corollary 1.31. Let D ⊂ C be simply-connected and f : D → C analytic. Then∫ Q
P
fdz is independent of the path joining P to Q in D.

Corollary 1.32. Let D ⊂ C be simply-connected and f : D → C analytic. Then
an antiderivative F (z) =

∫ z
fdz exists on D.

Corollary 1.33. Let D be simply-connected and f : D → C× analytic. Then ∃
g : D → C such that f(z) = eg(z). I.e. log f(z) can be defined.

Proof. The basic idea is this: f ′(z)
f(z) analytic on D ⇒ ∃g(z)on D such that g′(z) =

f ′(z)
f(z) . Up to constant, g(z) = log f(z). A more precise agument is the following:

Obviously by the previous corollary, g : D → C exists such that g′(z) = f ′(z)
f(z) . Thus[

eg(z)
]′
= eg(z) f

′(z)
f(z) = eg(z)g′(z). Thus:

(
f

eg(z)

)′
=

[
f ′(z)− f(z) f

′(z)
f(z)

]
eg(z)

e2g(z)
= 0.

Hence f
eg(z)

= K ∈ C×, ⇒ f = Keg(z) = eg(z)+logK . Now relabel g(z) ↔ g(z) +
logK. �

Open Mapping Theorem

For R > 0, let B(p,R) = {z ∈ C
∣∣ |z − p| < R}.

Lemma 1.34. Suppose f is analytic on B(p,R), with f 6≡ constant. Set α = f(p).
If f(z) − α has a zero of order m at z = p, then ∃ ǫ > 0 & δ > 0 such that for
0 < |w − α| < δ, the equation w = f(z) has exactly m simple roots in B(p, ǫ).
[Note: Thus f(B(p, ǫ)) ⊃ B(α, δ).]

Proof. Since the zeros of an analytic function are isolated, we can choose ǫ > 0
such that for ǫ < R/2, f(z) = α has no solutions for 0 < |z − p| < 2ǫ, and likewise
f ′(z) 6= 0 for 0 < |z−p| < 2ǫ, using f nonconstant. Let γ(t) = p+ǫe2π i t, 0 ≤ t ≤ 1,
and put σ = f ◦ γ. Now α 6∈ {σ}; thus ∃δ > 0 such that B(α, δ) ∩ {σ} = ∅. Hence
B(α, δ) is contained in some component of C\{σ}. Thus for β ∈ B(α, δ), α & β
belong to the same component. We now compute:

m =
1

2π i

∫

γ

f ′(z)

f(z)− αdz =
1

2π i

∫

σ

dw

w − α︸ ︷︷ ︸
winding # of σ about α

=
1

2π i

∫

σ

dw

w − β︸ ︷︷ ︸
winding # of σ about β

=
1

2π i

∫

γ

f ′(z)dz

f(z)− β .
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Finally, f ′(z) 6= 0 on 0 < |z − p| < 2ǫ⇒ all roots are simple. �

Corollary 1.35. [Open Mapping theorem] Assume D ⊂ C an open set, f a non-
constant analytic function on D. Then ∀ open sets U ⊂ D, f(U) is open.

Proof. This follows from the note in the above lemma.

Remark 1.36. The open mapping theorem illustrates a fundamental difference
between complex analytic functions and real functions. For example f(t) = t2 :
R → R has the property that f(−ǫ, ǫ) = [0, ǫ2), which is not open. Thus f is not
open at 0 ∈ R.

Corollary 1.37. (A variant of inverse function theorem) Assume given f : D → C
a 1 − 1 analytic function, and put Ω = f(D). Then f−1 : Ω → C is analytic and
(f−1)′(w) = [f ′(z)]−1, where w = f(z).

Proof. The open mapping theorem ⇒ f−1 : Ω → D is continuous, i.e. f : D → Ω
is a homeomorphism. Since f ′(z) 6= 0 on D (by above lemma), we can do the
following. Let w = f(z):

f−1(w +∆w)− f−1(w)

∆w
=
f−1(f(z +∆z))− f−1(f(z))

f(z +∆z)− f(z)

=
z +∆z − z

f(z +∆z)− f(z) =
∆z

∆f
7→ 1

f ′(z)
,

where we use f(z +∆z)− f(z) 6= 0 for ∆z 6= 0, as f is 1− 1; together with:

∆w → 0⇔ ∆z → 0.

Thus
d

dw
f−1(w)

∣∣
w=f(z)

=
1

f ′(z)
.

�
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§2. Spaces of functions

Let D ⊂ C be an open set. Recall that C is a complete metric space, (with
metric d(z, w) = |z − w|, i.e. where every Cauchy sequence converges). Let

C(D,C) = {continuous functions from D to C}.

Similarly, put

C(D,P1) = {continuous functions from D to P1}, where P1 = C ∪ {∞}.

Proposition 2.0. ∃ compact sets {Kn}n∈N ⊂ D such that:

(i) D =
⋃∞

1 Kn

(ii) Kn ⊂ int(Kn+1) ∀ n

(iii) K ⊂ D compact ⇒ K ⊂ Kn for some n.

Proof. Set Kn = {z | |z| ≤ n} ∩ {z | d(z,C\D) ≥ 1
n}. Clearly Kn is closed

and bounded, hence compact. It is obvious that (i) and (ii) hold. Thus D =⋃∞
1 int(Kn), hence (iii) holds. �

Now assume D =
⋃∞

1 Kn, with Kn compact, and Kn ⊂ int(Kn+1). Define on
C(D,C):

ρn(f, g) = sup{d(f(z), g(z))︸ ︷︷ ︸
|f(z)−g(z)|

∣∣ z ∈ Kn},

ρ(f, g) =

∞∑

n=1

1

2n

(
ρn(f, g)

1 + ρn(f, g)

)
.

Proposition 2.1. {C(D,C); ρ} is a metric space.

Proof. We first show that

(∗) ρn(f, g)

1 + ρn(f, g)
≤ ρn(f, h)

1 + ρn(f, h)
+

ρn(h, g)

1 + ρn(h, g)
.

But observe that: (
t

1 + t

)′
=

1

(1 + t)2
> 0 on [0,∞].

Thus t
1+t is an increasing function in t. Therefore it is obvious that (∗) holds if

ρn(f, h) ≥ ρn(f, g) or ρn(h, g) ≥ ρn(f, g). Thus we can assume that:

ρn(f, h) ≤ ρn(f, g) & ρn(h, g) ≤ ρn(f, g)
Thus

ρn(f, g)

1 + ρn(f, g)
≤ ρn(f, h)

1 + ρn(f, g)
+

ρn(h, g)

1 + ρn(f, g)

≤ ρn(f, h)

1 + ρn(f, h)
+

ρ(h, g)

1 + ρn(h, g)

Finally, since D =
⋃∞
n=1Kn, if follows that f = g whenever ρ(f, g) = 0. �
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Lemma 2.2. Let ǫ > 0 be given. Then ∃δ > 0 and a compact set K ⊂ D, such
that for f, g ∈ C(D,C):

sup{d(f(z), g(z))
∣∣ z ∈ K} < δ ⇒ ρ(f, g) < ǫ.

Conversely, if δ > 0 and a compact K are given, ∃ǫ > 0 such that for f, g ∈
C(D,C),

ρ(f, g) < ǫ⇒ sup{d(f(z), g(z))
∣∣ z ∈ K} < δ.

Proof. Choose m such that
∞∑

n=m+1

(
1

2

)n
<
ǫ

2
,

and set K = Km. Further, choose δ > 0 such that

0 ≤ t < δ ⇒ t

1 + t
<
ǫ

2
.

For 1 ≤ n ≤ m, Kn ⊂ K = Km, and

sup{d(f(z), g(z)) | z ∈ K} < δ ⇒ ρn(f, g) < δ for (1 ≤ n ≤ m),

⇒ ρn(f, g)

1 + ρn(f, g)
<
ǫ

2
for (1 ≤ n ≤ m),

⇒ ρ(f, g) <
m∑

n=1

(
1

2

)n(
ǫ

2

)
+

∞∑

n=m+1

(
1

2

)n
< ǫ.

Conversely, let K and δ > 0 be given. Since D =
⋃∞

1 Kn =
⋃∞

1 int(Kn) and
K is compact, it follows that K ⊂ Km for some m ≥ 1. Thus ρm(f, g) ≥
sup{d(f, g)g(z) | z ∈ K}. Choose ǫ > 0 such that

0 ≤ s ≤ 2mǫ⇒ s

1− s < δ.

If w put s = t
1+t then t =

s
1−s , and hence:

t

1 + t
< 2mǫ⇒ t < δ.

Thus:

ρ(f, g) < ǫ⇒ ρm(f, g)

1 + ρm(f, g)
< 2mǫ, ⇒ ρm(f, g) < δ.

�

Proposition 2.3. (a) Ω ⊂ {C(D,C), ρ} is open ⇔ ∀ f ∈ Ω, ∃ a compact set
K ⊂ D and a δ > 0 such that

Ω ⊃ {g | d(f(z), g(z)) < δ; z ∈ K}.

(b) A sequence {fn} in {C(D,C), ρ} converges to f iff {fn} converges to f
uniformly on all compact subsets of C.

Proof. Obvious from previous lemma.
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Corollary 2.4. The topology of open sets on C(D,C) is independent of the choice
of Kn’s. (where D =

⋃∞
1 Kn, Kn compact, and Kn ⊂ int(Kn+1)).

Proposition 2.5. C(D,C) is a complete metric space.

Proof. {fn} Cauchy ⇒ limz→∞ fn(z) converges pointwise to f : D → C. We must
show that f is continuous and that limn→∞ ρ(fn, f) = 0. Let K be compact and
fix δ > 0. Choose N such that n,m ≥ N ⇒ sup{d(fn(z), fm(z)) : z ∈ K} <
δ. For fixed z ∈ K, ∃m ≥ N such that d(f(z), fm(z)) < δ, hence n ≥ N ⇒
d(f(z), fn(z)) ≤ d(f(z), fm(z)) + d(fm(z), fn(z)) < 2δ. Since N does not depend

on z, it follows that sup{d(f(z), fn(z)) | z ∈ K} n→∞−−−→ 0⇒ fn
U−→ f on all compact

sets, e.g. on all closed balls in D, ⇒ f continuous on D as well. �

Definition 2.6. A subset F ⊂ C(D,C) is normal, if each sequence in F has a
subsequence which converges to a function f ∈ C(D,C).

Corollary (to definition) 2.7. F ⊂ C(D,C) is normal ⇔ its closure is compact.

Proposition 2.8. A subset F ⊂ C(D,C) is normal ⇔ ∀ compact set K ⊂ D, and
δ > 0, ∃f1, . . . , fn ∈ F such that for f ∈ F , ∃ at least one k, 1 ≤ k ≤ n, with
sup{d(f(z), fk(z)) | z ∈ K} < δ.

Proof. Assume F normal and K, δ given. By lemma 2.2 (part II) ∃ǫ > 0 such
that ρ(f, g) < ǫ⇒ sup(d(f(z), g(z)) | z ∈ K} < δ. Since F is compact, F is totally
bounded, i.e. ∃ f1, . . . , fn ∈ F (not on the ∂F by a limit/continuity argument) such
that F ⊂ ⋃n

k=1B(fk; ǫ), hence F ⊂
⋃n
k=1B(fk; ǫ), where B(fk; ǫ) = {f | ρ(f, fk) <

ǫ}. Thus our choice of ǫ⇒ F ⊂ ⋃n
k=1{f | d(f(z)), fk(z)) < δ; z ∈ K}. Conversely,

suppose F has the stated property, hence so does (the complete metric space)
F . Thus F is sequentially compact, hence is compact. [More precisely F is totally
bounded, hence by a pigeon hole principle, it is sequentially compact. Alternatively,
by Lesbegue’s covering lemma, F totally bounded ⇒ compact.3]

Definition 2.9. A set F ⊂ C(D,C) is equicontinuous at a point z0 in D ⇔ ∀ǫ >
0, ∃δ > 0 such that |z − z0| < δ ⇒ d(f(z), f(z0)) < ǫ ∀f ∈ F . F is equicontinuous
over a set E ⊂ D if ∀ǫ > 0, ∃δ > 0 such that for z, z′ ∈ E and |z − z′| < δ,
d(f(z), f(z′)) < ǫ ∀f ∈ F .

Proposition 2.10. Suppose F ⊂ C(D,C) is equicontinuous at each point of D.
Then F is equicontinuous over each compact set in D.

Proof. Cover compact K by disks B(pj ; δ), j = 1, . . . , N such that |f(z)−f(pj)| <
ǫ
2 for z ∈ B(pj ; 2δ). If |z−w| < δ, then z ∈ B(pj ; δ) some j, ⇒ |w−pj | ≤ |w− z|+
|z−pj | < 2δ,⇒ w ∈ B(pj ; 2δ)⇒ |f(z)−f(w)| ≤ |f(z)−f(pj)|+ |f(pj)−f(w)| < ǫ.

3Lesbegue’s covering lemma says the following: If a metric space (X, d) is sequentially compact
and U = {Uα})α∈I is an open cover of X, then ∃ ǫ > 0 such that if x ∈ X, ∃Uα ∈ U such that
B(x; ǫ) ⊂ Uα.
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Arzela-Ascoli Theorem 2.11. A set F ⊂ C(D,C) is normal ⇔ the following
two conditions are satisfied.

(a) For each z ∈ D, {f(z) | f ∈ F} has compact closure in C,

(b) F is equicontinuous at each point of D.

Proof. (Outline only) Assume F normal. By construction of the metric ρ, the map
C(D,C) → C given by f 7→ f(p), (p ∈ D given; note that we can treat {p} as a
compact set), is continuous. Since F is compact, its image in C is likewise compact.
Hence (a) follows. To show (b), fix a point p ∈ D and let ǫ > 0 be given. Choose

R > 0 such that K := B(p;R) ⊂ D. Thus K is compact. Thus ∃ f1, . . . , fn ∈ F
such that ∀f ∈ F , ∃ at least one fk with sup{d(f(z), fk(z)) | z ∈ K} < ǫ/3. But
fk continuous ⇒ d(fk(z)fk(p)) < ǫ/3 for |z − p| < δ, k = 1, . . . , n. Therefore
|z − p| < δ & f ∈ F , and k chosen so that sup{d(f(z), fk(z)) | z ∈ K} < ǫ/3,
then d(f(z)f(p)) ≤ d(f(z), fk(z)) + d(fk(z), fk(p)) + d(fk(p), f(p)) < ǫ, i.e. F is
equicontinuous at p, ⇒ (b).

Conversely, suppose F satisfies (a) & (b). Must argue that F is normal. Let
{zn} be the sequence of all points in D satisfying (Re(zn), Im(zn)) ∈ Q2. [Thus
∀z ∈ D, and δ > 0, ∃ zn with |z − zn| < δ.] For each n ≥ 1, put:

Xn = {f(zn) | f ∈ F} ⊂ C.

From (a), (Xn, dn := d) is a compact metric space. One argues that likewise

X :=

∞∏

n=1

Xn,

is a compact metric space with metric

d({xn}, {yn}) =
∞∑

n=1

1

2n

(
dn(xn, yn)

1 + dn(xn, yn)

)
.

For f ∈ F , set f̃ = {f(z1), f(z2), . . . }. Let {fk} be a sequence in F . Then

{f̃k} is a sequence in the compact metric space X. Thus ∃ξ ∈ X and a subse-

quence {f̃ki} which converges to ξ.4 WLOG limk→∞ f̃k = ξ. It follows easily that
limk→∞ fk(zn) = wn, where ξ = {wn}. We must show that {fk} is a Cauchy
sequence [hence it will converge to some f ∈ F ⊂ C(D,C)]. Let K be a com-
pact set in D and ǫ > 0 be given. Then it suffices to find an integer N such that
k, j ≥ N ⇒ sup{d(fk(z), fj(z)) | z ∈ K} < ǫ. Since K is compact, we must have

4One can also use a diagonalization process:

fk1
(z1), fk2

(z1), . . . convergent

fk1
(z2), fk12

(z2), . . . convergent

fk1
(z3), fk12

(z3), fk1,3
(z3), . . . convergent

Note that we retain some terms of previous rows to get a non-empty set subsequence! We also

use
ρm( )

1+ρm( )
→ 0 ⇔ ρm( ) → 0.
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R := d(K, ∂D) > 0. Let K1 = {z | d(z,K) ≤ R/2}. the K1 is compact, and K ⊂
int(K1) ⊂ K1 ⊂ D. Since F is equicontinuous at each point ofD, it is therefore like-
wise equicontinuous on K1. So choose 0 < δ < R/2 such that d(f(z), f(z′)) < ǫ/3
for all f ∈ F , whenever z, z′ ∈ K1 with |z − z′| < δ. Let Ω = {zn|zn ∈ K1}. If
z ∈ K, ∃zn with |z − zn| < δ. But δ < R/2 gives d(zn,K) < R/2, i.e. zn ∈ K1.
Hence {B(w; δ) | w ∈ Ω} is an open cover of K. Let w1, . . . , wn ∈ Ω be given such
that K ⊂ ⋃n

i=1B(wi; δ). Note that limk→∞ fk(wi)∃ for 1 ≤ i ≤ n; thus ∃ integer N
such that j, k ≥ N ⇒ d(fk(wi), fj(wi)) < ǫ/3, i = 1, . . . , n. Let z be an arbitrary
point of K and wi given such that |wi − z| < δ. If k, j ≥ N , then:

d(fk(z), fj(z)) ≤ d(fk(z), fk(wi)) + d(fk(wi), fj(wi)) + d(fj(wi), fj(z)) < ǫ.

�

Spaces of Analytic Functions

Set:
H(D) = {f ∈ C(D,C) | f analytic on D}.

Proposition 2.12. H(D) is closed in C(D,C).

Proof. We prove the stronger result.

Theorem 2.13. If {fn}N ⊂ H(D) is a sequence, and f ∈ C(D,C), and fn → f,

then f ∈ H(D); moreover f
(k)
n → f (k), ∀ k ≥ 0.

Proof. Since fn
U−→ f on compact sets K ⊂ D, we have

∫

C

f = lim
n→∞

∫

C

fn = 0,

[where C ⊂ D is simple-closed with interior to C ⊂ D]. Thus f is analytic by
Morera’s theorem. Next, for p ∈ D and |w − p| ≤ R inside D, the CIF ⇒

f (k)n (z)− f (k)(z) = k!

2π i

∫

|w−p|=R

fn(w)− f(w)
(w − z)k+1

dw for r := |z − p| < R.

But fn
U−→ f on |z − p| ≤ R, hence |fn − f | ≤Mn say. Thus

|f (k)n (z)− f (k)(z)| ≤ Mnk!

2π

2πR

(R− r)k+1
,

where
|z − w| = |(w − p)− (z − p)| ≥

∣∣|w − p| − |z − p|
∣∣ = R− r

⇒ f (k)n
U−→ f (k) on {|z − p| ≤ r}.

∀ compact K, K ⊂ ⋃k
j=1B(pj ; rj), f

(k)
n

U−→ f (k) on each B(pj , rj) ⇒ f
(k)
n

U−→ f (k)

on K. �
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Corollary 2.13.1. {H(D), ρ
∣∣
H(D)

} is a complete metric space.

Corollary 2.13.2. If fn ∈ H(D) and if
∑∞

1 fn(z) converges uniformly on compact
sets to f(z), then

f (k)(z) =

∞∑

n=1

f (k)n (z).

Hurwitz’s Theorem 2.14. Assume given {fn}, f ∈ H(D) such that fn → f . If

f 6= 0, and B(p;R) ⊂ D, and f(z) 6= 0 for |z − p| = R, then ∃N ∈ N such that
n ≥ N ⇒ f&fn have the same number of zeros in B(p;R).

Proof. Clearly δ = inf{|f(z)|
∣∣ |z − p| = R} > 0. But fn → f uniformly on

{z
∣∣ |z − p| = R}, hence ∃N such that n ≥ N&|z − p| = R,⇒ fn(z) 6= 0 for

|z − p| = R and

|f(z)− fn(z)| <
δ

2
< |f(z)| ≤ |f(z)|+ |fn(z)|,

Rouche’s (II)⇒ f&fn have same number of zeros in B(p;R).

Corollary 2.15. Let {fn}, f ∈ H(D), and suppose each fn never vanishes on D.
Then either f ≡ 0 or f never vanishes.

Definition 2.16. A set F ⊂ H(D) is locally bounded if ∀p ∈ D, ∃ constants
M&r > 0 such that ∀f ∈ F , |f(z)| ≤M for |z − p| < r.

[Corollary to definition. F ⊂ H(D) is locally bounded ⇔ ∀ compact sets K ⊂ D,
∃M such that |f(z)| ≤M ∀f ∈ F and z ∈ K.]

Montel’s Theorem 2.17. F ⊂ H(D) is normal ⇔ F is locally bounded.

Proof. Assume F is normal, but that F not locally bounded. Then ∃ compact
K ⊂ D such that sup{|f(z)|

∣∣ z ∈ K, f ∈ F} = ∞. I.e., ∃ a sequence {fn} ⊂ F
such that sup{|fn(z)|

∣∣ z ∈ K} ≥ n. But F normal⇒ ∃ f ∈ H(D) and a convergent

subsequence {fnk
} → f. But this gives sup{|fnk

(z)−f(z)
∣∣ z ∈ K} → 0 as k →∞.

If |f(z)| ≤M for z ∈ K, then

nk ≤ sup{|fnk
(z)− f(z)|

∣∣ z ∈ K}+M.

But RHS converges to M , a contradiction.

Conversely, suppose that F is locally bounded. We refer to the Ascoli-Arzela
theorem 2.11. It is obvious that theorem 2.11(a) holds; thus we must prove that
F is equicontinuous at each point of D. Fix p ∈ D & ǫ > 0. By hypothesis,
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∃ r > 0 & M > 0 such that B(p, r) ⊂ D & |f(z)| ≤ M∀z ∈ B(p, r) and all f ∈ F .
Let |z − p| < r/2 and f ∈ F be given. Then:

|f(p)− f(z)| ≤ 1

2π

∣∣∣∣
∫

|w−p|=r

f(w)(p− z)
(w − p)(w − z)dw

∣∣∣∣ ≤
2M |p− z|

r2
2πr

2π
=

2M |p− z|
r

.

[Here we use:
f(w)

w − p −
f(w)

w − z =
f(w)(p− z)

(w − p)(w − z) ,

r

2
<

∣∣|w − p| − |z − p|
∣∣ ≤ |w − z| ≤ |w − p|︸ ︷︷ ︸

=r

+ |p− z|︸ ︷︷ ︸
<r/2

.]

Now choose δ < min{ r2 , rǫ2M }. Thus |p− z| < δ ⇒ |f(z)− f(p)| < ǫ ∀ f ∈ F . �

Corollary 2.18. A subset F ⊂ H(D) is compact ⇔ is is closed and locally
bounded.

Remark 2.19. Philosophy of Montel’s theorem. In
(
Rn, d(x, y) = |x − y|

)
, we

have:

compact ⇔ sequentially compact ⇔ closed and bounded.

For general metric spaces, we only have:

compact ⇔ sequentially compact ⇒ closed and bounded.

In our case, (vis-à-vis Montel)

F ⊂ H(D) compact ⇔ closed and locally bounded.

Linear Fractional Transformations

Special case I: Fix a, b ∈ C, a 6= 0, and consider the map w = az + b. This is a
special case of maps of the form:

az + b

cz + d
; ad− bc 6= 0,

called linear fractional transformations (LFT’s). [In the case w = az + b, we have
c = 0 and d = 1. Thus a 6= 0⇔ ad− bc 6= 0.]

Observation. w = az + b maps lines to lines and circles to circles.

Reason. Lines: Any line ℓ ⊂ C is given by a locus of the form |z − p| = |z − q|,
for some fixed p 6= q in C. Then

z =
w − b
a
⇒

∣∣∣∣
w − b
a
− p

∣∣∣∣ =
∣∣∣∣
w − b
a
− q

∣∣∣∣⇒ |w − (ap+ b)| = |w − (aq + p)|,
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i.e. the corresponding line w(ℓ) in the w-plane is given by the locus |w − w(p)| =
|w − w(q)|.

Circles: Suppose C given by |z − p| = R. Then

∣∣∣∣
w − b
a
− p

∣∣∣∣ = R, i.e., |w − (ap+ b)︸ ︷︷ ︸
w(p)

| = |a|R,

a circle in the w-plane.

Special Case II: Next, consider the map

w =
1

z
: C\{0} → C\{0} ⊂ C.

In this case a = 0, b = 1, c = 1, d = 0 and hence ad − bc = −1 6= 0. Writing
z = x+ i y and w = µ+ i ν, we have

w =
1

z
=

x

x2 + y2
− i

y

x2 + y2
.

It follows that

µ =
x

x2 + y2

ν =
−y

x2 + y2

Similarly,

z =
1

w
⇒ x =

µ

µ2 + ν2
, y =

−ν
µ2 + ν2

.

Next,

A(x2 + y2) +Bx+ Cy +D = 0

will describe any line or circle (roughly, we get a circle ⇔ A 6= 0, a line ⇔ A = 0).
Thus

A

(
µ2

(µ2 + ν2)2
+

ν2

(µ2 + ν2)2

)
+B

(
µ

µ2 + ν2

)
− C

(
ν

µ2 + ν2

)
+D = 0.

I.e.:

D(µ2 + ν2) +Bµ+ (−C)ν +A = 0.

I.e.: w = 1/z takes {lines/circles} to {lines/circles}.

General case: Recall that a linear fractional or bilinear transformation is given
by:

w =
az + b

cz + d
, where det

[
a b
c d

]
6= 0.
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Reason for the condition on the determinant: Suppose e.g. c 6= 0. then we can
rewrite:

w =
a
c (cz + d) + b− ad

c

cz + d
=
a

c
−

1
c det

[
a b
c d

]

cz + d
.

Thus det = 0⇒ w = a/c is constant. Note that in this form w(z) factors as follows:

z
Special

7→
case I

cz + d
Special

7→
case II

1

cz + d

dilation

7→
+ rotation

− 1
c det

[
a b
c d

]

cz + d

translation

7→
by + a

c

w(z),

and if c = 0, then d 6= 0, hence w = ãz + b̃ where ã = a/d and b̃ = b/d. In all cases
w(z) takes {lines / circles} to {lines / circles}.

Example Let w = z−1
z+1 and D = {z ∈ C | x = Re(z) ≥ 0}. Describe w(D).

Solution. We first describe w(i y-axis). Note that ± i, 0 belong on the i y-axis.
We compute:

w(i) =
i−1
i+1

=
−(i−1)2

2
= i .

w(− i) =
− i−1
− i +1

= − (1 + i)2

2
= − i .

w(0) = −1.

There is a unique circle thru −1, i,− i, namely |w| = 1. Thus w(z) takes the
imaginary axis line to the circle of radius 1 in the w-plane, centered at 0. Note that
1 ∈ D, and that w(1) = 0. Thus w(D) = {w ∈ C | |w| ≤ 1}. Alternatively

|w|2 =

(
z − 1

z + 1

)(
z − 1

z + 1

)
=
|z|2 + 1 − 2Re(z)

|z|2 + 1 + 2Re(z)
.

Thus
|w| ≤ 1⇔ Re(z) ≥ 0.

Computing inverses. If

w =
az + b

cz + d
, where det

[
a b
c d

]
6= 0,

then z = z(w) can also be solved as a LFT. Namely:

z =
dw − b
cw − a.

Composites of LFT’s are LFT’s.

If

T (z) =
az + b

cz + d
, and L(z) =

kz + l

mz + n
,
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are LFT’s, then T ◦ L(z) is the LFT given by:

T ◦ L(z) =
a
(
kz+l
mz+n

)
+ b

c
(
kz+l
mz+n

)
+ d
•
(
mz + n

mz + n

)
=

(ak + bm)z + (al + bn)

(ck + dm)z + (cl + dn)
.

Notice that

det

[
(ak + bm) (al + bn)
(ck + dm) (cl + dn)

]
= det

[
a b
c d

]
• det

[
k l
m n

]
.

Problem. Let P1, P2, P3 ∈ C be 3 distinct points. Find a LFT T (z) such that
T (P1) = 0, T (P2) = 1, and T (P3) =∞.

Solution. Set

T (z) =

(
z − P1

z − P3

)(
P2 − P3

P2 − P1

)
.

Now suppose that we do the same thing for any other set of 3 distinct points
{Q1, Q2, Q3} ⊂ C, viz.,

L(w) =

(
w −Q1

w −Q3

)(
Q2 −Q3

Q2 −Q1

)
.

We have the following picture:

P1•

P2•

P3•

(z − plane)

T−→

0 •

1 •

∞•

(C ∪∞)

L←−

L−1

−−→

Q1•

Q2•

Q3•

(w − plane)

We end up with w = L−1 ◦ T (z), a LFT such that L−1 ◦ T (Pi) = Qi, ∀i = 1, 2, 3.
I.e., L(w) = L(L−1 ◦ T (z)) = T (z), i.e.:

(
z − P1

z − P3

)(
P2 − P3

P2 − P1

)
=

(
w −Q1

w −Q3

)(
Q2 −Q3

Q2 −Q1

)
.

From this equation, we need only solve for w in terms of z.

Example. Find a LFT T (z) such that T (1) = i, T (i) = −1, and T (− i) = 2 i.

Solution. We must solve for w in terms of z in:
(
z − 1

z + i

)(
2 i

i−1

)
=

(
w − i

w − 2 i

)(−1− 2 i

−1− i

)
.

A brute force calculation gives:

w =
−(2 + 3 i)z + (2 i−1)

(2 i−1)z + i
.

Riemann Mapping Theorem
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Definition 2.20. Two regions D1, D2 ⊂ C are biholomorphic if ∃ f : D1 → D2

which is holomorphic, 1 − 1, and onto. [Thus f ′(z) 6= 0 ∀z ∈ D1, hence by the
inverse function theorem, f−1 is holomorphic.] (Note. C is not biholomorphic to
any bounded region by Louiville’s theorem.)

Riemann Mapping Theorem 2.21. Let Ω $ C be a simply connected region,
and let p ∈ Ω. Then ∃ a unique analytic function f : Ω→ C, such that:

(a) f(p) = 0 & f ′(p) > 0,

(b) f is 1− 1,

(c) f(Ω) = {z
∣∣ |z| < 1} =: D.

Proof. Uniqueness of f : Suppose g also satisfies (a) - (c). Then f ◦ g−1 : D → D is
biholomorphic. Further, f ◦ g−1(0) = f(p) = 0. By the corollary 1.20 to Schwartz’s
lemma, ∃ c ∈ C, |c| = 1 and where f ◦ g−1(z) = cϕ0(z) = cz ∀ z ∈ D. But
f(z) = (f ◦ g−1) ◦ (g(z)) = cz ◦ g(z) = cg(z),⇒ 0 < f ′(p) = cg′(p). But g′(p) > 0,
hence c = 1, i.e. f = g.

Existence First, Ω simply connected and h(z) : Ω→ C× implies [by an analytic

continuation argument, to be discussed in a later section] that ±
√
h(z) exists as a

function on Ω. Now set

F = {f ∈ H(Ω)
∣∣ f is 1− 1, f(p) = 0, f ′(p) > 0 & f(Ω) ⊂ D}.

Note that since f(Ω) ⊂ D, sup{|f(z)|
∣∣ z ∈ Ω} ≤ 1 ∀ f ∈ F . By Montel’s theorem,

F is normal if it is non-empty. Thus we will attend to showing that F 6= ∅. In fact,
we will show that

(⋆) F = F ∪ {0} [⇒ F 6= 0].

Let us first assume (⋆), and consider the function T : H(Ω) → C given by
f 7→ f ′(p). T is continuous, since f ′ can be expressed in terms of f via the CIF,
or we can use the latter statement in Theorem 2.13 on uniform convergence on
compact sets; moreover F compact ⇒ ∃ f ∈ F such that f ′(p) ≥ g′(p) ∀g ∈ F .
Since it is assumed that F 6= ∅, it follows from (⋆) that f ∈ F . It remains therefore
to show that f(Ω) = D. Suppose q ∈ D is given such that q 6∈ f(Ω). Then the
function

f(z)− q
1− qf(z) ,

is analytic and nowhere vanishing on Ω. Thus ∃ analytic h(z) : Ω→ C such that

[h(z)]2 =
f(z)− q
1− qf(z) .

(Note: f 1-1 ⇒ h 1-1.) Note that the LFT

Tqw =
w − q
1− qw ,
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maps D onto D.5 Thus h(Ω) ⊂ D. Define g : Ω→ C by the formula.

g(z) =
|h′(p)|(h(z)− h(p))
h′(p)(1− h(p)h(z))

.

Again,

g(z) =
|h′(p)|
h′(p)︸ ︷︷ ︸

modulus 1 constant

× Th(p)(h(z))⇒ g 1− 1, g(Ω) ⊂ D, g(p) = 0.

Next

g′(p) =
|h′(p)|
h′(p)

[
h′(p)[1− |h(p)|2] + h(p)h′(p) · 0

(1− |h(p)|2)2
]

=
|h′(p)|

(1− |h(p)|2) .

But

|h(p)|2 = |

=0︷︸︸︷
f(p)−q
1− q f(p)︸︷︷︸

=0

| = | − q| = |q|

and
d

dz
[h(z)]2

∣∣
z=p

= 2h(p)h′(p).

Further,

d

dz
[h(z)]2

∣∣
z=p

=
f ′(p)[1− q

=0︷︸︸︷
f(p)] + qf ′(p)[

=0︷︸︸︷
f(p)−q]

[1− qf(p)]2 ,

i.e.
2h(p)h′(p) = f ′(p)[1− |q|2].

Note that h(p)2 = −q and g′(p) = |h′(p)|/[1− |h(p)|2]. Thus:

g′(p) =
f ′(p)(1− |q|2)

2
√
|q|

· 1

1− |q| = f ′(p)

(
1 + |q|
2
√
|q|

)
> f ′(p),

using 1+ |q|−2
√
|q| = (1−

√
|q|)2 > 0. Thus g ∈ F & g′(p) > f ′(p), which violates

the maximality of f ′(p) > 0. Therefore f(Ω) = D.

Proof of (⋆). Since Ω 6= C, choose b ∈ C\Ω, and let g(z) : Ω → C be a given
analytic function such that [g(z)]2 = z − b. If p1, p2 ∈ Ω & if g(p1) = ±g(p2), then
p1 = p2, since p1 − b = [g(p1)]

2 = [g(p2)]
2 = p2 − b. Therefore g(z) is 1− 1. By the

open mapping theorem, g(Ω) ⊃ B(g(p); r) for some r > 0. If g(z) ∈ B(−g(p); r),
then r > |g(z)+g(p)| = |−g(z)−g(p)|. There exists w ∈ Ω such that g(w) = −g(z).

5This was proven earlier in 1.20, but here’s another proof: |T (1)| =
|1−q|
|1−q|

= 1; similarly

|T (i)| = 1; |T (− i)| = 1; |T (0)| = |q| < 1.
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But g(w) = −g(z) = ±g(z)⇒ w = z by the above. Hence g(z) = 1
2 (g(z)+ g(w)) =

0, ⇒ z − b = [g(z)]2 = 0. Thus b ∈ Ω, a contradiction. Hence

g(Ω) ∩ {w
∣∣ |w + g(p)| < r} = ∅.

Let ∆ = {w
∣∣ |w+g(p)| < r} = B(−g(p); r). Choose a LFT T such that T (P1\∆) =

D.6 Set g1 = T ◦ g; then g1 is analytic & g1(Ω) ⊂ D. Set g2 = ϕg1(p) ◦ g1(z). Then
g2(p) = 0, g2(Ω) ⊂ D, & g2 is analytic. Choose a c ∈ C, |c| = 1, such that
g3(z) := cg2(z) satisfies g

′
3(p) > 0. Hence g3 ∈ F ,⇒ F 6= ∅.

Finally, suppose {fn} ⊂ F & fn → f in H(Ω). Clearly, f(p) = 0 and since f ′n →
f ′(p), it follows that f ′(p) ≥ 0. Choose q1 ∈ Ω, and put ξ = f(q1). Let ξn = fn(q1).
Let q2 ∈ Ω, q2 6= q1 and let K = closed disk centered at q2 such that q1 /∈ K. Then
fn(z) − ξn never vanishes on K since fn is 1 − 1. But fn(z) − ξn n→∞−−−→ f(z) − ξ
uniformly onK. Thus Hurwitz’s theorem ensures that either f(z)−ξ never vanishes
on K or f(z) ≡ ξ. If f(z) ≡ ξ on K, then f is constant on Ω, a fortiori 0 since
f(p) = 0. Otherwise we have f(z2) 6= f(z1) ∀ z2 6= z1,, i.e. f is 1 − 1. But if f is
1− 1, then f ′(z) can never vanish. Thus f ′(p) > 0, and f ∈ F . This proves (⋆).
Corollary 2.22. Among the simply connected regions in C, there are only two of
them up to biholomorphism, namely C and D.

The Picard Theorems

Lemma 2.23. Let D ⊂ C be a simply connected region and suppose that f is an
analytic function as D that does not assume the values 0 or 1. Then ∃ an analytic
function g on D such that:

f(z) = −eiπ cosh[2g(z] for z ∈ D.

Proof. Since f : D → C× and D simply connected, it follows that ℓ(z) := log f is
defined and analytic on D; viz eℓ(z) = f . Let F (z) = 1

2π iℓ(z). Then F (z) ∈ Z ⇒
f(z) = e2π iF (z) = 1, which violates our asumptions. Therefore F (z) 6∈ Z ∀ z ∈ D.
But F 6∈ Z⇒ F, 1−F : D → C×; moreover D simply connected⇒

√
F &

√
F − 1

are defined and analytic on D. Thus H(z) :=
√
F (z) −

√
F (z)− 1 is defined and

analytic on D as well. Furthermore, H(z) : D → C×, hence g := logH(z) is
defined;

⇒ cosh(2g) + 1 =
1

2

(
e2g + e−2g

)
+ 1 =

1

2

(
eg + e−g

)2

=
1

2

(
H +

1

H

)2

=
1

2

(
2
√
F (z)

)2

= 2F (z) =
ℓ(z)

π i
.

Thus
f(z) = eℓ(z) = e2π iF (z) = eπ i[cosh(2g)+1] = −eπ i cosh(2g).

�

6First, easy to find T0 such that T0(∂∆) = {|z| = 1}, namely, we pick 3 points on ∂∆ mapping

to ±1, i say. If T (P1 −∆) = {|z| > 1}, then replace T by 1
z
◦ T = 1/T .
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Lemma 2.24. Suppose f , g and D are given as in the lemma. Then g(D) contains
no disk of radius 1.

Proof. Let n ∈ Z. If ∃ p ∈ D such that g(p) = ± log(
√
n+
√
n− 1) + 1

2 imπ, then:

2 cosh[2g(p)] = e2g(p) + e−2g(p) = eimπ(
√
n+
√
n− 1)±2 + e− imπ(

√
n+
√
n− 1)∓2

= (−1)m[2n+ 2(n− 1)] = (−1)m(2(2n− 1)),

[using 1√
n+

√
n−1

=
√
n−
√
n− 1].

⇒ cosh(2g(p)) = (−1)m(2n− 1),

⇒ f(p) = −e((−1)m(2n−1)π i) = 1.

Therefore g(z) cannot assume the values:

Λ :=

{
± log(

√
n+
√
n− 1) +

1

2
imπ

∣∣∣∣n = 1, 2, 3, . . . , m = 0,±1,±2, . . .
}
.

The values in Λ can be regarded as the vertices of a grid of rectangles in C, with
length ∣∣∣∣

1

2
i(m+ 1)π − 1

2
imπ

∣∣∣∣ =
π

2
<
√
3,

and width:
log(
√
n+ 1 +

√
n)− log(

√
n+
√
n− 1) (> 0)

= log

(√
n+ 1 +

√
n√

n− 1 +
√
n

)
= log

(√
1 + 1/n+ 1√
1− 1/n+ 1

)
(↓)

≤ log

(√
1 + 1

1 + 1
√
1− 1

1 + 1

)
= log(1 +

√
2) < log e = 1.

Thus the diameter < 2. �

Little Picard Theorem 2.25. If f is an entire function that omits two values,
then f is constant.

Proof. If {a, b} 6∈ f(C), a 6= b, set

h(z) =
f(z)− a
b− a .

Then {0, 1} 6∈ h(C). Therefore can assume {0, 1} 6∈ f(C). By lemma 2, ∃ an entire
g(z) such that f(z) = −eiπ cosh(2g(z)); moreover g(C) contains no disk of radius 1.
If f is non-constant, then neither is g, hence g′(p) 6= 0 for some p. By translation,
we can assume g′(0) 6= 0 (viz., replace g(z) by g(z + p) if necessary). If R > 0 is
given, then according to a theorem of Bloch, g(B(0, R)) contains a disk of radius

LR|g′(0)|, for some L > 0 independent of R. Thus for R >
(
L|g′(0)|

)−1
, it follows

that g(C) contains a disk of radius 1, a contradiction. Therefore f must be constant.
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Great Picard Theorem 2.26. Assume given an analytic function f with an
essential singularity at z = p. Then in each neighbourhood of p, f assumes each
complex number, with one possible exception, an infinite number of times.

Example application 2.27. f 1 − 1 and entire ⇒ f(z) = az + b for some a ∈
C×, b ∈ C.

Proof. Write f(z) =
∑∞
n=0 anz

n on C. Note that f(z) cannot have an essential
singularity at∞, since it is 1−1. Therefore f(z) is a polynomial. Again, f 1−1⇒
it is a polynomial of degree 1 (i.e. one root!).

Analytic continuation along curves

Assume given a continuous curve γ(t) : [a, b]→ C, with γ(a) = z0 and γ(b) = w.

w •
ր
•
↑
•
/

/
•→•

•
↑

D0

( •
z0

)

We partition the interval [a, b] into:

a = a0 < a1 < a2 < · · · < aN+1 = b,

and further let Di = a convex open set (e.g. a disk) containing γ(ai). [Definition:
Recall that a set D ⊂ C is convex if ∀ P, Q ∈ D, the line segement PQ ⊂ D.7]
Note that Di1 ∩ · · · ∩Dim is connected, if it is non-empty.

Definition 2.28. A sequence {D0, D1, . . . , DN} is connected by the curve γ along
the partition if γ([ai, ai+1]) ⊂ Di, ∀i. Thus Di ∩Di+1 ∋ γ(ai+1).

Let f0 be analytic on D0. By analytic continuation of (f0, D0) along a connected
sequence {D0, . . . , DN}, we mean a sequence of pairs

(2.29) (f0, D0), (f1, D1) . . . , (fN , DN ),

such that fi is analytic on Di and fi+1

∣∣
Di+1∩Di

= fi
∣∣
Di+1∩Di

. Thus we obtain

analytic function in a neighbourhood of the end point w of the path γ, which we
call the analytic continuation of (f0, D0) along the path γ. We denote this by fγ .
As we will see below, this will only depend on γ.

Example. γ := z(t) = ei t : [0, 2π]→ C, D0 = {|z − 1| < 1}. Choose a branch of
f0 := log z, analytic on D0. Then fγ(z) = log z + 2π i.

7It is easy to check to check that convex ∩ convex = convex; moreover disks are convex [Proof:

Let p1, p2 ∈ B(p,R). Put z(t) = tp1 + (1− t)p2. Then z(0) = p2 and z(1) = p1. For 0 ≤ t ≤ 1,
we have |z(t)−p| = |tp1+(1− t)p2−p| = |t(p1−p)+(1− t)(p2−p)| ≤ t|p1−p|+(1− t)|p2−p| <
tr + (1− t)r = r.



35

Theorem 2.30. Let (g0, E0), . . . , (gMEM ) be another analytic continuation of
(g0, E0) along a connected sequence {E0, . . . , EM} with respect to a partition of
the path γ. If f0 = g0 in some neighbourhood of z0, then gM = fN in some neigh-
bourhood of w = γ(b).

Proof. Case 1 Same partition: Thus M = N . By connectivity,

g0
∣∣
D0∩E0

= f0
∣∣
D0∩E0

.

But γ(a1) ∈ D0∩E0∩D1∩E1. Thus since D0∩E0∩D1∩E1 6= ∅, hence connected,
we have f1 = f0 = g0 = g1 on D0 ∩ E0 ∩D1 ∩ E1. Hence f1 = g1 on D1 ∩ E1 (due
to connectedness). Now proceed inductively.

Case 2 Change in partition: Since any two partitions have a common, refine-
ment; to show independence of partitions it suffices to restrict to the following
situation. For some k, insert a c ∈ [ak, ak+1]. Now take this connected sequence
{D0, . . . , Dk, Dk, . . . , DN}. I.e. Dk repeated twice (note: γ[ak, c] ⊂ Dk, and
γ[c, ak+1] ⊂ Dk). Thus (f0, D0), . . . , (fk, Dk), (fk, Dk), . . . , (fN , DN ) is an ana-
lytic continuation of (f0, D0) along this connected sequence. Thus we can reduce
to the case of the same partition! �

Example 2.31. f(z) =
√
z − 1 := e

1
2 log(z−1). Let D0 be the unit open disk

centered at 2, and γ := z(t) = 2ei t : [0, 2π]→ C. The fγ = −
√
z − 1.

Monodromy Theorem 2.32. Let D be a domain (connected open set) and f(z)
analytic at z0 ∈ D. Further, let γ, η be 2 paths joining z0 to a point w in D. Assume

1) γ is homotopic to η in D,

2) f can be extended analytically along any path in D. Then fγ & fη agree in
some neighbourhod of w.

[Definition of homotopic: γ ∼ η means ∃ H : [0, 1] × [0, 1] → D such that
H(t, 0) = γ(t), H(t, 1) = η(t), h(0, s) = γ(a = 0) = η(a = 0) = z0, H(1, s) =
γ(b = 1) = η(b = 1) = w. Here [a, b] = [0, 1].]

Proof. Let s1, s2 ∈ [0, 1], and put γsj (t) = H(t, sj). If s2 is close to s1, then fγs1
agrees with fγs2 in a neighbourhood of w. The basic idea is that if

(f0, D0), . . . , (fN , DN )

is a continuation along γs1 , then it will also work for γs2 , by uniform continuity
of H. Hence by the previous theorem, will agree with a continuation along γs2 .
Now use the compactness of [0, 1] to cover it by intervals Is̃1 , . . . , Is̃M such that
Is̃i

⋂
Is̃i+1

6= ∅. Thus the theorem follows from local considerations.8

8Here are more details: Fix s. Then γs([ai, ai+1] := H([ai, ai+1], s) ⊂ Di. For any t ∈

[ai, ai+1] ∃ ǫ1, ǫ2 such that H
(
(t− ǫ1, t+ ǫ1), (s− ǫ2, s+ ǫ2)

)
⊂ Di. By compactness of [ai, ai+1],

we arrive at H([ai, ai+1], (s− ǫ, s+ ǫ)) ⊂ Di for some ǫ > 0. The partition of γs(t) with connected

sequence D0, . . . , DN deforms locally in (s − ǫ, s + ǫ) =: Iǫ. For any s, we can arrange such an

interval Iǫ. Thus I = [0, 1] =
⋃

s
Iǫs

I compact
= Iǫ1,s1 ∪ · · · ∪ IǫK ,sK ; and where [0, 1] connected

⇒ we can assume Iǫi,si
⋂

Iǫi+1,si+1 6= ∅. Analytic continuation agrees on overlaps because of
common initial and end points.
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The Dilogarithm

For |z| < 1, consider

f(z) = − log(1− z)
z

=
∞∑

n=1

zn−1

n
,

which is clearly holomorphic at z = 0.9

Definition 2.33. The dilogarithm is defined for |z| < 1 by the integral of the power
series

L2(z) :=

∫ z

0

f(w)dw =

∞∑

n=1

zn

n2
,

and is defined by analytic continuation in general, so that we get a function L2,γ(z)
for each path γ in C− {0, 1} (with beginning point 0). Thus we write

L2,γ(z) = −
∫ z

0,γ

logγ(1− w)
dw

w
.

Let D be the simply connected set given by D = C\[1,∞). For z ∈ D, fγ(z) is
independent of the path connecting 0 to z. We simply then label f = fγ , which is
clearly analytic on D. However, we are interested in the analytic continuation of
L2,γ is general. For technical reasons, we will choose γ to begin at 1

2 , instead of 0.
Thus:

L2,γ(z) = −
∫ z

1
2 ,γ

logγ(1− w)
dw

w
.

Theorem 2.34. For z ∈ C\{0, 1}, the function

z 7→ Dγ(z) := Im
(
L2,γ(z)

)
+ argγ(1− z) log |z|,

is independent of the path γ in C\{0, 1}.
Proof. (Outline)

I. If γ ∼hom η in C− {0, 1}, then Dγ = Dη. The basic idea here is that we can
reduce to the local situation where γ and η are “close” to each other.

II. If η differs from γ by a small loop winding counterclockwise around 1 once,
then

argη(1− z) = argγ(1− z) + 2π.

III. Thus we can reduce (up to homotopy) to η = γ + γ1, where γ1 is a small
circle centered around 1 with winding number 1. We use the principal branch of
log(1−z)

z . Then:

∫

γ1

log(1− w)
w

dw =

∫

γ1

log(1− w)
1− (1− w)dw =

∫

γ1

log(1− w)︸ ︷︷ ︸
µ

∞∑

n=0

(1− w)ndw
︸ ︷︷ ︸

dV

9Details: d
dz

(− log(1 − z)) = 1
1−z

(|z|<1)
=

∑∞

n=0
zn, ⇒ − log(1 − z) =

∑∞

n=0
zn+1

n+1
=∑∞

n=1
zn

n
. Thus −

log(1−z)
z

=
∑∞

1
zn−1

n
is defined on 0 < |z| < 1, with removeable singularity

at z = 0. ⇒ defined on |z| < 1.
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parts
= −

∞∑

n=0

(1− w)n+1

n+ 1
log(1− w)

∣∣∣∣
z1

z1,γ1

+

∫

γ1

∞∑

n=0

(1− w)n
n+ 1

dw

︸ ︷︷ ︸
0

.

[where we use the fact that (1−w)n

n+1 is analytic about w = 1.]

= log z log(1− z)
∣∣∣∣
z1

z1,γ1

= 2π i logPr(z1)

(principal value of log z).

Thus

−L2,η(z) =

∫

η

log(1− w)
w

dw =

∫

γ

log(1− w)
w

dw +

∫ z

z1,γ

2π i
dw

w
+ 2π i logPr(z1)

= −L2,γ(z) + 2π i(log z + 2πm i) (some m ∈ Z)

= −L2,γ(z) + 2π i log z − (2π)2m.

Now take imaginary parts. A similar story holds if up to homotopy, η, γ differ by
a loop around 0. D(z) is called the Bloch-Wigner function.



38

§3. Several Variables

We begin with some notation. Let C and R be the fields of complex and real
numbers respectively, and z = (z1, . . . , zn) the coordinates of Cn. If we write
zj = xj +

√
−1yj then we can identify Cn ≃ R2n by the R–linear isomorphism

(z1, . . . , zn) 7→ (x1, y1, . . . , xn, yn). Via this identification, any map f : Cn → Cm

has a corresponding real map fR : R2n → R2m. We write f ∈ Ck(Cn) to mean
fR ∈ Ck(R2n), i.e. of real differentiable class Ck. Now assume f = (f1, . . . , fm) ∈
C1(Cn) and introduce the operators

∂

∂zj
=

1

2

{
∂

∂xj
− i

∂

∂yj

}
and

∂

∂zj
=

1

2

{
∂

∂xj
+ i

∂

∂yj

}
.

The complex derivative of f is given by the m × n jacobian matrix Df(z) =
(∂fi/∂zj). Likewise, if we write fj = uj + i vj , uj = uj(x1, y1, . . . , xn, yn), vj =
vj(x1, y1, . . . , xn, yn), then the corresponding real jacobian is given by

DfR =




∂u1/∂x1 ∂u1/∂y1 . . . . . . ∂u1/∂xn ∂u1/∂yn
∂v1/∂x1 ∂v1/∂y1 . . . . . . ∂v1/∂xn ∂v1/∂yn
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .

∂vm/∂x1 ∂vm/∂y1 . . . . . . ∂vm/∂xn ∂vm/∂yn




The following diagram does not in general commute:

(∗∗)

Cn
Df(z)−−−−→ Cm

||≀ ||≀

R2n DfR−−→ R2m

Proposition–definition 3.0. f : Cn → Cm is said to be holomorphic (or complex
analytic) if any of the following equivalent conditions hold:

(1) (∗∗) commutes for all z ∈ Cn, i.e. DfR is complex linear.

(2) ∂fj/∂zi = 0 for all i and j, equivalently the Cauchy-Riemann equations hold:

∂uj
∂xi

=
∂vj
∂yi

,
∂uj
∂yi

= −∂vj
∂xi

.

(3) fj is holomorphic in zi for all i & j. I.e. for each i,

lim
∆zi→0

f(z1, . . . , zi +∆zi, . . . , zn)− f(z1, . . . , zn)
∆zi

,

exists for all z ∈ C.
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(4) Each fj is an absolutely convergent power series about each point p ∈ Cn.
[I.e. at say p = (0, . . . , 0) ∈ C, then fj(z1, . . . , zn) =

∑
α aαz

α where |aα| ≤
c1
(
c
[α]
2

)
, for some c1, c2 > 0.10

Proof. (1) ⇔ (2) ⇔ (3) ⇐ (4) is a HW exercise. We will show how (3) ⇒ (4).
Consider f : Cn → C holomorphic, i.e. f = fj in above proposition. Set p =
(0, . . . , 0) ∈ C. Consider r = (r1, . . . , rn), r

′ = (r′1, . . . , r
′
n) ∈ Rn, with 0 < rj <

r′j ∀j, and consider p ∈ ∆r ⊂ ∆r′ ⊂ ∆r′ , where ∆r = {z ∈ Cn | |zj | < rj , ∀j}.
We will exhibit f(z) as a uniformly convergent power series on some nbhd of ∆r

by integrating over ∆r′ . Then:

f(z) =
1

2π
√
−1

∫

ξn=r′n

f(z1, . . . , zn−1, ξn)

(ξn − zn)
dξn (CIF)

= · · · =
(

1

2π
√
−1

)n ∫

|ξ1|=r′1,... ,|ξn|=r′n

f(ξ1, . . . , ξn)

(ξ1 − z1) · · · (ξn − zn)
dξ1 · · · dξn

But
1

(ξ1 − z1) · · · (ξn − zn)
=

1

ξ1 · · · ξn

(
1

(1− z1
ξ1
) · · · (1− zn

ξn
)

)

=

∞∑

j1,... ,jn=0

zj11 · · · zjnn
ξj1+1
1 · · · ξjn+1

n

.

– Expand integrand as a power series
– Interchange order of integration and summation

It makes sense to restrict our focus to the case m = 1, viz., f : Cn → C. Some
results carry over to several variables:

Proposition 3.1. (i) If f and g are holomorphic on a connected open set U and
f = g on a nonempty open subset of U , then f = g on U .11

(ii) The modulus of a (non-constant) holomorphic function f on an open set U
has no maximum in U .

There are some striking differences between complex analysis of 1 variable and
that of n ≥ 2 variables. For example, set U = ∆r′\∆r.

10Notes: Choose 0 < c < c−1
2 . If |zi| ≤ c ∀i, then |zα| ≤ c[α], and thus |aαzα| ≤ c1 · c[α]c

[α]
2 =

c1 · λ[α] where 0 < λ = c · c2 < 1. Next
∑

α
λ[α] =

∑
α
e−ρ[α], where ρ = − log(λ) > 0. This

series can be compared, via the integral test, to

∫ ∞

0

· · ·

∫ ∞

0

e−ρt1−···−ρtndt1 · · · dtn =

(∫ ∞

0

e−ρtdt

)n

= ρ−n < ∞.

11Set U0 = {p ∈ U | f ≡ g in a nbhd of p in U}. Then U0 is open by definition. Set U1 = U\U0.

I claim that U1 is also open, and hence U = U0

∐
U1 with U0 6= ∅ and U connected ⇒ U1 = ∅.

For p ∈ U1 let ∆ǫ(p) be a disk centered at p and lying in U . Then we must show that f 6≡ g on
any open subset of ∆ǫ(p) [⇒ ∆ǫ(p) ⊂ U1 ⇒ U1 open]. For this, we can now reduce to the case

where ∆ǫ = Cn, f, g are holomorphic on Cn and f ≡ g in a nbhd V of (0, . . . , 0) ∈ Cn. But
f(z1, 0, . . . , 0) = g(z1, 0, . . . , 0) in a nbhd of 0 ∈ C ⇒ can assume that C× (0, . . . , 0) ⊂ V . Now
continue inductively to deduce that V = Cn. Hence p ∈ Cn ⇒ p ∈ V . This contradicts p ∈ U1.
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Hartog’s Theorem 3.2. (n ≥ 2) Any holomorphic function f on a nbhd of U ∪
∂∆r′ extends analytically to ∆r′ .

Proof. For fixed (z1, . . . , zn−1), the vertical slice region in U looks like the annulus
rn < |zn| < r′n or the disk |zn| < r′n. We try to extend f in every slice by the CIF,
setting

F (z1, . . . , zn) =
1

2π
√
−1

∫

wn=r′n

f(z1, . . . , zn−1, wn)

(wn − zn)
dwn.

F is clearly defined on ∆r′ , is holomorphic in zn by differentiation under integral
sign; moreover since ∂f

∂zj
= 0 ∀j = 1, . . . , n − 1, it is holomorphic in z1, . . . , zn−1

as well. Further, F |U = f by CIF. [Reason: Set V := {z | rj < |zj | < r′j ∀j =
1, . . . , n − 1} ⊂ U . Then clearly F |V = f |V . But V 6= ∅ open in U implies that
F |U = f by the CIF.]

Corollary 3.3. A holomorphic function on the complement of a point in an open
set U ⊂ Cn (n > 1) extends to a holomorphic function in all of U .12

Weierstrass Preparation Theorem

Recall single variable representation of an analytic function

f(z) = (z − z0)dµ(z),

where µ(z0) 6= 0, (⇒ zeros of f are isolated). In general:

Weierstrass Preparation Theorem ≡ Local representation of holomorphic func-
tions in several variables.

The setting

f(z1, . . . , zn−1︸ ︷︷ ︸
call this z

, w) :

{
nbhd of
0 in Cn

}
→ C

holomorphic, with:

(i) f(0, . . . , 0) = 0

(ii) f(0, . . . , 0, w) = awd+ (higher degree terms), where a 6= 0 (Note (i) ⇒ d ≥
1).

Choose r, δ, ǫ > 0, such that:

(a) |f(0, w)| ≥ δ for |w| = r (and in particular, can assume the only roots of
f(0, w) in |w| ≤ r are w = 0 (multiplicity d), using zeros of analytic functions being
are isolated).

(b) |f(z, w)| ≥ δ
2 for |w| = r & ||z|| < ǫ.

12One interpretation of this result is that topologically, Cn\{(0, . . . , 0)} is simply-connected
for n ≥ 2. Thus at the very least, there is no topological onbstruction to extending a given
holomorphic function.
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By Rouche’s theorem13, we can assume (for small ǫ) that for z fixed with ||z|| < ǫ,
f(z, w) has d roots in w (with |w| < r), namely w = b1(z), . . . , bd(z) (including
multiplicity). [Note bj(0) = 0 ∀ j.] Let ∆j = small disk in w-plane about bj(z) for
z fixed, ⇒, over ∆j :

f(z, w) = (w − bj(z))ℓfj(z, w) (local representation)

⇒ ∂f

∂w
= ℓ(w − bj(z))ℓ−1fj(z, w) + (w − bj(z))ℓ

∂fj
∂w

(z, w)

⇒ ∂f/∂w

f(z, w)
=

ℓ

(w − bj(z))
+

(
(w − bj(z))ℓ∂fj/∂w

f(z, w)

)

︸ ︷︷ ︸
removeable
singularity

in w

Therefore, by the residue theorem:

bq1(z) + · · ·+ bqd(z) =
1

2π i

∫

|w|=r

wq(∂f/∂w)

f(z, w)
dw, q = 0, 1, 2, . . .

⇒
d∑

j=1

bqj(z)

are analytic functions of z for ||z|| < ǫ, and q = 0, 1, 2, . . . . (Likewise, repeating the
above discussion about ∆j , bj is analytic if it is a multiplicity 1 root of f(z, w).)

Consider the elementary symmetric polynomials in b1(z), ...., bd(z), given by:

(w − b1(z)) · · · (w − bd(z)) = wd − σ1(z)wd−1 + · · ·+ (−1)dσd(z),

where:

σ1(z) =

d∑

j=1

bj(z),

σ2(z) =
∑

i<j

bi(z)bj(z) =

(∑d
j=1 bj(z)

)2 − (
∑d
j=1 b

2
j (z))

2
,

:

σd(z) =

d∏

j=1

bj(z) = · · ·

It is easy to show (exercise) that σ1(z), . . . , σd(z) can be expressed as ploynomials

in
∑d
j=1 b

q
j(z), q = 1, 2, . . . ,

⇒ g(z, w) := wd − σ1(z)wd−1 + · · ·+ (−1)dσd(z),
13Set gz(w) = f(z, w) − f(0, w). Then for ||z|| < ǫ, |gz(w)| < |f(0, w)| on |w| = r. Thus

f(0, w) and f(z, w) = f(0, w) + gz(w) have the same number of zeros in w in |w| < r.
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(which is clearly holomorphic in w for fixed z), is holomorphic for ||z|| < ǫ & |w| < r;
moreover it vanishes on the same set as f . Therefore

h(z, w) :=
f(z, w)

g(z, w)

is defined and holomorphic for ||z|| < ǫ & |w| < r & outside zero set of f (same as
g).

Next, for fixed z (with ||z|| < ǫ), h(z, w) has removeable singularities in w (with
w| < r), ⇒ h(z, w) defined ||z|| < ǫ & |w| ≤ r and analytic in w for each fixed z,
as well as the complement of the zero locus. Writing

h(z, w) =
1

2π i

∫

|µ|=r

h(z, µ)

µ− w︸ ︷︷ ︸
analytic

by construction

dµ,

it follows that h is holomorphic in z as well (via differentiation in z under the
integral sign). Note that bj(0) = 0 ∀ j, ⇒ σj(0) = 0 ∀ j. This leads to:

Definition 3.4. A Weierstrass polynomial in w is a polynomial of the form

wd + a1(z)w
d−1 + · · ·+ ad(z),

where aj(0) = 0 ∀ j.
In summary, we have:

Weierstrass Preparation Theorem 3.5. Assume given

f :

{
nbhd of
0 ∈ Cn

}
→ C

holomorphic and f 6≡ 0 on w-axis. Then in some neighbourhood of 0, f can be
written uniquely in the form f = g ·h where g is a Weierstrass polynomial of degree
d ≥ 0 in w & h(0) 6= 0.

Proof of uniqueness. In some small neighbourhood of 0 in Cn, and for fixed z, the
w-roots of g are the same as f (namely d of them); moreover the coefficients of the
monic polynomial g are precisely the symmetric polynomials in these roots, hence
uniqueness follows.

Riemann Extension Theorem 3.6. Let ∆ be a polydisk in Cn, f 6≡ 0 holo-
morphic on ∆ (i.e. f : ∆ → C) and let g : ∆\{f = 0} → C be a given bounded
holomorphic function. Then g extends to a holomorphic function on ∆.

Proof. Without loss of generality, ∆ centered at 0 (and say f(0) = 0), and we will
extend g in a nbhd of 0.We can also assume the coordinates f(z1, . . . , zn−1, w) with
f 6≡ 0 on the line z = 0. As before, we can find r, ǫ, δ > 0 such that |f(0, w)| ≥ δ for
|w| = r, and |f(z, w)| ≥ δ/2 for ||z|| < ǫ. Then f only has zeros (in a nbhd of 0 ∈ ∆)
only in the interior of disks z = z0 fixed (||z0|| < ǫ) & |w| ≤ r. By the 1-variable
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Riemann extention theorem, we can extend g to a function g̃ in ||z|| < ǫ &|w| < r,
holomorphic away from {f = 0} =: V (f) & holomorphic in w everywhere. As
before, can write

g̃(z, w) =
1

2π i

∫

|µ|=r

g̃(z, µ)

µ− w dµ ⇒ g̃ holomorphic in z as well.

Further notation On := ring of germs of holomorphic functions in a nbhd of 0 in
Cn = C{z1, . . . , zn} = ring of convergent power series about 0.

Weierstrass Division Theorem 3.7. Let g(z, w) ∈ On−1[w] be a Weierstrass
polynomial of degree d in w. Then ∀ f ∈ On, we can write f = gh+r where r(z, w)
is a polynomial of degree < d in w.

Proof. Let ǫ, δ, r > 0 be given as before (i.e. |g(0, w)| ≥ δ for |w| = r & |g(z, w)| ≥
δ/2 for ||z|| < ǫ & |w| = r). Define

h(z, w) =
1

2π i

∫

|µ|=r

f(z, µ)

g(z, µ)

dµ

(µ− w) ,

which is clearly holomorphic in z and w for ||z|| < ǫ and |w| < r (and a natural
guess for a candidate h). Setting r = f −gh, it is clear that r is holomorphic. Need
to show r(z, w) is a polynomial of degree < d in w. But

f − gh =
1

2π i

∫

|µ|=r

[
f(z, µ)− g(z, w)f(z, µ)

g(z, µ)

]
dµ

(µ− w)

=
1

2π i

∫

|µ|=r

f(z, µ)

g(z, µ)

(
g(z, µ)− g(z, w)

µ− w

)
dµ

But Pµ,z(w) := g(z, µ)− g(z, w) is of degree d in w, with root w = µ. Thus:

g(z, µ)− g(z, w)
µ− w = P1(z, µ)w

d−1 + · · ·+ Pd(z, µ),

(for some Pj(z, µ)), which is a polynomial in w of degree ≤ d− 1.14 Thus:

r(z, w) = a1(z)w
d−1 + · · ·+ ad(z),

where

aj(z) =
1

2π i

∫

|µ|=r

f(z, µ)

g(z, µ)
Pj(z, µ)dµ.

Consequences of the Weierstrass Division Theorem

14Or use

µd − wd = (µ− w)(µd−1 + wµd−2 + · · ·+ wd−2µ+ wd−1).
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1) Given f ∈ On with f =
∑n
i=1 aizi+ higher order terms, with a1 6= 0 (and

w = z1), we can write f = µ ·g where g ∈ On−1[w = z1] is a Weierstrass polynomial
of degree 1, and µ(0) 6= 0. Now let k ∈ On. The Weierstrass division theorem
implies that k = g̃f + r where r has degree 0 in On−1[w], and where we use the
fact that f and g agree up to •µ (a unit, i.e. µ, µ−1 ∈ On). Thus degw r = 0 ⇒
r = r(z2, . . . , zn). [This decomposition is unique: First, degw( ) is well-defined on
On−1[w]. Let g be Weierstrass of deg d. Then:

k = h1g + r1 = h2g + r2

⇒ (h1 − h2)g = (r2 − r1)

⇒ (h1 − h2)g = r2 − r1
Taking degrees, and if h1 − h2 6= 0, then we have:

d ≤ degw(h1 − h2) + degw g = degw((h1 − h2)g) = degw(r2 − r1) ≤ d− 1,

i.e. d ≤ d− 1, which is absurd!]

Thus, if we write (f) := On · f , then:

On
(f)
≃ On−1.

Corollary 3.8. Suppose that {fi | i = 1, n − r} have independent linear terms at
0 and that fj(0) = 0 ∀ j. Then:

On
(f1, . . . , fn−r)

≃ Or,

where (f1, . . . , fn−r) is the ideal generated by {f1, . . . , fn−r} in On.

2) Given f ∈ On with f =
∑n
i=1 aizi+ higher order terms, with a1 6= 0, we can

write z1 = µ · f + r, where r = r(z2, . . . , zn), and µ(0) 6= 0, hence µ−1 ∈ On and
µ−1(0) 6= 0. Thus

f = µ−1 ·
(
z1 − r(z2, . . . , zn)

)
.

This is a special case of the implicit function theorem. In particular, locally, f =
0⇔ z1 = r(z2, . . . , zn). An inductive argument gives the following generalization:

Theorem 3.9. Assume given {fi | i = 1, . . . , n−r}, with f1(0) = · · · = fn−r(0) =
0 and

det

(
∂fi
∂zj

∣∣∣∣
1≤i,j≤n−r

)
(0) 6= 0.

Then there exists absolutely convergent power series {g1, . . . , gn−r}, with gj =
gj(z1, . . . , zr), & gj(0) = 0, such that locally about 0 ∈ Cn,

f := (f1, . . . , fn−r) = 0⇔ xj = gj(z1, . . . , zr), ∀ j = 1, . . . , n− r.
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Some algebra facts

Let A be a commutative ring with unity 1 ∈ A. Recall that A is an integral
domain ⇔ the cancellation law holds for A, equivalently, x · y = 0 ⇒ x = 0 or
y = 0. µ ∈ A is a unit ⇔ ∃ν ∈ A such that µ · ν = 1. The group of units
in A is denoted by A×. A non-unit ν ∈ A\{0} is irreducible if for x, y ∈ A,
ν = x · y ⇒ x ∈ A× or y ∈ A×. A is called a unique factorization domain (UFD),
if if every non-zero ξ ∈ A can be written as a product ξ = ν1 · · · νℓ of irreducibles,
in a unique way, i.e. up to relabelling, the νi’s are unique up to multiplication by
units.

Here are some more facts:

(1) A a UFD ⇒ A[t] a UFD. This is due to Gauss’ lemma. [Thus if k is a field,
the polynomial ring k[x1, . . . , xn] is a UFD (induction on n).

(2) If A is a UFD, and µ, ν ∈ A[t] are relatively prime, then ∃ relatively prime
α, β ∈ A[t], γ ∈ A\{0}, such that αµ+ βν = γ. We call γ the resultant of µ & ν.

Some notation. Let p ∈ Cn. Put OCn,p := ring of convergent powers series at p.
Thus On := OCn,0 The properties of OCn,p are the same (via translation) as those
of On.

Proposition 3.10. On is a UFD.

Proof. By induction on n. It is obvious that O1 is a UFD. Let f(z1, . . . , zn−1, w) ∈
On\{0}, where we can assume (for a suitable choice of coordinates (z1, . . . , zn−1, w),
that f(0, . . . , 0, w) 6≡ 0. By the Weierstrass preparation theorem, can write f = g ·µ
where µ ∈ O×

n , (unit) and g ∈ On−1[w] is a Weierstrass polynomial. By Gauss’
lemma and induction, On−1[w] is a UFD. Thus we can write g = g1 · · · gm ∈
On−1[w] where g1, . . . , gm are irreducible in On−1[w]. Moreover g1, . . . , gm are
uniquely determined (up to multiplication by units) in On−1[w]. This implies the
existence of an irreducible decomposition in On. To prove uniqueness, suppose
that f = f1 · · · fk is another irreducible decomposition. Then f(0, . . . , 0, w) 6≡ 0⇒
fj(0, . . . , 0, w) 6≡ 0 ∀ j, hence can write fj = g̃jµj , where g̃j is a Weierstrass poly-
nomial, and µj a unit. Note: g̃j must be irreducible in On−1[w], as fj is irreducible.
Thus f = gµ = (

∏
j g̃j) · (

∏
j µj)), with g =

∏
j gj ,

∏
j g̃j both Weierstrass polyno-

mials. By the Weierstrass preparation theorem (uniqueness part),
∏
j gj =

∏
j g̃j ,

and since On−1[w] is a UFD, this implies that up to multiplication by units, {g̃j},
{gj} agree.
Proposition 3.11. If f and g are relatively prime in On = OCn,0, then for ||z|| <
ǫ, f and g are relatively prime in OCn,z.

Proof. We can assume that f(0, . . . , 0, zn) 6≡ 0 and g(0, . . . , 0, zn) 6≡ 0. Hence
we can assume that f and g are both Weierstrass polynomials in w = zn, by the
Weierstrass preparation theorem. For z′ ∈ Cn−1 and ||z′|| small, we have f(z′, zn) 6≡
0 in zn. Recall that if γ is the resultant of f and g, then αf + βg = γ, α, β ∈
On−1[w = zn], γ ∈ On−1; moreover this equation holds in some neighbourhood
of 0 ∈ Cn. Suppose to contrary for small ||z0|| with z0 ∈ Cn, f and g have
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a common factor h(z′, zn) in OCn,z0 (⇒ h(z0) = 0 (otherwise h is a the unit)).
Then h|f & h|g ⇒ h|γ, ⇒ h ∈ On−1. But h(z0,1, . . . , z0,n−1) ≡ 0 in zn, ⇒
f(z0,1, . . . , zo,n−1, zn) ≡ 0, a contradiction to f(z0,1, . . . , z0,n−1, zn) 6≡ 0. �

As an application of Weierstrass division theorem, we prove the following:

Analytic Nullstellensatz Theorem 3.12. If f(z, w) ∈ On is irreducible, and if
h ∈ On vanishes on the set {f(z, w) = 0} (in some neighbourhood of 0 ∈ Cn), then
f
∣∣h in On.

Proof. Without loss of generality, we can assume that f is a Weierstrass polynomial
of degree k in w. Thus f being irreducible⇒ f & ∂f

∂w are relatively prime inOn−1[w]

(as degw f > degw
∂f
∂w ). Therefore we can write:

α · f + β · ∂f
∂w

= γ, γ ∈ On−1, γ 6≡ 0.

Note that for a given z0, if f(z0, w) has a multiple root µ, then

f(z0, µ) =
∂f

∂w
(z0, µ) = 0, ⇒ γ(z0) = 0.

Therefore f(z, w) has k distinct roots in w for γ(z) 6= 0. By the division theorem,
h = f · g + r, r ∈ On−1[w], deg r < k. But for z0 outside {γ = 0}, f(z0, w) and
hence h(z0, w) share at least k distinct roots in w. Thus degw r < k ⇒ r(z0, w) = 0
in C[w]. Thus r ≡ 0 and therefore h = f · g. �

The inverse and implicit function theorems

We now consider f : Cn 7→ Cm any C∞ map, and let (w1, . . . , wm) be affine
cordinates for Cm. Thus we can write w := (w1, . . . , wm) = f = (f1, . . . , fm).
fj = fj(z1, . . . , zn). Write zj = xj + i yj and likewise, fj = wj = µj + i νj . For

p ∈ Cn, and q = f(p), we write for brevity, ∂
∂zi

for ∂
∂zi
|p, ∂

∂wj
for ∂

∂wj
|q. The

holomorphic tangent spaces15 of Cn and Cm at p and q respectively, are given by:

Tp(Cn) = C
∂

∂z1
⊕ · · · ⊕ C

∂

∂zn

Tq(Cm) = C
∂

∂w1
⊕ · · · ⊕ C

∂

∂wm

15Our point of view of tangent spaces is via derivations. A p-centered derivation is a C-linear
map D : OCn,p → C satisfying Leibniz’ rule, viz., D(f · g) = g(p)D(f) + f(p)D(g) ∈ C. For any

f ∈ OCn,p, we can write f(z) = f(p) +
∑n

j=1
∂f
∂zj

(p)(zj − pj) + h, where h involves higher order

terms in z − p = (z1 − p1, . . . , zn − pn). By Leibniz’ rule and linearity, it is clear that D(f(p)) =

D(h) = 0, and hence D(f) =
∑n

j=1
∂f
∂zj

(p)D(zj) =

(∑n

j=1
aj

∂
∂zj

∣∣∣
p

)
(f), where aj := D(zj) ∈

C. Note that

(∑
aj

∂
∂zj

)∣∣∣
p

= 0 ⇒ aℓ =

(∑
aj

∂
∂zj

)∣∣∣
p

(zℓ) = 0, hence { ∂
∂z1

∣∣∣
p

, . . . , ∂
∂z1

∣∣∣
p

}
are

independent and span the space of p-derivations Derp(OCn,p). One puts Tp(Cn) = Derp(OCn,p).

This provides a coordinate free definition of the tangent space. Given a holomorphic map f : Cn →
Cm with f(p) = q, one has an induced linear map df(p) : Tp(Cn) → Tq(Cm) defined as follows.
Let g ∈ OCm,q . Then f∗(g) := g ◦ f ∈ OCn,p. For any derivation ξ ∈ Derp(OCn,p, df(p)(ξ) ∈

Derq(OCm,q is given by the formula
(
df(p)(ξ)

)
(g) = ξ(f∗(g)). If we write w = (w1, . . . , wm) =

f = (f1, . . . , fm), fj = fj(z1, . . . , zn), and where

{
∂

∂z1

∣∣∣
p

, . . . , ∂
∂zn

∣∣∣
p

}
,

{
∂

∂w1

∣∣∣
q

, . . . , ∂
∂wm

∣∣∣
q

}
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Using the identifications R2n ≃ Cn, R2m ≃ Cm, we have the corresponding real
tangent spaces Tp(Cn)R and Tq(Cm)R, with corresponding complexifications given
by:

Tp(Cn)R ⊗R C = C
∂

∂x1
⊕ C

∂

∂y1
⊕ · · · ⊕ C

∂

∂xn
⊕ C

∂

∂yn

= C
∂

∂z1
⊕ C

∂

∂z1
⊕ · · · ⊕ C

∂

∂zn
⊕ C

∂

∂zn

Tq(Cm)R ⊗R C = C
∂

∂µ1
⊕ C

∂

∂ν1
⊕ · · · ⊕ C

∂

∂µm
⊕ C

∂

∂νm

= C
∂

∂w1
⊕ C

∂

∂w1
⊕ · · · ⊕ C

∂

∂wm
⊕ C

∂

∂wm

With respect to the bases

{
∂

∂x1
,
∂

∂y1
, . . . ,

∂

∂xn
,
∂

∂yn

}
,

{
∂

∂µ1
,
∂

∂ν1
, . . . ,

∂

∂µm
,
∂

∂νm

}
,

the derivative

(D(f)R)⊗R C : Tp(Cn)R ⊗R C→ Tq(Cm)R ⊗R C,

is given by:

(I) (D(f)R)⊗R C =




∂µ1

∂x1

∂µ1

∂y1
· · · ∂µ1

∂xn

∂µ1

∂yn
∂ν1
∂x1

∂ν1
∂y1

· · · ∂ν1
∂xn

∂ν1
∂yn

: : : : :

∂µm

∂x1

∂µm

∂y1
· · · ∂µm

∂xn

∂µm

∂yn
∂νm
∂x1

∂νm
∂y1

· · · ∂νm
∂xn

∂νm
∂yn




Next, with respect to the bases

{
∂

∂z1
, . . . , . . . ,

∂

∂zn
,
∂

∂z1
, . . . ,

∂

∂zn

}
,

{
∂

∂w1
, . . . ,

∂

∂wm
,
∂

∂w1
, . . . ,

∂

∂wm

}
,

the derivative is given by

(II) (D(f)R)⊗R C =




(∂wi

∂zj
) | (∂wi

∂zj
)

−−− −−−
(∂wi

∂zj
) | (∂wi

∂zj
)




are the respective bases of Tp(Cn) and Tq(Cm), then

D(f)ij(p) =

n∑

ℓ=1

D(f)ij(p)
∂

∂wℓ

∣∣∣
q

(wi) = df(p)

(
∂

∂zj

∣∣∣
p

)
(wi) =

∂

∂zj

∣∣∣
p

(wi ◦ f) =
∂fi

∂zj
(p).
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In particular, if f is holomorphic, the (II) becomes:

(III) (D(f)R)⊗R C =




(∂wi

∂zj
) | 0

−−− −−−
0 | (∂wi

∂zj
)




Now assume that m = n. Note that both derivative realizations (I) and (II) agree
up to conjugate, hence have the same determinant. Thus in this case f holomorphic
implies

det(D(f)R) := det((D(f)R)⊗R C) =
∣∣∣∣det

(
∂fi
∂zj

)∣∣∣∣
2

,

where

Df =

(
∂fi
∂zj

)
: Tp(Cn)→ Tq(Cn),

is the holomorphic derivative with respect to the bases:{
∂

∂z1
, . . . ,

∂

∂zn

}
,

{
∂

∂w1
, . . . ,

∂

∂wn

}
,

and

D(f)R :




∂µ1

∂x1

∂µ1

∂y1
· · · ∂µ1

∂xn

∂µ1

∂yn
∂ν1
∂x1

∂ν1
∂y1

· · · ∂ν1
∂xn

∂ν1
∂yn

: : : : :

∂µn

∂x1

∂µn

∂y1
· · · ∂µn

∂xn

∂µn

∂yn
∂νn
∂x1

∂νn
∂y1

· · · ∂νn
∂xn

∂νn
∂yn




: Tp(Cn)R → Tq(Cn)R

is the corresponding real derivative, with respect to the bases{
∂

∂x1
,
∂

∂y1
, . . . ,

∂

∂xn
,
∂

∂yn

}
,

{
∂

∂µ1
,
∂

∂ν1
, . . . ,

∂

∂µn
,
∂

∂νn

}
,

We now prove:

Inverse Function Theorem 3.13. Let U, V be open sets in Cn, p ∈ U and
f : U → V be a given holomorphic map with ( ∂fi∂zj

)(p) non-singular. Then f is 1−1

in a neighbourhood of p and f−1 is holomorphic at q := f(p).

Proof. We have det
(
D(f)R)

)
=

∣∣ det
(
∂fi
∂zj

)∣∣2 6= 0, hence by the C∞ inverse function

theorem [real version], f has a C∞ inverse f−1 near q. Thus f−1(f(z)) = z for z in a
neighbourhood of p. Let z = (z1, . . . , zn), w = (w1, . . . , wn) be respective complex
coordinates about U and V respectively, and write z = (z1, . . . , zn) = f−1 =

(f̃−1
1 , . . . , f̃−1

n ) for the (complex) coordinates of f−1. (Likewise w = (w1, . . . , wn) =
(f1, . . . fn) = f .) Then by the chain rule and ∀ i & j:

0 =
∂zi
∂zj

=
∑

k

∂f̃−1
i

∂wk

∂fk
∂zj︸︷︷︸
=0

+
∑

k

∂f̃−1
i

∂wk

∂fk
∂zj

Thus (
∂f̃−1

i

∂wk

)(
∂fk
∂zj

)
= 0, hence

(
∂f̃−1

i

∂wk

)
= 0.

Thus f−1 is holomorphic in a neighbourhood of q. �
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Implicit Function Theorem 3.14. Assume given f1, . . . , fk ∈ On with fj(0) = 0
∀ j, and such that

det

(
∂fi
∂zj

(0)

)

1≤i,j≤k
6= 0.

Then ∃ w1, . . . , wk ∈ On−k, with wi(0) = 0 ∀ i, such that in a neigbourhood of
0 ∈ Cn:

f1(z) = · · · = fk(z) = 0⇔ zi = wi(zk+1, . . . , zn), ∀ 1 ≤ i ≤ k.

Proof. Again, by the C∞ implicit function theorem, C∞ functions {w1, . . . , wk}
exist. To check holomorphicity, write z = (zk+1, . . . , zn). Then for k + 1 ≤ j ≤ n,
and all i, we have fi(w(z), z) = 0, hence:

0 =
∂

∂zj

(
fi(w(z), z)

)
=
∂fi
zj

(w(z), z)

︸ ︷︷ ︸
=0

+

k∑

q=1

∂fi
∂wq

(w(z), z)
∂wq
∂zj

+

k∑

q=1

∂fi
∂wq

(w(z), z)

︸ ︷︷ ︸
=0

∂wq
∂zi

Thus

0 =

k∑

q=1

∂fi
∂wq

∂wq
∂zj

, hence
∂wq
∂zj

= 0 ∀ q & j.

�

Analytic sets

Definitions 3.15. (1) Let U ⊂ Cn be an open subset. A closed subset V ⊂ U is
an analytic variety in U if for any p ∈ U , there exists a neighbourhood U ′ ∋ p in
U , such that V ∩ U ′ is cut out by the zero locus of a finite number of holomorphic
functions {f1, . . . , fk} on U ′.

(2) An analytic variety V is called an analytic hypesurface if V is locally the zero
locus of a single holomorphic function, i.e. k = 1 in (1) above, ∀p ∈ V .

(3) An analytic variety V ⊂ U ⊂ Cn is said to be irreducible on U , if V cannot
be written as a union of 2 analytic varieties V1, V2 ⊂ U , where Vj 6= V for j = 1, 2.

(4) An analytic variety V ⊂ U ⊂ Cn is said to be irreducible at p ∈ V if V ∩ U ′

is irreducible on U ′ for small neighbourhoods p ∈ U ′ ⊂ U .

Warning: Irreducible 6⇒ local irreducibility. For example, let V = {z22 = z31 +
z21 = 0} ⊂ C2, and p = (0, 0) ∈ V . Then V is an irreducible analytic variety in
C2 and yet it is not irreducible at p. For instance in a neighbourhood of (0, 0) we
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have two branches z2 = ±z1
√
z1 − 1, corresponding to the two branches of

√
z1 − 1

about z1 = 0.

Remarks 3.16. (1) Let f ∈ On be irreducible. I claim that V := {f = 0} is
irreducible at 0 ∈ Cn. [Proof. If V = V1 ∪ V2 with Vj 6= V , then ∃ f1, f2 such that
fj ≡ 0 on Vj , j = 1, 2, and that f1 6≡ 0 on V2, f2 6≡ 0 on V1. But f1 · f2 ≡ 0 on
V . Hence by the Nullstellensatz, f |f1 · f2. Since f is irreducible and On is a UFD,
it follows that either f |f1 or f |f2. In other words, either V1 ⊃ V (⇒ V1 = V ), or
V2 ⊃ V (⇒ V2 = V ), a contradiction.]

(2) Suppose that V := {f = 0} is an analytic hypersurface in some neighbour-
hood of 0 ∈ Cn, where f ∈ On. Since On is a UFD, we can write f =

∏m
j=1 fj ,

where fj is irreducible in On. Set Vj = {fj = 0}. Then we have V = V1 ∪ · · · ∪ Vm
with Vj irreducible at 0. A a consequence, we deduce that for any analytic hyper-
surface V , and p ∈ V , then V can be expressed uniquely in some neighbourhood of
p as a union of a finite number of irreducible analytic hypersurfaces through p.

(3) Regarding (2), the general result in this direction is the following (proof
omitted): Any analytic variety X can be decomposed uniquely in the form X =⋃
j∈I Xj , where Xj is irreducible, and the union is locally finite, and whereXi 6⊂ Xj

∀ i 6= j.

(4) One can also show that any ireducible analytic variety X has an open dense
subset Xsmooth ⊂ X (a manifold), and a “singular set” XΣ ⊂ X; moreover XΣ is a
proper analytic subvariety of X.
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§4. Complex Manifolds

Definition 4.0. A complex manifold X of dimension n is a Hausdorff and second
countable topological space, together with coordinate charts {(Uj , hj)}j∈J where:

(1) {Uj}j∈J is an open cover of X.

(2) hj : Uj
≈−→ Vj is a homeomorphism onto an open set Vj ⊂ Cn.

(3) the transition functions hi ◦ h−1
j : Vj → Vi are holomorphic (for all i and j)

wherever defined.

Uj Ui

hj ւ ցhi

hi◦h−1
j−−−−→

Vj Vi

Remarks 4.1. (1) It is customary to maximize the family {(hj , Uj)j∈J} satisfying
(1), (2), (3) in (4.0) above, and call the resulting data a complex structure on X.

(2) A variant of the above definition is a real differentiable manifold, where the
transition functions hi ◦ h−1

j are required to be C∞ (instead of holomorphic), and
where Cn is replaced by Rn.

(3) Every complex manifold of dimension n has an underlying structure of a real
differentiable manifold of real dimension 2n.

(4) The conditions X Hausdorff and second countable imply that X is paracom-
pact, i.e. every open cover of X admits a locally finite refinement. This implies the
existence of partitions of unity subordinate to a given open cover of X.

(5) Let X, Y be complex manifolds with respective coordinate charts

{(hj , Uj)j∈J} and {(ki,Wi)i∈I}.

A continuous map F : X → Y is said to be holomorphic if ki◦F ◦h−1
j is holomorphic

(wherever defined) for all i and j.

Examples of manifolds

(I) X = open subset of Cn and (hj , Uj) = (Identity, X).

(II) X, Y manifolds of dimensions n and m respectively and with respective co-
ordinate charts {(hj , Uj)j∈J}, {(ki,Wi)i∈I}. ThenX×Y with the product topology,
is a manifold of dimension n+m, with coordinate charts {(hj×ki, Uj×Wi)(j,i)∈J×I}.
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(III) Real and Complex tori. Let {v1, . . . , vn} be independent vectors in Rn.
The abelian group L ≃ Zn generated by {v1, . . . , vn} is called a lattice. T = Rn/L
is called a real torus, with quotient topology via the quotient map π : Rn → T .
It is clear that π is open since π−1(π(V )) = ∪ω∈LV + ω. If V ⊂ Rn is an open

set satisfying ♯{V + p ∩ L} ≤ 1 for all p ∈ Rn, then (π|V )−1 : π(V )
≈−→ V

defines local coordinates on T . The corresponding transition functions are given
by translations by elements in L. There is a diffeomorphism T ≃ (S1)n where the
unit circle is identified with R/Z. If L ≃ Z2n is a lattice in Cn, then the resulting
T = Cn/L is called a complex torus. The complex tori are comprised of all the
compact, connected, complex analytic Lie groups (using some basic properties of
the exponential map on Lie groups together with the maximum-modulus principle
[to show Exp is a homomorphism]).

(IV) Compact Riemann surfaces [‘curves’]. A compact Riemann surface X is a
1-dimensional compact complex manifold. The underlying differentiable structure
is a real oriented compact manifold of dimension 2. Conversely, given any real
2-dimensional oriented manifold X with Riemannian metric ds2, one can construct
(locally) an oriented isothermal coordinate system (x, y) so that the metric takes
the form ds2 = µ2(dx2 + dy2). If (u, v) is another oriented isothermal coordinate
system, then it easily follows that w = u +

√
−1v depends holomorphically on

z = x+
√
−1y, i.e. X has a complex structure. The differentiable classification of

compact real orientable 2-dimensional manifolds X is trivial, i.e. there is only one
differentiable structure on X up to diffeomorphism. Topologically, X is classified by
the genus g, which is the numbers of handles attached to the 2-sphere S2. On the
other hand for g > 0, X will have a family of distinct complex structures inducing
the same differentiable structure (cf. the case g = 1 below).

Case g = 0: This is the Riemann sphere S2 and by stereographic projection,

N

S

can be viewed as the extended plane R2∪∞. In this case there is only one complex
structure on S2 which can be constructed by viewing S2 = C ∪ ∞ , with z =
coordinate of C and w = 1/z = coordinate about ∞. Equivalently S2 = P1 =
complex projective 1-space (cf. Pn below). P1 is also called a rational curve. The
result that there is only one complex structure on S2 can be deduced from the
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Riemann-Roch theorem, a theorem which can be viewed as the solution of the
classical Mittag-Leffler problem for compact Riemann surfaces!

Case g = 1: A sphere with one handle is given by the torus below:

torus S1 × S1

(elliptic curve)

We can describe all such elliptic curves as the Riemann surface associated to w =√
(z − z1)(z − z2)(z − z3), where {z1, z2, z3} are distinct, and a family of complex

structures on S1 × S1 is obtained by varying the zj ’s. The domain for each of the
2 branches of w is given below:

to ∞

ր
z2 z3 ← 2 copies, 1 for each

of the 2 branches

z1 of
√∏3

1(z − zj)

C ∪ ∞ − slits

By analytic continuation, the domains for the 2 branches can be glued together
along the respective slits to form a torus. Thus:

z3 ∞

z1 z2

S2 − slits

We remark in passing that if {z1, z2, z3} are not distinct, the resulting analytic
space will have singularities. For example in:

E.g. z1 = z2 6= z3

(rational elliptic curve)

the corresponding analytic space (with nodal singularity) can be viewed topolog-
ically as a sphere with 2 distinct points glued together, therefore (by desingular-
ization) the genus of this space is zero, hence the name rational elliptic curve.
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Note that by varying the zj ’s, it is possible to construct a family of elliptic curves
degenerating to a rational elliptic curve with nodal singularity. We also remark
that the Riemann surface associated to w =

√
(z − z1)(z − z2)(z − z3)(z − z4), for

{z1, z2, z3, z4} distinct, is also a torus, however the compactified solution set to
w2 = (z− z1)(z− z2)(z− z3)(z− z4) must be desingularized at∞ in order to arrive
at the torus.

For convenience of notation, we will express w2 =
∏
(z−zj) in normal Weierstrass

form, namely w2 = h(z), where h(z) = z3 + bz + c has distinct roots, and set
f(z, w) = w2 − h(z). If we let p0 be the point of ∞ of the Riemann surface

X associated to w =
√
h(z), then it turns out that p0 is a point of inflexion.

There is a globally defined 1-form dz/w = dz/
√
h(z) on X obtained via a residue

calculation16, which is holomorphic everywhere, even at∞ (= p0). There is also the
classical elliptic integral: p 7→

∫ p
p0
dz/w, which by Stoke’s theorem is well defined

modulo periods {
∫
β
dz/w | β ∈ H1(X,Z)} ≃ Z2, as can be easily seen in the

diagram below:

p0 · · p

From this, we arrive at a mapping Φ : X → T , where T ≃ C/Z2 is a complex
torus, called the Abel-Jacobi map. It is well known using Riemann-Roch that Φ is
biholomorphic; moreover there is a theorem of Abel, which translates into:17

Theorem 4.2. Let {P,Q,R} be points on X. Then P,Q,R are collinear⇔ Φ(P )+
Φ(Q) + Φ(R) = 0 in the group law on T [⇒ 9 points of inflexion on X].

16First, we identify X with f = 0. Taking differentials, we have df = ∂f
∂z

dz + ∂f
∂w

dw. Hence

dz ∧ df = ∂f
∂w

dz ∧ dw and dw ∧ df = − ∂f
∂z

dz ∧ dw. Thus

dz ∧ dw

f
=

dz

∂f/∂w
∧

df

f
= −

dw

∂f/∂w
∧

df

f
.

The residue of the meromorphic 2-form along X = {f = 0} is given by

dz

∂f/∂w

∣∣∣
X

= −
dw

∂f/∂w

∣∣∣
X

.

For example

2
dz

∂f/∂w

∣∣∣
X

=
dz

w
.

By analogy with the ordinary residue, if f(z) is analytic at p ∈ C, then Resz−p=0

(
f(z) dz

z−p

)
=

Resz−p=0

(
f(z)

d(z−p)
z−p

)
= f(z)

∣∣∣
z−p=0

= f(p).

17The proof of this theorem goes as follows. Firstly, proving ⇒ implies the converse. Thus
we will assume that {P,Q,R} ⊂ X are collinear. One constructs a “pencil” of complex lines

{P1
t }t∈P1 such that if we write Pt ∩ X = p1(t) + p2(t) + p3(t), then P0 ∩ X = P + Q + R and

P∞ ∩ X = 3p0, where it is observed that p0 ∈ X is a point of inflexion. If we compose with Φ
and add in T , viz., t ∈ P1 7→ Φ(p1(t)) + Φ(p2(t)) + Φ(p3(t)), we end up with a holomorphic map
P1 → T . But P1 and C are simply-connected, and there is the homotopy lifting property that
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E.g. X : w2 = z3 − z = z(z + 1)(z − 1)

∞ R2 ∩ X

R
Q

P

−1 0 1 ∞
P +Q

∞

There is a converse result, namely if L ≃ Z2 is a lattice in C with corresponding
torus T = C/L, then T is biholomorphic to a Riemann surface associated to w =√
h(z), h(z) given above, i.e. T is biholomorphic to a [compactified] non-singular

degree 3 plane curve. To see this, we consider the Weierstrass ℘ function ℘(z) =
z−2 +

∑
µ∈L−0((z − µ)−2 − µ−2), a doubly periodic non-constant meromorphic

function on C, hence a non-constant meromorphic function on T . It is well known
that ℘(z) satisfies the non-linear differential equation [℘′(z)]2 = 4[℘(z)]3−g2℘(z)−
g3, where g2 = 60G4, g3 = 140G6 and Gn =

∑
µ∈L−0 µ

−n. Consider the dictionary

℘′(z)↔ w, ℘(z)↔ z, −g2 ↔ b, −g3 ↔ c, and the Riemann surface X associated

to w =
√
h(z), h(z) = 4z3 + bz + c. One checks that the map k : C→ X given by

(z, w) = k(t) =

{
(℘(t), ℘′(t)) if t 6∈ L
∞ if t ∈ L induces a biholomorphism T

∼−→ X.

In summary, and to be more precise (cf. definition of Pn below), there is a
correspondence:

{
smooth degree 3 plane

curves in P2

} Abel-Jacobi map Φ−−−−−−−−−−−−→
←−−−−−−−−−−−−−−
Weierstrass ℘ function

{
complex tori
T ≃ C/Z2

}

which is a bijection on analytic isomorphism classes. We also conclude that the non-
constant meromorphic function ℘(z) provides us with an explicit way of algebraizing
the complex torus T .

implies that the map P1 → T factors into:

C
ր ↓

P1 → T,

where P1 → C is a priori continuous, albeit analytic, observing that local coordinates on T
come from C. By the maximum modulus principle, this map is constant. Thus Φ(P +Q+R) =
3Φ(p0) = 0.
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Now let L1, L2 be lattices in C and define Tj = C/Lj . If f : T1 → T2 is an
analytic isomorphism with f(0) = 0, then since C is the universal cover of the Tj ’s
and by the description of local coordinates on Tj in terms of C, it follows that there
exists an analytic lifting F of f :

C F ∼−−−→ C
↓ ↓
T1

f ∼−−→ T2

Therefore F (z + w1) = F (z) + w2 for w1 ∈ L1, z ∈ C, and some w2 ∈ L2, and
hence F ′(z) is periodic with respect to L1. Now F ′(z) induces a holomorphic map
T1 → C, and by the maximum-modulus principle, F ′(z) must be constant. We
may assume therefore that F (z) = az for some a ∈ C× satisfying a · L1 = L2.
Since F (z) is conformal, the angles between lattice vectors are preserved. Now set
L(τ) = Z⊕Zτ , with say Im(τ) > 0 and T (τ) = C/L(τ), and note that by rotation
and dilation, every one dimensional complex torus is biholomorphic to some T (τ).

τ

θ
L(τ) : → 1

By varying τ, we obtain a family of
complex structures on T (τ) = S1 × S1

Case g = 2: All such Riemann surfaces can be described as the Riemann surface
associated to

√
(z − z1) · · · (z − zk) where k = 5 or 6 and {z1, . . . , zk} are distinct.

Again a family of complex structures is obtained by varying the zj ’s.

g = 2

Case g ≥ 3: In the previous two cases, we could describe the Riemann surfaces
as those associated to w =

√
(z − z1) · · · (z − zk), where 3 ≤ k ≤ 6. In general, a

Riemann surface is called hyperelliptic if it is of this form for some k, equivalently,
can be expressed as a double cover of P1. This double cover will be branched at
{z1, . . . , zk} for k even, and at {z1 . . . , zk,∞} for k odd. In general there are 2g+2
such points, and they are also the so-called Weierstrass points of the Riemann
surface. In general, for g ≥ 3, ‘most’ Riemann surfaces are not hyperelliptic.

g ≥ 3

(V) Complex projective space. [Notation: Sn is the unit n-sphere in Rn+1]
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Proposition-Definition 4.3. Define Pn in any 3 equivalent ways:

(1) As a point set Pn = {1-dimensional C-subspaces in Cn+1}.

(2) S2n+1/ ∼ where z ∼ w if ei tz = w for some t ∈ R, with the quotient topology.

(3) {Cn+1 − 0}/ ∼ where z ∼ w if a · z = w for some a ∈ C× (again with the
quotient topology).

Remarks 4.4. With regard to the above definition, (1) implies Pn is a special
case of a Grassmannian (cf. below), (2) implies Pn is compact, and (3) is the most
useful for doing calculations. We will think of Pn = {Cn+1− 0}/C× in the sense of
(3) in (1.6) with quotient map π : Cn+1 − 0→ Pn. If z = (z0, . . . , zn) ∈ Cn+1 − 0,
we will write [z] = [z0, . . . , zn] instead of π(z). [z] are called homogeneous coor-
dinates on Pn. We can cover Pn by coordinate charts {(Uj , hj) | j = 0, . . . , n}
where Uj = {[z] ∈ Pn | zj 6= 0} and hj : Uj

≈−→ Cn is given by hj([z0, . . . , zn]) =

(z0/zj , . . . , ẑj/zj , . . . , zn/zj) ∈ Cn, and where ̂means delete. By a simple calcula-

tion, hi ◦ h−1
j is holomorphic over hj(Uj ∩Ui), a fortiori Pn is a complex manifold

of dimension n. E.g. n = 1: set z = z0/z1, w = z1/z0. Then P1 = {z−plane
C} ∪ {[1, 0]} = C ∪ ∞, i.e. where z = coordinate of C and w = coordinate of
(w−)plane C about ∞.

The cellular decomposition of Pn: We can express Pn = {[z] ∈ Pn | zn 6=
0}∐{[z] ∈ Pn | zn = 0} = Cn

∐
Pn−1. Pn−1 is called the hyperplane at infin-

ity. Proceeding inductively, we arrive at Pn = Cn
∐

Cn−1
∐ · · ·∐C1

∐{∞} . As
a consequence of this decomposition, we can read off the generators for integral

homology Ck = Pk (and ∂Pk = 0). In particular:

Hj(Pn,Z) ≃
{

Z if j = 2k and 0 ≤ k ≤ n
0 otherwise

.

(VI) Affine varieties (and Stein manifolds).

(A) Affine varieties. Let C[x1, . . . , xn] be a polynomial ring in n-letters,

f1, . . . , fm ∈ C[x1, . . . , xn].

We set V (f1, . . . , fm) = {p ∈ Cn | fj(p) = 0 for all j = 1, . . . ,m, an algebraic
subset of Cn. It is easy to see that V (f1, . . . , fm) = V (f1) ∩ · · · ∩ V (fm).

Definition 4.5. X = V (f1, . . . , fm) ⊂ Cn is called an affine variety.

Tangent space Tp(X). Let X = V (f1, . . . , fm) be a variety in Cn and p ∈ X.
Any v ∈ Tp(X) ⊂ Tp(Cn) ≃ Cn should have the property that v · ∇f(p) = 0 for all
f ∈ (f1, . . . , fm), where (f1, . . . , fm) is the ideal generated by {f1, . . . , fm}.
Proposition-definition 4.6. The tangent space Tp(X) is given by:

{v+p | v·∇fj(p) = 0, j = 1, . . . ,m} = {v+p | v·∇f(p) = 0, ∀ f ∈ (f1, . . . , fm)}.

X = V (y2 − x3 − x2)
(real zeros)

X = V (y2 − x3)
(real zeros)
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p = (0, 0) (Node), Tp(X) ≃ C2 p = (0, 0) (Cusp), Tp(X) ≃ C2

Theorem 4.7. Let X = V (f1, . . . , fm) ⊂ Cn be an affine variety. Suppose that
for any p ∈ X, there exists {fi1 , . . . , fir} ⊂ {f1, . . . , fm} such that the matrix(
∂fiℓ(p)/∂xj(p)

)
has rank r and that about p ∈ Cn, X is locally described by

V (fi1 , . . . , fir ). Then X is a [closed] submanifold of Cn of dimension n− r, called
a smooth affine variety.

It therefore follows that locally about p, X is cut out by r polynomials with inde-
pendent differentials, and hence by the implicit function theorem, is a submanifold
of Cn. For example, if in (4.7) above, we have

det




∂fi1
∂x1

· · · ∂fi1
∂xr

: : :

∂fir
∂x1

· · · ∂fir
∂xr



(p) 6= 0,

then there exists open sets U ⊂ Cn, Va ⊂ Cr, Vb ⊂ Cn−r, where p = (a, b),
U = Va × Vb, p ∈ U , a ∈ Va, b ∈ Vb, and a holomorphic function g(xr+1, . . . , xn) :
Vb → Va, such that g(b) = a and where for (x1, . . . , xn) ∈ U ,

fiℓ(x1, . . . , xn) = 0 ∀ ℓ = 1, . . . , r

⇔ fiℓ(g(xr+1, . . . , xn), xr+1, . . . , xn) = 0 ∀ ℓ = 1, . . . , r.

Now set U = U ∩ X, ϕ = PrVb

∣∣∣∣
U

: U → Vb, where PrVb
: U = Va × Vb → Vb

is the projection. Then ϕ is a homeomorphism of U onto Vb, with inverse map
(xr+1, . . . , xn) 7→ (g(xr+1, . . . , xn), xr+1, . . . , xn), which also defines a holomor-
phic graph-map from Vb → Cn. It follows that one can cover X by coordinate
charts made up of projections, whose composites with the graph-maps are obvi-
ously holomorphic. In other words, the transition functions are holomorphic.

We remark that X in (4.7) is an example of a Stein manifold.

(B) Stein manifolds. These are the complex manifolds X for which there is
a holomorphic embedding h : X →֒ CN such that h(X) is closed in CN , and are
characterized by the cohomological condition: Hq(X,F) = 0 for all q ≥ 1 and
for all coherent sheaves F on X. [F coherent means for any p ∈ X there is an
open neighbourhood U of p and finite presentation OqU → O

p
U → F|U , where OU

is the sheaf of germs of holomorphic functions on U .] By the maximum-modulus
principle, X cannot be compact.18

(VII) Projective varieties. We first introduce some notation. z = (z0, . . . , zn),
Z+ = {0, 1, 2, . . . } and if α = (α0, . . . , αn) ∈ Zn+1

+ then [α] =
∑
αi, z

α =
zα0
0 · · · zαn

n . f ∈ C[z0, . . . , zn] is said to be homogeneous of degree d if f(az) =
adf(z) for all a ∈ C, equivalently f =

∑
[α]=d bαz

α (bα ∈ C).

18Another formulation of Stein is this: A Stein manifold X is a complex manifold with a
strictly plurisubharmonic exhaustion function. I.e. ∃ a C2 τ : X → R+ such that τ−1[0, δ]
is compact ∀ δ > 0, and τ is strictly plurisubharmonic. This means that with regard to lo-
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Definition 4.8. Let f1, . . . , fm be homogeneous. Then

X = V (f1, . . . , fm) = {[z] ∈ Pn | f(z) = 0 for all f ∈ µ}

is called a projective variety.

Remarks 4.9. If f is homogeneous of degree d, then on Uj = {[z] ∈ Pn | zj 6= 0},
we can consider the non-homogeneous polynomial fa = f/zdj = f(z0/zj , . . . , 1 =
zj/zj , . . . , zn/zj) (called the affinization) in the variables

{x1, . . . , xn} = {z0/zj , . . . , ẑj/zj , . . . , zn/zj}.

Conversely if g(x1, . . . , xn) is any polynomial of degree d (over Uj), then the

homogenization of g is given by gh(z) = zdj g(z0/zj , . . . , ẑj/zj , . . . , zn/zj). As
a consequence of these operations (fa, gh) it is easy to show the following. Let
X = V (f1, . . . , fm) be a projective variety. Then Xa = X ∩Uj is the affine variety
corresponding to V ((f1)a, . . . , (fm)a).

Proposition-definition 4.10. A variety X ⊂ Pn is said to be smooth (or non-
singular) if either of the two equivalent conditions hold:

(i) X ∩ Uj ⊂ Cn is smooth for j = 0, . . . , n.

(ii) C(X) − {0} is smooth in Cn+1, where C(X) = V (µ) ⊂ Cn+1 (an affine
variety called the cone of X).

տ
X

C(X) ⊂ Cn+1

• 0

cal holomorphic cordinates (z1, . . . , zn) on X, the matrix

(
∂2τ

∂zi∂zj

)
is positive definite. Note

that if w = (w1 . . . , wn) = w(z) is a holomorphic change of coordinates, then

(
∂2τ

∂zi∂zj

)
=

T

(
∂w
∂z

)(
∂2τ

∂zi∂zj

)(
∂w
∂z

)
. Thus strictly plurisubharmonic is independent of local holomorphic

coordinates, and hence is well-defined on a complex manifold. It is immediate from the def-
inition that closed submanifolds of Stein manifolds are themselves Stein. On Cn, one sets
τ(z1, . . . , zn) =

∑
j
|zj |2. Hence Cn is Stein, and therefore any closed submanifold of Cn is

likewise Stein.
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Definition 4.11. A smooth projective variety X is called a projective algebraic
manifold. We define dimX = dimC(X)− 1.

Examples of projective algebraic manifolds of dimension n:

(i) X = V (zd0 + · · ·+ zdn+1) ⊂ Pn+1 (Fermat hypersurface of degree d).

(ii) X = V (z0z
d−1
1 + · · · + znz

d−1
n+1 + zn+1z

d−1
0 ) ⊂ Pn+1 (hypersurface of ‘Klein’

type, of degree d), provided d 6= 2.

Example. (Elliptic curve) Let X = V
(
z22z0 − (z31 + bz1z

2
0 + cz30)

)
⊂ P2. In the

affine coordinates (x, y) = (z1/z0, z2/z0) of C2 ≈ U0 ⊂ P2, we have X ∩ U0 =
V
(
f(x, y) := y2 − h(x)

)
⊂ C2, where h(x) = x3 + bx+ c. [Here

f(x, y) =
z22z0 − (z31 + bz1z

2
0 + cz30)

z30
.]

It is easy to check that x is smooth ⇔ h(x) has (3) distinct roots. To see this,
note that df = −h′(x)dx + 2ydy = 0 on U0 ∩ X ⇔ y = 0 & h(x) = h′(x) = 0.
Note that the line V (z0) meets X at infinity, in this case at V

(
z0, z

2
2z0 − (z31 +

bz1z
2
0 + cz30)

)
= V (z0, z

3
1

)
= 3[0, 0, 1]. p0 := [0, 0, 1] is called the point at infinity.

It is obviously a point of inflexion. At infinity, we introduce affine coordinates
(µ, ν) = (z0/z2, z1/z2). Thus X ∩ U2 = V (g(µ, ν)), where

g(µ, ν) =
z22z0 − (z31 + bz1z

2
0 + cz30)

z32
= µ− (ν3 + bνµ2 + cµ3).

In these coordinates, p0 corresponds to (0, 0). But dg(0, 0) = dµ 6= 0. Hence X is
smooth at infinity. Thus X is smooth ⇔ h(x) has distinct roots.

We pose the following basic

(4.12) Question When is a compact complex manifold a projective algebraic
manifold?

In order to answer this question we recall the definition of the following.

Definition 4.13. A closed subset V ⊂ Cn is called an analytic subset if for any p ∈
V , there exists a neighbourhood Up of p (in the classical topology) such that V ∩Up is
cut out by finitely many analytic functions g1(x1, . . . , xn) = · · · = gk(x1, . . . , xn) =
0 on Up. V ⊂ Pn analytic means an analytic set locally, i.e. on each coordinate
patch Uj ⊂ Pn.

Now a consequence of Remmert’s proper mapping theorem and Hartog’s remove-
able singularity theorem is the very important:

Chow’s Theorem 4.14. On Pn, analytic ⇒ algebraic.

Corollary 4.15. Let X be a compact complex manifold, and suppose there is a
holomorphic embedding h : X →֒ PN . Then X is a projective algebraic manifold.
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Theorem 4.16. Let T = Cn/L be a complex torus. Then T is abelian ⇔ there is
a positive definite hermitian form H : Cn×Cn → C such that Im(H)|L is integral.
(Such an H determines a polarization E = Im(H)|L on T .)

(iii) Grassmannians. We set G = G(k, n) = {k-dimensional subspaces Ck ⊂
Cn}. For example G(1, n+1) = Pn. Alternatively, viewing Pk = π(Ck+1−0) ⊂ Pn,
we have G(k + 1, n+ 1) = {Pk’s ⊂ Pn}. Let V ⊂ Cn be a k-dimensional subspace
with basis {v1, . . . , vk}, with corresponding k×n matrix ∆ with rows {v1, . . . , vk}
and columns {w1, . . . , wn}. For J = {j1 < · · · < jk} ⊂ {1, . . . , n}, we set ∆J =
corresponding k× k matrix with minor |∆J | = det(∆J ) = wj1 ∧ · · · ∧wjk . Suppose
{v′1, . . . , v′k} is another basis of V with corresponding ∆′, and write v′i =

∑
j aijvj ,

A = (aij). Then det(A) 6= 0, ∆′ = A∆, and in particular the property |∆J | 6= 0 for
a given J depends only on V . We can cover G by open sets of the form {UJ = {V ∈
G | |∆J | 6= 0}J⊂{1,... ,n}}. If V ∈ UJ , then V has a unique representative matrix of

the form ∆′ = ∆−1
J ∆, i.e. where the corresponding k × k matrix determined by J

is the identity. In particular UJ ≃ Ck(n−k) is described by the k(n− k) remaining
coordinates, and coupled with the fact that ∆−1

I ∆J (for I, J ⊂ {1, . . . , n}) varies
analytically with respect to these coordinates over UI ∩UJ , it follows that the UJ ’s
form coordinate patches on G with holomorphic transition functions, i.e. G(k, n)
is a k(n − k) dimensional complex manifold. By restricting to a unitary basis
for a given V ∈ G, it follows that the unitary group U(n) acts continuously and
transitively on G, and hence G is compact and connected. Some additional facts
about G are:

(i) Like Pn, G has a cell decomposition by various Cm’s, and in particular the
homology is generated by algebraic cycles.

(ii) Let N =
(
n
k

)
− 1. Then G is cut out by quadratic polynomials in PN , hence

is projective algebraic.

Another way to see that G is projective algebraic is to consider the well-defined
map P : G → PN given by P (V ) = [· · · , |∆J |, · · · ]. If V ∈ UJ , then working on
the coordinate patch zJ = |∆J | 6= 0 on PN , it follows that the coordinates of V in
Ck(n−k) ≃ UJ will appear among the coordinates of P (V ), hence P is an embedding.
P is called the Plücker embedding, and by (4.15), G is projective algebraic.

(VIII) Hopf manifolds. Our desire to include this class of manifolds in our list
of examples is to provide a more complete picture of complex manifolds. Consider
the group action Z × {Cn\0} → Cn\0 given by (m, z) 7→ 2mz. This action is free
and properly discontinuous, so that the resulting quotient space X = {Cn\0}/Z
is a complex manifold with local coordinates obtained from Cn\0, called a Hopf
manifold. I claim X is diffeomorphic to S2n−1 × S1 (and hence X is compact).
To see this, we observe that the composite S2n−1 × [1/2, 1] → Cn\0 → X given
by (v, t) 7→ tv is surjective, with (v, 1) and (v, 1/2) mapping to the same point

in X, inducing S2n−1 × S1 ≃−→ X. To see that it is a diffeomorphism, one need
only check that the differential of this map is of maximal rank, and apply the
inverse function theorem. For the case n = 2, Kodaira proved that every complex
structure on S3×S1 corresponds to a given free and properly discontinuous action
of some group G on C2\0 such that {C2\0}/G ≈ S3 × S1. By considering the cell
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decomposition of X (or by applying the Künneth formula), one can easily check
that H2(X,Z) = 0 for n ≥ 2. By a well known condition on projective algebraic
manifolds, X is not projective algebraic for n ≥ 2.

In conclusion to this lecture, is the following picture describing the types of
manifolds we encountered thus far. Our interests will be focussed on the compact
Kähler manifolds, and more particularly on the projective algebraic manifolds.

{complex manifolds e.g. Stein}
⋃

{compact complex manifolds e.g. Hopf}
⋃

{compact complex Kähler e.g. complex tori}
⋃

{projective algebraic}
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§5. Meromorphic maps

Definition 5.0. (i) A proper holomorphic map f : X → Y between complex man-
ifolds is called a proper modification if there exists proper analytic subsets A of X
and B of Y such that f is a biholomorphic map of X\A onto Y \B.

(ii) A meromorphic map from X to Y is given by an irreducible analytic subset
Σ ⊂ X × Y such that Pr1|Σ : Σ→ X is a proper modification.

Example 5.1. The blow-up of a point. Let [z] = [z0, . . . , zn], w = (w0, . . . , wn)
be the respective homogeneous and affine coordinates of Pn and Cn+1. Define
E = {([z], w) ∈ Pn × Cn+1 | w = µ · z for some µ ∈ C}. We first show that
E has the structure of a ‘quasi-projective’ algebraic variety. The equation w =
µ · z ⇒ wi = µ · zi for all i, in particular zjwi = zjµ · zi = ziµ · zj = ziwj , i.e.

E ⊂ E′ def= V ({wizj − ziwj | 0 ≤ i, j ≤ n}). To show equality, let ([z], w) ∈ E′.
Then [z] ∈ Pn ⇒ zj0 6= 0 for some j0. But wizj0 = ziwj0 for all i, hence wi = µ · zi
for all i, where µ = wj0/zj0 ∈ C. To determine the geometric properties of E (e.g.
irreducibility, etc.), it is best to analyze E via the projections Pr1 : Pn×Cn+1 → Pn,
Pr2 : Pn × Cn+1 → Cn+1. Set πj = Prj |E , and note that the πj ’s are surjective:

E
π2−→ Cn+1

π1 ↓

Pn

For w ∈ Cn+1 and w 6= 0, π−1
2 (w) = ([w], w); moreover π−1

2 (0) = (Pn, 0), and where
(Pn, 0) is called an exceptional divisor in E. Since π−1

2 : Cn+1\0→ E ⊂ Pn×Cn+1

is holomorphic, it follows that π2 : E\(Pn, 0) ∼−→ Cn+1\0 is a biholomorphism.
Turning to the projection π1, we have π

−1
1 ([z]) = {([z], µ · z) ∈ Pn×Cn+1 | µ ∈ C}.

We recall the quotient map π : Cn+1\0 → Pn. Then π2 ◦ π−1
1 ([z]) = {µ · z | µ ∈

C} = π−1([z]) is the line corresponding to [z] ∈ Pn, i.e. the fibers of π1 are the
lines corresponding to points in Pn. π1 : E → Pn is also called the tautological
line bundle over Pn. By construction it follows that E is obtained from Cn+1 by
replacing the origin by all limiting secants, i.e. by Pn. To be more precise, let
γ(t) : {t ∈ C | |t| < ǫ} → Cn+1 be a holomorphic curve with the properties that
γ(0) = 0, γ(t) 6= 0 for 0 < |t| < ǫ, and γ′(0) = w 6= 0. [E.g. γ(t) = t · w.]
Then for t 6= 0, π−1

2 (γ(t)) = ([γ(t)], γ(t)) = ([(γ(t) − γ(0))/t], γ(t)) and hence
limt→0 π

−1
2 (γ(t)) = ([γ′(0)], 0) ∈ (Pn, 0).

In Cn+1 In E

| | | | | | | |
• | → −−−−−−−−−− (Pn, 0)

| | | | | | | |

• = origin
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Definition 5.2. E is called the blow-up of Cn+1 at the origin.

Remarks 5.2. (1) The notation for the blow-up is B0(Cn+1) and is also called (since
E is cut out by quadrics) the quadratic transform of Cn+1 at 0. Using local coordi-

nates together with π2 : B0(Cn+1)\(Pn, 0) ∼−→ Cn+1\0, the same construction can
be used to blow up any point p on a complex manifold X, i.e. to arrive at the man-
ifold Bp(X). If X is projective algebraic, then so is Bp(X). More generally, we can
also define blow-ups BD(X) where D is a holomorphically embedded submanifold
of X, and of codimension ≥ 2.

(2) While it is generally easy to blow up manifolds X along submanifolds D ⊂
X, the converse question “when can an analytic subset D ⊂ X be blown down
holomorphically via h : X → Y such that h : X\D ∼−→ Y \h(D) is biholomorphic?”,
is a very non-trivial problem!

We now return to our discussion of E and first prove:

Claim: E is smooth and irreducible. E is irreducible: Let E′ = closure of
π−1
2 (Cn+1\0) in E (in either the classical or Zariski topology, the closures are well

known to be the same), and note that E′ is irreducible since Cn+1\0 is likewise
irreducible. For [z] ∈ Pn, set ℓ[z] = π−1

1 ([z]) and ℓ∗[z] = ℓ[z]\(Pn, 0) ∩ ℓ[z] ≃ {t · z ∈
Cn+1 | t ∈ C×}. Then ℓ∗[z] ⊂ E′ and since E′ is closed, we have ℓ∗[z] = ℓ[z] ⊂ E′,

i.e. E′ = E. Note that dimE = n + 1. E is smooth: We already know that
E\(Pn, 0) ≃ Cn+1\0 is smooth, so it suffices to check the smoothness of E along
(Pn, 0), i.e. along w = 0. On w = 0, we have d(ziwj − wizj) = zidwj − zjdwi.
But [z] ∈ Pn ⇒ zj0 6= 0 for some j0, and therefore {zidwj0 − zj0dwi | i = 0, . . . , n
and i 6= j0} is a set of n linearly independent differentials cutting out T([z],0)(E)

in T([z],0)(Pn × Cn+1) ≃ C2n+1. Smoothness now follows from dimT([z],0)(E) =
n+ 1 = dimE.

Another way to establish the smoothness of E is to compute the “local trivial-
izations” of the line bundle π1 : E → Pn with respect to the standard affine open
cover {U0, . . . , Un} of Pn. Define hj : π

−1
1 (Uj)

∼−→ Uj × C ≃ Cn+1 by the formula

hj([z], w) = ([z], wj) = (z0/zj , . . . , ẑj/zj , . . . , zn/zj , wj) via Uj ≃ Cn. It then fol-

lows that the inverse h−1
j : Cn+1 ∼−→ π−1

1 (Uj) is the holomorphic map given by the

formula h−1
j (x1, . . . , xn, t) = ([x′], t · x′), where x′ = (x1, . . . , xj , 1, xj+1, . . . , xn).

Therefore hj : π−1
1 (Uj)

∼−→ Cn+1 is biholomorphic for all j, hence again E is

smooth with coordinate charts {(hj , π−1
1 (Uj)) | j = 0, . . . , n}. We also remark that

hj |π−1
1 ([z]) : π−1

1 ([z])
∼−→ {[z]} × C is linear in the 2nd factor. To compute the

transition functions, we note that for [z] ∈ Ui∩Uj , ([z], wi) = hi([z], w) = hi ◦h−1
j ◦

hj([z], w) = hi◦h−1
j ([z], wj) = ([z], gij([z])wj) where gij : Ui∩Uj → GL(1,C) = C×

are the transition functions. But wizj − ziwj = 0 on E, i.e. on Ui ∩ Uj , zizj 6= 0,
and therefore wi = (zi/zj)wj , a fortiori gij([z]) = zi/zj .

A final remark concerning E: Let f̃ : Pn → E be a holomorphic section of
the tautological bundle π1 : E → Pn. Then π2 ◦ f̃ : Pn → Cn+1 is holomorphic,
and hence constant by the maximum-modulus principle. It follows that f̃ must
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be the zero section, which gets blown down to a point. In general, we say that a
holomorphic line bundle L over a compact, complex manifoldX is (weakly) negative
if the only holomorphic section of L over X is the zero section and which gets blown
down to a point. By restricting the tautological line bundle to submanifolds of Pn,
it follows that every projective algebraic manifold has a (weakly) negative line
bundle; in fact the existence of a negative line bundle on X is equivalent to X
being projective algebraic.

Example 5.3. Cremona transformation

The ‘map’ given by

[w0, w1, w2] =

[
1

z0
,
1

z1
,
1

z2

]
: P2 → P2,

can be equivalently described by

(w0, w1, w2) =

(
λ

z0
,
λ

z1
,
λ

z2

)
,

for some λ ∈ C×. This leads to the relations

λ = z0w0 = z1w1 = z2w2.

Taking the closure of the graph, the subvariety

Z := V (z0w0 − z1w1, z1w1 − z2w2) ⊂ P2 × P2,

defines a meromorphic map Z : P2 → P2, called the Cremona transformation. Let
ℓi = V (zi), ℓj = V (wj), ∆ = ℓ0∪ℓ1∪ℓ2 = V (z0z1z2), ∆ = ℓ0∪ℓ1∪ℓ2 = V (w0w1w2).

Then Z : P2\∆ ∼−→ P2\∆ is an analytic isomorphism; moreover it is obvious that
Z ◦ Z = Identity on ∆. Let P0 = [1, 0, 0] = P 0, P1 = [0, 1, 0] = P 1, P2 = [0, 0, 1] =

P 2, and note that ℓ0 =
↔

P1P2, ℓ1 =
↔

P0P2, ℓ2 =
↔

P0P1, and a similar story for ℓj . It
is easy to check that

Z[Pi] = ℓi, i = 0, 1, 2,

and that for i, j, k distinct:

Z[ℓi\{Pj , Pk}] = P i, i = 1, 2, 3.

Next, Z defines the blow-up at Pj exactly as in the earlier blow-up example, up to
isomorphism. For example at P0, and if (a, b) 6= (0, 0)

lim
t→0

Z[1, ta, tb] = [0, b, a].

In fact via Pr1 : Z → P2, Z
∼−→ B

P0+P1+P2
(P2).

\/
•P0

/\
ℓ2/ \ℓ1
/ \

− − −−−P1
• − · − •P2

−−−−−
/ ℓ3 \
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Addendum: The Dolbeault invariant and Stein Manifolds

Dolbeault invariant: Let D ⊂ Cn be an open subset. For any C∞ function f : D →
C, recall the operator

∂f =

n∑

j=1

∂f

∂zj
dzj .

The vector space of all ∂f for all such f , will be denoted by B∂(D). Now consider
the vector space of differentials of the form η :=

∑n
j=1 gjdzj , where gj : D → C is

C∞. We put

Z∂(D) = {η
∣∣ ∂(η) :=

∑

j

∂gj ∧ dzj = 0}.

The condition ∂η = 0 is equivalent to saying that

∂gi
∂zj

=
∂gj
∂zi
∀i & j.

Exercise. Show that ∂
2
f = 0 for any C∞ function f : D → C.

From the exercise, it follows that B∂(D) ⊂ Z∂(D).

Definition. The Dolbeault cohomology group of D is given by

H∂(D) =
Z∂(D)

B∂(D)
.

It is well-known that H∂(D) can be identified with the cohomology of a certain
coherent sheaf, namely H1(D,O), where O is the sheaf of convergent power series
on D. For Stein manifolds, D, H1(D,O) = 0. Thus

D Stein ⇒ H∂(D) = 0.

Example 1. Let D ⊂ C be an open set. It can be shown that the equation

∂g

∂z
= f,

has a C∞ solution, for any C∞ complex-valued f . This implies that H∂(D) = 0.
It turns out that D is Stein as well.

Example 2. Let

D =
{
z = (z1, z2) ∈ C2

∣∣ 0 < |z1|2 + |z2|2 < 1
}
.
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Claim. H∂(D) 6= 0, hence D is not Stein.

Proof. For z1z2 6= 0, write

1

z1z2
=

z2
z1(|z1|2 + |z2|2)

+
z1

z2(|z1|2 + |z2|2)
.

We define ω by the prescription:

ω =





∂
(

z2
z1(|z1|2+|z2|2)

)
if z1 6= 0

−∂
(

z1
z2(|z1|2+|z2|2)

)
if z2 6= 0

Note that ω is defined on D, since ∂
(

1
z1z2

)
= 0; moreover ∂

2
= 0 ⇒ is ∂ω = 0.

Now suppose that ω = ∂f , where f : D → C is C∞, and set

g := z1f −
(

z2
|z1|2 + |z2|2

)

Note that ∂z1 = 0⇒ ∂
(

1
z1
g
)
= 1

z1
∂g if z1 6= 0. Hence, if z1 6= 0:

1

z1
∂g = ∂f − 1

z1
∂

(
z2

|z1|2 + |z2|2
)

= ∂f − ∂
(

z2
z1(|z1|2 + |z2|2)

)

= ω − ω = 0

Thus g is holomorphic if z1 6= 0. Therefore we can write:

g(z1, z2) =

∞∑

k=−∞
gk(z2)z

k
1 ,

where by contour integration, one can verify that gk(z2) is holomorphic ∀k. But g is
bounded near z1 = 0, hence by Riemann extension, gk(z2) = 0 for all k < 0. There-
fore g(z1, z2) is holomorphic in {|z1|2 + |z2|2 < 1}, hence g(0, z2) is holomorphic at
z2 = 0. But g(0, z2) = − 1

z2
, which is not holomorphic at z2 = 0, a contradiction.

Thus ω 6= ∂f , i.e. H∂(D) 6= 0.
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Appendix A. Sheaves in Complex Analysis

Presheaves and sheaves. Unless otherwise specified, we will assume in this
section that X is a ‘nice’ space, e.g. second countable and Hausdorff. Let K be a
commutative ring with 1.

Definition A.0. (1) A presheaf S of K-modules over X is given by the following
data:

(i) A K-module S(U) for every open set U ⊂ X.

(ii) whenever V, U are open with V ⊂ U , there is a K-module homomorphism
ρV U : S(U)→ S(V ), called the restriction map satisfying:

(iii) whenever V ⊂ U ⊂W are inclusions of open sets, ρVW = ρV U ◦ ρUW .

S(W )
ρV W−→ S(V )

ρUW ց ր ρV U

S(U)

and (iv) ρUU = IdS(U) for all open U ⊂ X.

(2) A homomorphism f̃ : S1 → S2 of presheaves (of K-modules) is given by the
following data:

(i) for every open set U ⊂ X, a K-module homomorphism f̃U : S1(U)→ S2(U)
satisfying:

(ii) whenever V ⊂ U are open, there is a commutative diagram:

S1(U)
f̃U−→ S2(U)

ρ1V U ↓ ↓ ρ2V U

S1(V )
f̃V−→ S2(V )

Proposition A.1. The following definitions are tautologies.

(A) [Complete presheaves] A presheaf S is said to be complete if the following
two conditions are satisfied for any open set U ⊂ X and any open cover {Uj}j∈J
of U :

(C1) If f ∈ S(U) and ρUjU (f) = 0 for all j ∈ J , then f = 0.

(C2) Given {fj ∈ S(Uj)}j∈J satisfying ρUi∩Uj ,Uj
(fj) = ρUi∩Uj ,Ui

(fi) for all i
and j, then there exists f ∈ S(U) such that ρUjU (f) = fj for all j ∈ J .
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(B) [Sheaves] A sheaf S of K-modules over X is given by a topological space S,
a continuous map π : S → X such that:

(i) π is a local homeomorphism.

(ii) π−1(p) is a K-module for every p ∈ X.

(iii) the laws of composition (addition and scalar multiplication by k ∈ K) are
continuous.

Remarks A.2. (1) The definition of a sheaf homomorphism is the ‘obvious’ one.

(2) Sp
def
= π−1(p) is called the stalk of S over p.

Proof of proposition (outline). Given S in (B) and U open in X, we define the
associated complete presheaf by the prescription S(U) = K-module of continuous
sections of S over U , and if V ⊂ U , then ρV U is given by restriction. Conversely,
given S in (A) and any p ∈ X, we define Sp = lim →

U∋p
S(U) [= so-called K-module

of germs at p], and set S =
∐
p∈X Sp with projection map π : S → X. We

topologize S as follows. For U open and p ∈ U , we denote by ρp,U : S(U)→ Sp the
corresponding ‘germ’ map. A basis for the topology is given by Of,U , where U ⊂ X
open, f ∈ S(U) and Of,U = {ρp,U (f) | p ∈ U}. It is clear that in this topology,
π is a local homeomorphism, moreover one can easily verify the continuity of the
laws of composition. The correspondence between presheaves and sheaves will be
denoted by µ, β viz:

{
presheaves S of

K −modules over X

} µ−→
β←−

{
sheaves S of K−
modules over X

}

It is a simple exercise to check that µ ◦ β(S) ≃ S and that if S is complete then
β ◦ µ(S) ≃ S.

Examples of presheaves/sheaves. In the examples below, the maps ρV U will be
defined by restriction.

(1) Let X be a complex manifold. The presheaf OX given by

U ⊂ X open 7→ OX(U) = { holomorphic functions f : U → C} is a sheaf (i.e. a
complete presheaf).

(2) Let X be a compact connected complex manifold. We define the presheaf
S by the formula S(U) = {f/g | f, g are holomorphic functions on U and g 6≡ 0
on each connected component of U}. Let MX be the sheaf associated to this
presheaf. Then MX is called the sheaf of germs of meromorphic functions on X.
The meromorphic function field MerX is by definition the global sections ofMX .
By the maximum-modulus principle, S(X) = C, and therefore if MerX 6= C (e.g.
if X is projective algebraic), then S is not complete.
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(3) Let G be any K-module. We define the constant sheaf G = X × G with
projection π = Pr1 : G → X. The topology on G is the product topology, where G
has the discrete topology. Note that G(X) = GN , where N = number of connected
components of X.

(4) Let Σ = {q1, . . . , qm} ⊂ X. Introduce the presheaf S by the prescription

U ⊂ X open 7→ S(U) =

{
K if U ∩ Σ 6= ∅
0 otherwise.

[ρV U = Id if V ∩ Σ 6= ∅ and 0 otherwise.] The skyscraper sheaf is the associated
sheaf S.

| | | | | | | | K
|q1 |q2 | | | | | |qm

− • − − • − − • − − • − − • − − • − − • − − • − X
| | | | | | | |
| | | | | | | |

Note that S(X) = Km, whereas S(X) = K (⇒ S not complete for m ≥ 2).

(5) Let f̃ : S1 → S2 be a homomorphism of complete presheaves. While it

is easy to check that ker f̃ is a complete (sub)presheaf of S1, it is not in general

the case that the image presheaf Im f̃ is complete. For example if X = C∗, OX
(respectively O∗

X) = complete presheaf of holomorphic (respectively nowhere van-
ishing holomorphic) functions over C∗, then the exponential function exp z defines
a presheaf homomorphism exp : OX → O∗

X . If we set S = image presheaf exp(OX),
then it is easy to see that β ◦ µ(S) = O∗

X . Note that z defines a global section of
O∗
X over C∗ and yet z 6∈ S(C∗), otherwise exp(f(z)) = z for some holomorphic

function f(z) on C∗, a fortiori log z would be holomorphic on C∗, contradiction.

Remarks A.3. The algebraic operations on sheaves (e.g. image sheaves, quotient
sheaves, tensor products, etc.) are best defined on the presheaf level via β, and
then converted to the associated sheaves via µ. This relieves us of the burden
of having to redefine a sheaf topology for each algebraic operation. For example,
S1 ⊗K S2 = sheaf associated to the presheaf U 7→ S1(U) ⊗K S2(U). An exact
sequence of sheaves · · · → Sj−1 → Sj → Sj+1 → · · · means the image of the
previous morphism is the kernel of the next, and is equivalent to exactness on the
stalk level.
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Appendix B. The Origins of Sheaf Cohomology Theory:
Mittag-Leffler Problem

Consider a s.e.s. of sheaves over a space M :

0→ R→ S → F → 0.

This leads to a LES:

0→ Γ(M,R)→ Γ(M,S) ψ−→ Γ(M,F) δ−→ H1(M,R)→ H1(M,S)→ · · ·

Problems What is the image of ψ? If we know this, then we can say something about
both Γ(M,S) and Γ(M,F). If we know ker δ, then we know Imψ. In particular, if
H1(M,R) = 0, then ψ is onto.

Example- Cousin’s first problem.

Let M be a complex manifold. {Uα} an open cover. {mα} collection of mero-
morphic functions such that

(i) mα ∈ Γ(Uα,M)

(ii) mβ −mα ∈ Γ(Uα ∩ Uβ ,O)

Does ∃m ∈ Γ(M,M) such that m−mα ∈ Γ(Uα,O), ∀α.

Consider the s.e.s.
0→ O →M→M/O → 0,

and the LES:

0→ Γ(M,O)→ Γ(M,M)
ψ−→ Γ(M,M/O) δ−→ H1(M,O)→ · · ·

Conditions (i) and (ii) on the collection {mα} ⇔ to saying we have a section
s ∈ Γ(M,M/O).

Problem. Does ∃ f ∈ Γ(M,M) such that ψ(f) = s?

Answer. YES, if H1(M,O) = 0. We invoke:

Theorem B. [Cartan] LetM be a Stein manifold (= a closed analytic submanifold
of CN ). Further, let R be a coherent sheaf of O-modules.19 Then Hq(M,R) = 0
∀q ≥ 1.

In particular, M Stein ⇒ H1(M,O) = 0. Thus Cousin’s first problem has an
affirmative answer for all Stein manifolds. This includes all open (i.e. non-compact)
Riemann surfaces. Hence this result includes the classical Mittag-Leffler theorem.

19R coherent means tat localy, about any point p ∈ M , there is a finite presentation, viz.,

an exact sequence Op → Oq → R → 0. For example, O is coherent, and more generally, any
locally free sheaf of O-modules (e.g. sheaves of germs of holomorphic sections of vector bundles)
is coherent.
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Cousin’s second problem.

Let M be a complex manifold, and let {Uα} be an open cover of M . Further,
let {mα} be a collection of meromorphic functions satisfying:

(i) mα ∈ Γ(Uα,M×)

(ii) mβ/mα ∈ Γ(Uα ∩ Uβ , ′×)

Recall the s.e.s.
0→ O× →M× → D → 0,

where D :=M×/O× is the sheaf of [Cartier] divisors. Thus there is a LES

0→ Γ(M,O×)→ Γ(M,M×)
ψ−→ Γ(M,D) δ−→ H1(M,O×)→ · · ·

Conditions (i) and (ii) on the data {mα}, is equivalent to D ∈ Γ(M,D). Γ(M,D)
is called the group of Cartier divisors on M .

Problem. Does ∃ f ∈ Γ(M,M×) such that ψ(f) = D, i.e. div(f) = D, viz., D
a principal divisor.

Answer. YES if Pic(M) := H1(M,O×) = 0.

It turns out that Dψ(f) is purely topological condition:

We consider the following “exponential” s.e.s.:

0→ Z→ O exp(2π i z)−−−−−−→ O× → 0.

This yields the LES:

· · · → H1(M,O)→ H1(M,O×)
β−→ H2(M,Z)→ H2(M,O)→ · · ·

Now assume that M is Stein. Then Hq(M,O) = 0 ∀q ≥ 1, ⇒ β is an isomorphism.
In this case, we have the picture:

0→ Γ(M,O×)→ Γ(M,M×)→ Γ(M,D) δ−→ H1(M,O×)
β≃ H2(M,Z),

Put c = β ◦ δ (called the first Chern class map). Then D = ψ(f) ⇔ c(D) = 0. In
particular, Cousin’s second problem always has an affirmative answer if M is Stein
and H2(M,Z) = 0. This is satisfied by every open Riemann surface, and therefore
the result includes the classical Weierstrass theorem.


