Computing Limits of Real Multivariate Rational Functions

Parisa Alvandi, Mahsa Kazemi, Marc Moreno Maza

Western University, Canada

July 22, 2016

1 Statement of the problem and previous works

Our contribution

- 3 Triangular decomposition of semi-algebraic sets
- Generalization of concepts and basic lemmas
- **(5)** Main algorithms
- 6 Experimentation
- Conclusion and future works

1 Statement of the problem and previous works

- Conclusion and future works

Let $q \in \mathbb{Q}(X_1, \ldots, X_n)$ be a multivariate rational function. Assume that the origin is an isolated zero of the denominator of q.

$$\lim_{(x_1,...,x_n)\to(0,...,0)} q(x_1,\ldots,x_n) =?$$

Previous works: part I

Univariate functions (including transcendental ones)

- D. Gruntz (1993, 1996), B. Salvy and J. Shackell (1999)
 - Corresponding algorithms are available in popular computer algebra systems

Multi variables rational functions

- S.J. Xiao and G.X. Zeng (2014)
 - Given $q \in \mathbb{Q}(X_1, \ldots, X_n)$, they proposed an algorithm deciding whether or not: $\lim_{(x_1, \ldots, x_n) \to (0, \ldots, 0)} q$ exists and is zero.
 - $-\,$ No assumptions on the input multivariate rational function
 - Techniques used:
 - triangular decomposition of algebraic systems,
 - rational univariate representation,
 - adjoining infinitesimal elements to the base field.

Lagrange multipliers (1/2)

Let q and t be real bivariate functions of class C^1 .

Problem

optimize q(x,y)subject to t(x,y) = 0

Solution

• Assuming $\nabla t(x, y)$ does not vanish on t(x, y) = 0, solve the following system of equations:

$$\begin{cases} \nabla q(x,y) &= \lambda \nabla t(x,y) \\ t(x,y) &= 0 \end{cases}$$

2 Plug in all (x, y) solutions obtained at Step (1) into q(x, y) and identify the minimum and maximum values, provided that they exist.

Lagrange multipliers (2/2)

Figure: Optimizing q(x, y) under t(x, y) = c

Previous works: bivariate rational functions

- C. Cadavid, S. Molina, and J. D. Vélez (2013):
 - Assumes that the origin is an isolated zero of the denominator
 - Maple built-in command limit/multi

Discriminant variety

$$\chi(q) = \{(x,y) \in \mathbb{R}^2 \mid y \frac{\partial q}{\partial x} - x \frac{\partial q}{\partial y} = 0\}.$$

Key observation

For determining the existence and possible value of

$$\lim_{(x,y)\to(0,0)}q(x,y),$$

it is sufficient to compute

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\chi(q)}}q(x,y).$$

Example

Let $q\in \mathbb{Q}(x,y)$ be a rational function defined by $q(x,y)=\frac{x^4+3x^2y-x^2-y^2}{x^2+y^2}$

$$\chi(q) = \begin{cases} x^4 + 2x^2y^2 + 3y^3 = 0 \\ y < 0 & \cup \{ x = 0 \\ \end{cases}$$

Previous works: trivariate rational functions

- J.D. Vélez, J.P. Hernández, and C.A Cadavid (2015).
 - Assumes that the origin is an isolated zero of the denominator
 - Ad-hoc methods reduce to the case of bivariate rational functions

Similar key observation

For determining the existence and possible value of

$$\lim_{(x,y,z)\to(0,0,0)} q(x,y,z),$$

it is sufficient to compute

$$\begin{split} \lim_{\substack{(x,y,z) \to (0,0,0) \\ (x,y,z) \in \chi(q) }} & q(x,y,z). \end{split}$$

Techniques used

- Computation of singular loci
- Variety decomposition into irreducible components

1 Statement of the problem and previous works

2 Our contribution

- Conclusion and future works

- Generalize the trivariate algorithm of J.D. Vélez, J.P. Hernández, and C.A Cadavid to arbitrary number of variables
- Avoiding the computation of singular loci and irreducible decompositions

How?

Triangular decomposition of semi- algebraic systems

Our contribution

3 Triangular decomposition of semi-algebraic sets

- 4 Generalization of concepts and basic lemmas
- 5 Main algorithms
- 6 Experimentation
- 7 Conclusion and future works

Regular semi-algebraic system

Notation

- Let $T \subset \mathbb{Q}[X_1 < \ldots < X_n]$ be a regular chain with $\mathbf{Y} := \{ \operatorname{mvar}(t) \mid t \in T \}$ and $\mathbf{U} := \mathbf{X} \setminus \mathbf{Y} = U_1, \ldots, U_d.$
- Let P be a finite set of polynomials, s.t. every $f \in P$ is regular modulo $\operatorname{sat}(T)$.
- Let \mathcal{Q} be a quantifier-free formula of $\mathbb{Q}[\mathbf{U}]$.

Definition

We say that $R := [Q, T, P_{>}]$ is a regular semi-algebraic system if:

 $(i) \, \, \mathcal{Q}$ defines a non-empty open semi-algebraic set \mathcal{O} in \mathbb{R}^d ,

(ii) the regular system [T,P] specializes well at every point u of

(iii) at each point u of $\mathcal{O},$ the specialized system $[T(u),P(u)_{>}]$ has at least one real solution .

Define

 $Z_{\mathbb{R}}(R) = \{(u,y) \mid \mathcal{Q}(u), t(u,y) = 0, p(u,y) > 0, \forall (t,p) \in T \times P\}.$

Regular semi-algebraic system

Notation

- Let $T \subset \mathbb{Q}[X_1 < \ldots < X_n]$ be a regular chain with $\mathbf{Y} := \{ \operatorname{mvar}(t) \mid t \in T \}$ and $\mathbf{U} := \mathbf{X} \setminus \mathbf{Y} = U_1, \ldots, U_d$.
- Let P be a finite set of polynomials, s.t. every $f \in P$ is regular modulo $\operatorname{sat}(T)$.
- Let \mathcal{Q} be a quantifier-free formula of $\mathbb{Q}[\mathbf{U}]$.

Definition

We say that $R := [Q, T, P_{>}]$ is a regular semi-algebraic system if:

(i) $\mathcal Q$ defines a non-empty open semi-algebraic set $\mathcal O$ in $\mathbb R^d$,

(*ii*) the regular system [T, P] specializes well at every point u of \mathcal{O}

 $(iii) \mbox{ at each point } u \mbox{ of } \mathcal{O}, \mbox{ the specialized system } [T(u), P(u)_{>}] \mbox{ has at least one real solution }.$

Define

$$Z_{\mathbb{R}}(R) = \{(u,y) \mid \mathcal{Q}(u), t(u,y) = 0, p(u,y) > 0, \forall (t,p) \in T \times P\}.$$

Example

The system $[\mathcal{Q}, T, P_{>}]$, where

$$\mathcal{Q} := a > 0, \ T := \begin{cases} y^2 - a = 0 \\ x = 0 \end{cases}, \ P_{>} := \{y > 0\}$$

is a regular semi-algebraic system.

Regular semi-algebraic system

Notations

Let $R := [\mathcal{Q}, T, P_{>}]$ be a regular semi-algebraic system. Recall that \mathcal{Q} defines a non-empty open semi-algebraic set \mathcal{O} in \mathbb{R}^{d} and

 $Z_{\mathbb{R}}(R) = \{(u,y) \mid \mathcal{Q}(u), t(u,y) = 0, p(u,y) > 0, \forall (t,p) \in T \times P\}.$

Properties

- Each connected component C of \mathcal{O} in \mathbb{R}^d is a real analytic manifold, thus locally homeomorphic to the hyper-cube $(0,1)^d$
- Above each C, the set Z_ℝ(R) consists of disjoint graphs of semi-algebraic functions forming a real analytic covering of C.
- There is at least one such graph.

Consequences

- R can be understood as a parameterization of $Z_{\mathbb{R}}(R)$
- The Jacobian matrix $\left[\
 abla t,t\in T \ \right]$ is full rank.

Triangular decomposition of semi-algebraic sets

Proposition

Let $S := [F_{=}, N_{\geq}, P_{>}, H_{\neq}]$ be a semi-algebraic system. Then, there exists a finite family of regular semi-algebraic systems R_1, \ldots, R_e such that

$$Z_{\mathbb{R}}(S) = \bigcup_{i=1}^{e} Z_{\mathbb{R}}(R_i).$$

Triangular decomposition

- In the above decomposition, R_1, \ldots, R_e is called a triangular decomposition of S and we denote by RealTriangularize an algorithm computing such a decomposition.
- Moreover, such a decomposition can be computed in an incremental manner with a function RealIntersect
 - taking as input a regular semi-algebraic system R and a semi-algebraic constraint f = 0 (resp. f > 0) for $f \in \mathbb{Q}[X_1, \dots, X_n]$
 - returning regular semi-algebraic system R_1, \ldots, R_e such that

$$Z_{\mathbb{R}}(f=0) \cap Z_{\mathbb{R}}(R) = \bigcup_{i=1}^{e} Z_{\mathbb{R}}(R_i).$$

2 Our contribution

3) Triangular decomposition of semi-algebraic sets

Generalization of concepts and basic lemmas

- 5 Main algorithms
- 6 Experimentation
- 7 Conclusion and future works

Generalization of concepts and basic lemmas (1/3)

Discriminant variety (Cadavid, Molina, and Vélez, 2013)

Let $q: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a rational function defined on a punctured ball D^*_{δ} . The discriminant variety $\chi(q)$ of q is the real zero-set of all 2-by-2 minors of

$$\begin{bmatrix} X_1 & \cdots & X_n \\ \frac{\partial q}{\partial X_1} & \cdots & \frac{\partial q}{\partial X_n} \end{bmatrix}$$

Limit along a semi-algebraic set

Let S be a semi-algebraic set of positive dimension (i. e. ≥ 1) such that $\underline{o} \in \overline{S}$ in the Euclidean topology. Let $L \in \mathbb{R}$. We say

$$\lim_{\substack{(x_1,\ldots,x_n)\to(0,\ldots,0)\\(x_1,\ldots,x_n)\in S}} q(x_1,\ldots,x_n) = L$$

whenever

$$(\forall \varepsilon > 0) (\exists 0 < \delta) (\forall (x_1, \dots, x_n) \in S \cap D^*_{\delta}) |q(x_1, \dots, x_n) - L| < \varepsilon$$

Generalization of concepts and basic lemmas (2/3)

Lemma 1

For all $L \in \mathbb{R}$ the following assertions are equivalent:

•
$$\lim_{(x_1,\ldots,x_n)\to(0,\ldots,0)} q(x_1,\ldots,x_n)$$
 exists and equals L ,

•
$$\lim_{\substack{(x_1,\ldots,x_n)\to(0,\ldots,0)\\(x_1,\ldots,x_n)\in\chi(q)}} q(x_1,\ldots,x_n)$$
 exists and equals L .

Lemma 2

Let R_1, \ldots, R_e be regular semi-algebraic systems forming a triangular decomposition of $\chi(q)$. Then, for all $L \in \mathbb{R}$ the following are equivalent:

- $\lim_{\substack{(x_1,\ldots,x_n)\to(0,\ldots,0)\\(x_1,\ldots,x_n)\in\chi(q)}} q$ exists and equals L.
- for all $i \in \{1, \ldots, e\}$ such that $Z_{\mathbb{R}}(R_i)$ has dimension at least 1 and the origin belongs to $\overline{Z_{\mathbb{R}}(R_i)}$, we have $\lim_{\substack{(x_1, \ldots, x_n) \to (0, \ldots, 0) \\ (x_1, \ldots, x_n) \in Z_{\mathbb{R}}(R_i)}} q$ exists and equals L.

Lemma 3

Then, there exists a non-empty set $\mathcal{U} \subset D^*_{\rho} \cap Z_{\mathbb{R}}(R)$, which is open relatively to $Z_{\mathbb{R}}(R)$, such that \mathcal{M} is full rank at any point of \mathcal{U} , and $\underline{o} \in \overline{\mathcal{U}}$.

2 Our contribution

- 3 Triangular decomposition of semi-algebraic sets
- 4 Generalization of concepts and basic lemmas
- 5 Main algorithms
 - 6 Experimentation
- 7 Conclusion and future works

Overview of RationalFunctionLimit

Input: a rational function $q \in \mathbb{Q}(X_1, \ldots, X_n)$ such that origin is an isolated zero of the denominator.

Output: $\lim_{(x_1,...,x_n)\to(0,...,0)} q(x_1,...,x_n)$

- Apply RealTriangularize on $\chi(q)$, obtaining rsas R_1, \ldots, R_e
- 2 Discard R_i if either $\dim(R_i) = 0$ or $\underline{o} \notin \overline{Z_{\mathbb{R}}(R_i)}$
 - QuantifierElimination checks whether $\underline{o} \in \overline{Z_{\mathbb{R}}(R_i)}$ or not.
- Opply LimitInner (R) on each regular semi algebraic system of dimension higher than one.
 - main task : solving constrained optimization problems
- Apply LimitAlongCurve on each one-dimensional regular semi algebraic system resulting from Step 3
 - main task : Puiseux series expansions

Principles of LimitInner

Input: a rational function q and a regular semi algebraic system $R := [Q, T, P_{>}]$ with $\dim(Z_{\mathbb{R}}(R)) \ge 1$ and $\underline{o} \in \overline{Z_{\mathbb{R}}(R)}$ Output: limit of q at the origin along $Z_{\mathbb{R}}(R)$

- if $\dim(Z_{\mathbb{R}}(R)) = 1$ then return LimitAlongCurve (q, R)• otherwise build $\mathcal{M} := \begin{bmatrix} X_1 & \cdots & X_n \\ \nabla t, t \in T \end{bmatrix}$
- **③** For all m ∈ Minors(M) such that Z_ℝ(R) ⊈ Z_ℝ(m) build $\mathcal{M}' := \begin{bmatrix} \frac{\partial E_r}{\partial X_1} & \cdots & \frac{\partial E_r}{\partial X_n} \\ X_1 & \cdots & X_n \\ \nabla t, t \in T \end{bmatrix} \text{ with } E_r := \sum_{i=1}^n A_i X_i^2 r^2$

For all $m' \in \text{Minors}(\mathcal{M}')$ $\mathcal{C} := \text{RealIntersect}(R, m' = 0, m \neq 0)$ For all $C \in \mathcal{C}$ such that $\dim(Z_{\mathbb{R}}(C)) > 0$ and $\underline{o} \in \overline{Z_{\mathbb{R}}(C)}$

- compute L = LimitInner(q, C);
- If L is no_finite_limit or L is finite but different from a previously found finite L then return no_finite_limit

If the search completes then a unique finite was found and is returned.

Input: a rational function q and a curve C given by $[Q, T, P_{>}]$ Output: limit of q at the origin along C

- 0 Let f,g be the numerator and denominator of q
- 2 Let $T' := \{gX_{n+1} f\} \cup T$ with X_{n+1} a new variable
- **3** Compute the real branches of $W_{\mathbb{R}}(T') := Z_{\mathbb{R}}(T') \setminus Z_{\mathbb{R}}(h_{T'})$ in \mathbb{R}^n about the origin via Puiseux series expansions
- **()** If no branches escape to infinity and if $W_{\mathbb{R}}(T')$ has only one limit point $(x_1, \ldots, x_n, x_{n+1})$ with $x_1 = \cdots = x_n = 0$, then x_{n+1} is the desired limit of q
- Otherwise return no_finite_limit

Example

Let $q(x, y, z, w) = \frac{z w + x^2 + y^2}{x^2 + y^2 + z^2 + w^2}$. RealTriangularize $(\chi(q))$:

 $Z_{\mathbb{R}}(\chi(q)) = Z_{\mathbb{R}}(R_1) \cup Z_{\mathbb{R}}(R_2) \cup Z_{\mathbb{R}}(R_3) \cup Z_{\mathbb{R}}(R_4),$

where

$$R_{1} := \begin{cases} x = 0\\ y = 0\\ z = 0\\ w = 0 \end{cases}, R_{2} := \begin{cases} x = 0\\ y = 0\\ z + w = 0 \end{cases}, R_{3} := \begin{cases} x = 0\\ y = 0\\ z - w = 0 \end{cases}, R_{4} := \begin{cases} z = 0\\ w = 0\\ w = 0 \end{cases}.$$

Example

•

•
$$\dim(Z_{\mathbb{R}}(R_1)) = 0$$

• $\dim(Z_{\mathbb{R}}(R_2)) = 1 \Longrightarrow \text{LimitAlongCurve}(q, R_2) = \frac{-1}{2}$
• $\dim(Z_{\mathbb{R}}(R_3)) = 1 \Longrightarrow \text{LimitAlongCurve}(q, R_3) = \frac{1}{2}$
• $\dim(Z_{\mathbb{R}}(R_4)) = 2 \Longrightarrow \text{LimitInner}(q, R_4)$

$$R_5 := \begin{cases} z = 0 \\ w = 0 \\ x = 0 \\ y \neq 0 \end{cases}, R_6 := \begin{cases} z = 0 \\ w = 0 \\ y = 0 \\ x \neq 0 \end{cases}$$

•
$$\dim(Z_{\mathbb{R}}(R_5)) = 1 \Longrightarrow$$
 LimitAlongCurve $(q, R_5) = 1$
• $\dim(Z_{\mathbb{R}}(R_6)) = 1 \Longrightarrow$ LimitAlongCurve $(q, R_6) = 1$

 \implies the limit does not exists.

2 Our contribution

- 3 Triangular decomposition of semi-algebraic sets
- 4 Generalization of concepts and basic lemmas
- 5 Main algorithms

6 Experimentation

7 Conclusion and future works

Experimentation

Ex	NV	TD	LM	TL	RFL	LV
1	2	4	0.061	0.097	0.312	-1
2	2	4	0.056	wrong answer	0.309	-1
3	2	2	0.015	0.002	0.121	undefined
4	2	4	0.096	0.001	0.814	undefined
5	2	4	0.064	0.089	0.313	-1
6	3	5	N/A	0.508	4.952	0
7	3	8	N/A	> 2GB	> 2GB	0
8	3	18	N/A	10.422	0.185	0
9	3	18	N/A	0.502	0.164	0
10	4	4	N/A	0.002	1.411	undefined
11	4	2	N/A	0.003	0.241	undefined
12	4	4	N/A	0.002	1.414	undefined
13	4	5	N/A	> 2GB	2.727	0
14	4	21	N/A	> 2GB	4.502	0
15	4	6	N/A	> 2GB	1.986	0

- NV : number of variables
- TD : total degree
- LV : limit value

- LM : limit/multi
- TL : TestLimit
- RFL : RationalFunctionLimit

Ex	NV	TD	LM	TL	RFL	LV
16	5	19	N/A	> 2GB	0.400	0
17	5	4	N/A	2.705	1.053	0
18	6	6	N/A	Error	1.140	0
19	6	6	N/A	Error	1.274	undefined
20	6	18	N/A	Error	0.269	0
21	6	10	N/A	> 2GB	5.395	0
22	6	10	N/A	> 2GB	2.474	0
23	6	6	N/A	Error	4.372	0
24	7	6	N/A	0.002	0.012	undefined
25	8	5	N/A	> 2GB	7.895	0
26	8	9	N/A	Error	20.132	undefined
27	9	4	N/A	0.003	3.058	undefined
28	9	10	N/A	Error	72	0
29	9	5	N/A	Error	0.526	0
30	10	10	N/A	Error	15.198	0

- NV : number of variables
- TD : total degree
- LV : limit value

- LM : limit/multi
- TL : TestLimit
- RFL : RationalFunctionLimit

2 Our contribution

- 3 Triangular decomposition of semi-algebraic sets
- 4 Generalization of concepts and basic lemmas
- 5 Main algorithms
- **3** Experimentation

Concluding remarks

- We have presented a procedure for determining the existence and possible value of finite limits of n-variate rational function over Q
- We rely on the theory of regular chains, which allows us to avoid computing singular loci and decompositions into irreducible components
- Our main tool is the RealTriangularize algorithm.
- We have implemented our procedure within the RegularChains library.
- Our code is available at www.regularchains.org
- Experimental results show that our code solves more test cases than the implementation of S.J. Xiao and G.X. Zeng (2014), in particular as variable number or total degree increases.

- Extending our algorithm to the case where the origin is not an isolated zero of the denominator is work in progress.
- Currently, our algorithm returns either a finite limit, when it exists, or no_finite_limit. Handling infinite is also work in progress.
- Currently, RealTriangularize decomposes an arbitrary semi-algebraic set S whereas what we really need here are the connected components of S which have the origin in their closure. This is also work in progress.