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Motivation

Investigate geometrically intrinsic aspects of the decomposition

Improve the algorithm: better runing time, better output

Realize set-theoretic operations on semi-algebraic sets
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Triangular decomposition of a semi-algebraic system

Example

RealTriangularize([ax2 + x + b = 0]) w.r.t. b ≺ a ≺ x consist of 3
regular semi-algebraic systems :


ax2 + x + b = 0

a 6= 0 ∧ 4ab < 1
,


x + b = 0

a = 0
,


2ax + 1 = 0
4ab − 1 = 0
b 6= 0

RealTriangularize

is an analogue of triangular decomposition of algebraic systems

represents real solutions of a semi-algebraic system by regular
semi-algebraic systems

solves many foundamental problems related to semi-algebraic
systems/sets: emptiness test, dimension, parametrization, sample
points, . . .
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Regular semi-algebraic system

Notation

T : a regular chain of Q[x]

u = u1, . . . , ud and y = x \ u: the free and algebraic variables of T

P ⊂ Q[x]: each polynomial in P is regular w.r.t. sat(T )

Q: a quantifier-free formula (QFF) of Q[u]

Definition (regular semi-algebraic system)

We say that R := [Q,T ,P>] is a regular semi-algebraic system (RSAS) if:

(i) the set S = ZR(Q) ⊂ Rd is non-empty and open,

(ii) the regular system [T ,P] specializes well at every point u of S

(iii) at each point u of S , the specialized system [T (u),P(u)>] has at
least one real zero.

CDMXX (UWO, PKU, Bath) ISSAC 2011 San Jose 7 / 1



Notions related to generating RSAS

Pre-regular semi-algebraic system

Let B ⊂ Q[u]. A triple [B6=,T ,P>] is called a pre-regular semi-algebraic
system (PRSAS) if ∀u ∈ B6=, [T ,P] specializes well at u.

Definition (border polynomial)

Let R be a squarefree regular system [T ,P]. The border polynomial set of
R, denoted by bps(R), is the set of irreducible factors of∏

f ∈P ∪{diff(t,mvar(t))|t∈T}

res(f ,T ).
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[T ,P>,H 6=]: [bps([T ,H ∪ P])6=,T ,P>] is a PRSAS

CDMXX (UWO, PKU, Bath) ISSAC 2011 San Jose 8 / 1



Notions related to generating RSAS

Definition (border polynomial)

Let R be a squarefree regular system [T ,P]. The border polynomial set of
R, denoted by bps(R), is the set of irreducible factors of∏

f ∈P ∪{diff(t,mvar(t))|t∈T}

res(f ,T ).

Lemma (Property of the border polynomial set)

Let B := bps([T ,P]).

For any u ∈ ZC(B6=): R specializes well at u.

Let S := [T ,P>], C be a connected component of ZR(B6=) in Rd .
Then for any two points α1, α2 ∈ C:

#ZR(S(α1)) = #ZR(S(α2)).
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The notion of a fingerprint polynomial set

M = [B6=,T ,P>]
FPS−→ D,R

Definition (fingerprint polynomial set)

A polynomial set D ⊂ Q[u] is a fingerprint polynomial set (FPS) of M if:

(i) for all α ∈ Rd , b ∈ B : α ∈ ZR(D 6=)⇒ b(α) 6= 0

(ii) for all α, β ∈ ZR(D 6=), if for all p ∈ D, sign(p(α)) = sign(p(β)):

#ZR(M(α)) > 0 ⇔ #ZR(M(β)) > 0.
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The polynomial set {a, 1− 4ab} is an FPS of

M = [{a 6= 0, 1− 4ab 6= 0}, {ax2 + x + b = 0}, { }].

Generate RSAS from M: {}, [{a 6= 0 ∧ 1− 4ab > 0}, {ax2 + x + b = 0}, { }]
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(i) for all α ∈ Rd , b ∈ B : α ∈ ZR(D 6=)⇒ b(α) 6= 0

(ii) for all α, β ∈ ZR(D 6=), if for all p ∈ D, sign(p(α)) = sign(p(β)):

#ZR(M(α)) > 0 ⇔ #ZR(M(β)) > 0.

Lemma (A theoretical FPS, [CDMMXX10])

The polynomial set oaf(B) is an FPS of the PRSAS M.

(oaf is the open and augmented projection, defined in [CDMMXX10])
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Algorithm: GenerateRSAS

Input: A PRSAS M = [B 6=,T ,P>]
Output: An FPS D of S and RSAS R

ZR(M) \ ZR(D6=) = ZR(R)

initialize D := B
loop

S := SamplePoints(ZR(D6=)), C1 := { }, C0 := { }
for s ∈ S do

if #ZR(M(s)) > 0 then

C1 := C1 ∪ {sign(D(s))}
else

C0 := C0 ∪ {sign(D(s))}
end if

end for

if C1 ∩ C0 = ∅ then

return D, [qff(C1),T ,P>]
else

add more polynomials from oaf(B) to D

end if

end loop
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Main contributions

The minimality of border polynomial sets for certain type of regular
chains/systems

The notion of an effective boundary: invariant of a parametric
system; improve the FPS construction process

Relaxation technique in the RSAS generating process: to reduce
recursive calls

Improve decomposition algorithm based on an incremental process

Difference and Intersection set-theoretic operations for SASes
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Border polynomial: entrance to the “real” world

Border polynomials are at the core of our decomposition algorithm:
generating PRSAS, constructing FPS

Border polynomial sets have an “algorithmic” nature: triangular
decomposition are not canonical

Two natural questions:

Can we compute regular systems having smaller border polynomial
sets?

Can we make better use of the computed border polynomial set in the
FPS construction?
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Canonical regular chains

Consider two regular chains T , T ∗ with sat(T ) = sat(T ∗):

T =

{
x2 − 2

(a2 − xa)y − xa + 2
T ∗ =

{
x2 − 2
ay − x

bps {a, a2 − 2} {a}
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T =

{
x2 − 2

(a2 − xa)y − xa + 2
T ∗ =

{
x2 − 2
ay − x

bps {a, a2 − 2} {a}

Definition

Let T be a regular chain of Q[x]. We say that T is canonical ff

(i) T is strongly normalized,

(ii) T is reduced,

(iii) the polynomials in T are primitive and monic.
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Canonical regular chains

Consider two regular chains T , T ∗ with sat(T ) = sat(T ∗):

T =

{
x2 − 2

(a2 − xa)y − xa + 2
T ∗ =

{
x2 − 2
ay − x

bps {a, a2 − 2} {a}

Theorem (Properties of a canonical regular chain)

Given T a regular chain, then there exists a unique canonical regular chain
T ∗ s.t. sat(T ∗) = sat(T ). Moreover, bps(T ∗) ⊆ bp(T ) holds.
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Canonical vs practical

Canonical regular chains are good for theoretical analysis, but more
expensive to compute in practice.
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Where the number of real solutions does change?
Border polynomial set: more about the number does not change

Example

Consider the PRSAS M = [{a 6= 0}, {ax2 + bx + 1 = 0}, {}]:
bps(M) = {a, b2 − 4a}.

not every border polynomial factor true boundary” of change
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Effective boundary

Consider S = [T ,P>] where u = u1, . . . , ud are the free variables of T .

Definition (irreducible effective boundary)

Let h be a hypersurface defined by an irreducible polynomial in u. We call
h an irreducible effective boundary if there exists an open ball O ⊂ Rd

satisfying

(i) O \ h consists of two connected components O1, O2;

(ii) for i = 1, 2 and any two points α1, α2 ∈ Oi :
#ZR(S(α1)) = #ZR(S(α2));

(iii) for any β1 ∈ O1, β2 ∈ O2: #ZR(S(β1)) 6= #ZR(S(β2)).

Denote by E(S) the union of all irreducible effective boundaries of S.
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Properties of effective boundaries

Proposition

We have E(S) ⊆ ZR(
∏

f ∈bps(S) f = 0).

Effective border polynomial factors (ebf(S)): p ∈ bps(S) and ZR(p = 0) ⊆ E(S)

CDMXX (UWO, PKU, Bath) ISSAC 2011 San Jose 18 / 1



Properties of effective boundaries

Theorem

For all R1 = [T1,P>] and R2 = [T2,P>]:

sat(T1) = sat(T2) =⇒ ebf(R1) = ebf(R2).
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Algorithmic benefits

Theorem

Given a PRSAS M = [B6=,T ,P>], let D = oaf(ebf([T ,P>])). Then
D ∪ B is an FPS of M.

Form new candidate FPS by picking polynomials from D (instead of
oaf(B))
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Relaxation: why?
M = [{b},T ,P>]

b > 0 b < 0

I, III II

M has solutions over I and II

Ideal output R = [Q,T ,P>], where ZR(Q) = I ∪ II
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Relaxation: why?

An FPS F = {b, f } of M = [{b},T ,P>]

Signs conditions on F:
C1 = b > 0 ∧ f > 0
C2 = b < 0 ∧ f > 0
C3 = b < 0 ∧ f < 0

C1 ∨ C2 ∨ C3 ⇐⇒ I ∪ II \ ZR(f = 0)

C̃1
f

= b > 0 ∧ f ≥ 0, C̃2
f

= b < 0 ∧ f ≥ 0, C̃3
f

= b > 0 ∧ f ≤ 0

C̃1
f
∨ C̃2

f
∨ C̃3

f
⇐⇒ I ∪ II
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Criterion for relaxation

Let S := [T ,P>], B := bps([T ,P]), D ⊂ Q[u]. Let Q0,Q1 be QFFs of u.
Suppose

B ( D

ZR(Q1) ∪ ZR(Q0) = ZR(D 6=)

ZR(Q1) ∩ ZR(Q0) = ∅
For all u ∈ ZR(D 6=): S(u) has real solutions ⇔ Q1(u)

(The assumptions imply ZR(Q1), ZR(Q0) are both open)

Theorem (Criterion for relaxation)

Let h ∈ D \ B. The following two facts are equivalent:

(i) ZR(Q̃1
h
) ∩ ZR(Q̃0

h
) = ∅

(ii) For all u ∈ ZR((D \ {h}) 6=): S(u) has real solutions ⇔ Q̃1
h
(u).
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Applying the relaxation criterion

Let F be an FPS of M = [B6=,T ,P>]; let C1 (resp. C0) be the sign
conditions on F for M to have (resp. have no) real solutions.

Input: F , C1, C0

Output: D, Q1 s.t. ZR([B ∪ D 6=,T ,P>]) = ZR([Q1,T ,P>])
D := F , Q1 := C1, Q0 := C0

for h ∈ F \ B do

if ZR(Q̃1
h
) ∩ ZR(Q̃0

h
) = ∅ then

D := D \ {h}
Q1 := Q̃1

h
, Q0 := Q̃0

h

end if
end for
return D, Q1
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Relaxation

Gain: running time (hard problems), less redundancy

Pay: testing ZR(Q̃1
h
) ∩ ZR(Q̃0

h
) = ∅

A short Maple worksheet demo

An expirical fact: all polynomials in F \ B can be relaxed
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Conclusion and future work

The minimality of border polynomial of an cananical regular chain

A more intrinsic notion, effective boundary, for real solution
classification

Relaxation technique in our FPS based QFF constrution: less
redundancy in output, solve some hard problems
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integrate effective bounday to the implementation
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Conclusion and future work

The minimality of border polynomial of an cananical regular chain

A more intrinsic notion, effective boundary, for real solution
classification

Relaxation technique in our FPS based QFF constrution: less
redundancy in output, solve some hard problems

Work in progress:

integrate effective bounday to the implementation

better implementation of the relaxation criterion

...

Thank you!
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The decomposition algorithm

Step 1 “Algebraic” decomposition:
pre-regular semi-algebraic
systems

Step 2 “Real” decomposition: generate
RSAS from each pre-regular
semi-algebraic system M

ZR(M) \ ZR(D 6=) = ZR(R)

Step 3 Making recursive calls: for each
f ∈ D, compute and output

RealTriangularize([T ∪ {f },P>, (B)6=])
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