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Question

Let q ∈ Q(X1, . . . , Xn) be a multivariate rational function. Assume that
the origin is an isolated zero of the denominator of q.

lim
(x1,...,xn)→(0,...,0)

q(x1, . . . , xn) =?



Previous works: part I

Univariate functions (including transcendental ones)

D. Gruntz (1993, 1996), B. Salvy and J. Shackell (1999)

− Corresponding algorithms are available in popular computer algebra
systems

Multi variables rational functions

S.J. Xiao and G.X. Zeng (2014)

− Given q ∈ Q(X1, . . . , Xn), they proposed an algorithm deciding
whether or not: lim(x1,...,xn)→(0,...,0) q exists and is zero.

− No assumptions on the input multivariate rational function

− Techniques used:
• triangular decomposition of algebraic systems,
• rational univariate representation,
• adjoining infinitesimal elements to the base field.



Lagrange multipliers (1/2)

Let q and t be real bivariate functions of class C1 .

Problem

optimize q(x, y)
subject to t(x, y) = 0

Solution

1 Assuming ∇t(x, y) does not vanish on t(x, y) = 0, solve the following
system of equations:{

∇q(x, y) = λ∇t(x, y)
t(x, y) = 0

2 Plug in all (x, y) solutions obtained at Step (1) into q(x, y) and
identify the minimum and maximum values, provided that they exist.



Lagrange multipliers (2/2)

Figure: Optimizing q(x, y) under t(x, y) = c



Previous works: bivariate rational functions

C. Cadavid, S. Molina, and J. D. Vélez (2013):

Assumes that the origin is an isolated zero of the denominator

Maple built-in command limit/multi

Discriminant variety

χ(q) = {(x, y) ∈ R2 | y ∂q∂x − x
∂q
∂y = 0}.

Key observation

For determining the existence and possible value of

lim
(x,y)→(0,0)

q(x, y),

it is sufficient to compute

lim
(x, y)→ (0, 0)
(x, y) ∈ χ(q)

q(x, y).



Example

Let q ∈ Q(x, y) be a rational function defined by q(x, y) = x4+3x2y−x2−y2
x2+y2

.

χ(q) =

{
x4 + 2x2y2 + 3y3 = 0

y < 0
∪
{
x = 0



Previous works: trivariate rational functions

J.D. Vélez, J.P. Hernández, and C.A Cadavid (2015).

Assumes that the origin is an isolated zero of the denominator
Ad-hoc methods reduce to the case of bivariate rational functions

Similar key observation

For determining the existence and possible value of

lim
(x,y,z)→(0,0,0)

q(x, y, z),

it is sufficient to compute

lim
(x, y, z)→ (0, 0, 0)
(x, y, z) ∈ χ(q)

q(x, y, z).

Techniques used

Computation of singular loci

Variety decomposition into irreducible components
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Our contribution

∗ Generalize the trivariate algorithm of J.D. Vélez, J.P. Hernández, and
C.A Cadavid to arbitrary number of variables

∗ Avoiding the computation of singular loci and irreducible
decompositions

How?

Triangular decomposition of semi- algebraic systems
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Regular semi-algebraic system

Notation

Let T ⊂ Q[X1 < . . . < Xn] be a regular chain with
Y := {mvar(t) | t ∈ T} and U := X \Y = U1, . . . , Ud.

Let P be a finite set of polynomials, s.t. every f ∈ P is regular
modulo sat(T ).

Let Q be a quantifier-free formula of Q[U].

Definition

We say that R := [Q, T, P>] is a regular semi-algebraic system if:

(i) Q defines a non-empty open semi-algebraic set O in Rd,

(ii) the regular system [T, P ] specializes well at every point u of O
(iii) at each point u of O, the specialized system [T (u), P (u)>] has

at least one real solution .

Define

ZR(R) = {(u, y) | Q(u), t(u, y) = 0, p(u, y) > 0, ∀(t, p) ∈ T × P}.
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Example

The system [Q, T, P>], where

Q := a > 0, T :=

{
y2 − a = 0
x = 0

, P> := {y > 0}

is a regular semi-algebraic system.



Regular semi-algebraic system

Notations

Let R := [Q, T, P>] be a regular semi-algebraic system. Recall that Q
defines a non-empty open semi-algebraic set O in Rd and

ZR(R) = {(u, y) | Q(u), t(u, y) = 0, p(u, y) > 0, ∀(t, p) ∈ T × P}.

Properties

Each connected component C of O in Rd is a real analytic manifold ,

thus locally homeomorphic to the hyper-cube (0, 1)d

Above each C, the set ZR(R) consists of disjoint graphs of

semi-algebraic functions forming a real analytic covering of C.
There is at least one such graph.

Consequences

R can be understood as a parameterization of ZR(R)

The Jacobian matrix
[
∇t, t ∈ T

]
is full rank.



Triangular decomposition of semi-algebraic sets

Proposition

Let S := [F=, N≥, P>, H6=] be a semi-algebraic system. Then, there exists
a finite family of regular semi-algebraic systems R1, . . . , Re such that

ZR(S) = ∪ei=1ZR(Ri).

Triangular decomposition

In the above decomposition, R1, . . . , Re is called a triangular
decomposition of S and we denote by RealTriangularize an
algorithm computing such a decomposition.

Moreover, such a decomposition can be computed in an
incremental manner with a function RealIntersect

• taking as input a regular semi-algebraic system R and a semi-algebraic
constraint f = 0 (resp. f > 0) for f ∈ Q[X1, . . . , Xn]

• returning regular semi-algebraic system R1, . . . , Re such that

ZR(f = 0) ∩ ZR(R) = ∪ei=1ZR(Ri).
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Generalization of concepts and basic lemmas (1/3)

Discriminant variety (Cadavid, Molina, and Vélez, 2013)

Let q : Rn −→ R be a rational function defined on a punctured ball D∗δ .
The discriminant variety χ(q) of q is the real zero-set of all 2-by-2 minors
of [

X1 · · · Xn
∂q
∂X1

· · · ∂q
∂Xn

]

Limit along a semi-algebraic set

Let S be a semi-algebraic set of positive dimension (i. e. > 1) such that
o ∈ S in the Euclidean topology. Let L ∈ R. We say

lim
(x1, . . . , xn)→ (0, . . . , 0)
(x1, . . . , xn) ∈ S

q(x1, . . . , xn) = L

whenever
(∀ε > 0) (∃0 < δ) (∀(x1, . . . , xn) ∈ S ∩ D∗δ ) |q(x1, . . . , xn)− L| < ε



Generalization of concepts and basic lemmas (2/3)

Lemma 1

For all L ∈ R the following assertions are equivalent:

lim(x1,...,xn)→(0,...,0) q(x1, . . . , xn) exists and equals L,

lim (x1, . . . , xn)→ (0, . . . , 0)
(x1, . . . , xn) ∈ χ(q)

q(x1, . . . , xn) exists and equals L.

Lemma 2

Let R1, . . . , Re be regular semi-algebraic systems forming a triangular
decomposition of χ(q). Then, for all L ∈ R the following are equivalent:

lim (x1, . . . , xn)→ (0, . . . , 0)
(x1, . . . , xn) ∈ χ(q)

q exists and equals L.

for all i ∈ {1, . . . , e} such that ZR(Ri) has dimension at least 1 and
the origin belongs to ZR(Ri), we have lim (x1, . . . , xn)→ (0, . . . , 0)

(x1, . . . , xn) ∈ ZR(Ri)

q

exists and equals L.



Generalization of concepts and basic lemmas (3/3)

Lemma 3

Assume n ≥ 3. Let R = [Q, {tn}, P>] be a regular semi-algebraic
system of Q[X1, . . . , Xn] such that ZR(R) has dimension d := n− 1,
and o ∈ ZR(R). W.l.o.g. we assume that mvar(tn) = Xn holds.

Let M :=

[
X1 · · · Xn
∂tn
∂X1

· · · ∂tn
∂Xn

]
Then, there exists a non-empty set U ⊂ D∗ρ ∩ ZR(R), which is open

relatively to ZR(R), such thatM is full rank at any point of U , and o ∈ U .
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Overview of RationalFunctionLimit

Input: a rational function q ∈ Q(X1, . . . , Xn) such that origin is an
isolated zero of the denominator.

Output: lim(x1,...,xn)→(0,...,0) q(x1, . . . , xn)

1 Apply RealTriangularize on χ(q), obtaining rsas R1, . . . , Re

2 Discard Ri if either dim(Ri) = 0 or o /∈ ZR(Ri)

• QuantifierElimination checks whether o ∈ ZR(Ri) or not.

3 Apply LimitInner (R) on each regular semi algebraic system of
dimension higher than one.

• main task : solving constrained optimization problems

4 Apply LimitAlongCurve on each one-dimensional regular semi

algebraic system resulting from Step 3

• main task : Puiseux series expansions



Principles of LimitInner

Input: a rational function q and a regular semi algebraic system
R := [Q,T, P>] with dim(ZR(R)) ≥ 1 and o ∈ ZR(R)

Output: limit of q at the origin along ZR(R)

1 if dim(ZR(R)) = 1 then return LimitAlongCurve (q,R)

2 otherwise build M :=

[
X1 · · · Xn

∇t, t ∈ T

]
3 For all m ∈ Minors(M) such that ZR(R) * ZR(m) build

M′ :=

 ∂Er
∂X1

· · · ∂Er
∂Xn

X1 · · · Xn

∇t, t ∈ T

 with Er :=
∑n

i=1AiX
2
i − r2

For all m′ ∈ Minors(M′) C := RealIntersect (R,m′ = 0,m 6= 0)

For all C ∈ C such that dim(ZR(C)) > 0 and o ∈ ZR(C)

1 compute L = LimitInner (q, C);
2 if L is no finite limit or L is finite but different from a previously

found finite L then return no finite limit

4 If the search completes then a unique finite was found and is returned.



Principles of LimitAlongCurve

Input: a rational function q and a curve C given by [Q,T, P>]

Output: limit of q at the origin along C

1 Let f, g be the numerator and denominator of q

2 Let T ′ := {gXn+1 − f} ∪ T with Xn+1 a new variable

3 Compute the real branches of WR(T ′) := ZR(T ′) \ ZR(hT ′) in Rn
about the origin via Puiseux series expansions

4 If no branches escape to infinity and if WR(T ′) has only one limit
point (x1, . . . , xn, xn+1) with x1 = · · · = xn = 0, then xn+1 is the
desired limit of q

5 Otherwise return no finite limit



Example

Let q(x, y, z, w) = z w+x2+y2

x2+y2+z2+w2 .

RealTriangularize (χ(q)):

ZR(χ(q)) = ZR(R1) ∪ ZR(R2) ∪ ZR(R3) ∪ ZR(R4),

where

R1 :=


x = 0
y = 0
z = 0
w = 0

, R2 :=


x = 0
y = 0
z + w = 0

,

R3 :=


x = 0
y = 0
z − w = 0

, R4 :=

{
z = 0
w = 0

.



Example

dim(ZR(R1)) = 0

dim(ZR(R2)) = 1 =⇒ LimitAlongCurve (q,R2) = −1
2

dim(ZR(R3)) = 1 =⇒ LimitAlongCurve (q,R3) = 1
2

dim(ZR(R4)) = 2 =⇒ LimitInner (q,R4)
•

R5 :=


z = 0
w = 0
x = 0
y 6= 0

, R6 :=


z = 0
w = 0
y = 0
x 6= 0

dim(ZR(R5)) = 1 =⇒ LimitAlongCurve (q,R5) = 1

dim(ZR(R6)) = 1 =⇒ LimitAlongCurve (q,R6) = 1

=⇒ the limit does not exists.
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Experimentation

Ex NV TD LM TL RFL LV
1 2 4 0.061 0.097 0.312 -1
2 2 4 0.056 wrong answer 0.309 -1
3 2 2 0.015 0.002 0.121 undefined
4 2 4 0.096 0.001 0.814 undefined
5 2 4 0.064 0.089 0.313 -1
6 3 5 N/A 0.508 4.952 0
7 3 8 N/A > 2GB > 2GB 0
8 3 18 N/A 10.422 0.185 0
9 3 18 N/A 0.502 0.164 0
10 4 4 N/A 0.002 1.411 undefined
11 4 2 N/A 0.003 0.241 undefined
12 4 4 N/A 0.002 1.414 undefined
13 4 5 N/A > 2GB 2.727 0
14 4 21 N/A > 2GB 4.502 0
15 4 6 N/A > 2GB 1.986 0

NV : number of variables

TD : total degree

LV : limit value

LM : limit/multi

TL : TestLimit

RFL : RationalFunctionLimit



Ex NV TD LM TL RFL LV
16 5 19 N/A > 2GB 0.400 0
17 5 4 N/A 2.705 1.053 0
18 6 6 N/A Error 1.140 0
19 6 6 N/A Error 1.274 undefined
20 6 18 N/A Error 0.269 0
21 6 10 N/A > 2GB 5.395 0
22 6 10 N/A > 2GB 2.474 0
23 6 6 N/A Error 4.372 0
24 7 6 N/A 0.002 0.012 undefined
25 8 5 N/A > 2GB 7.895 0
26 8 9 N/A Error 20.132 undefined
27 9 4 N/A 0.003 3.058 undefined
28 9 10 N/A Error 72 0
29 9 5 N/A Error 0.526 0
30 10 10 N/A Error 15.198 0

NV : number of variables

TD : total degree

LV : limit value

LM : limit/multi

TL : TestLimit

RFL : RationalFunctionLimit
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Concluding remarks

� We have presented a procedure for determining the existence and
possible value of finite limits of n-variate rational function over Q

� We rely on the theory of regular chains, which allows us to avoid
computing singular loci and decompositions into irreducible
components

� Our main tool is the RealTriangularize algorithm.

� We have implemented our procedure within the RegularChains

library.

� Our code is available at www.regularchains.org

� Experimental results show that our code solves more test cases than
the implementation of S.J. Xiao and G.X. Zeng (2014), in particular
as variable number or total degree increases.

www.regularchains.org


Current works

Extending our algorithm to the case where the origin is
not an isolated zero of the denominator is work in progress.

Currently, our algorithm returns either a finite limit , when it exists,
or no finite limit. Handling infinite is also work in progress.

Currently, RealTriangularize decomposes an arbitrary
semi-algebraic set S whereas what we really need here are the
connected components of S which have the origin in their closure .
This is also work in progress.
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