Computing with Semi-Algebraic Sets Represented by Triangular Decomposition

Rong Xiao¹ joint work with Changbo Chen¹, James H. Davenport² Marc Moreno Maza¹, Bican Xia³

¹ University of Western Ontario, Canada ² University of Bath, UK; ³ Peking University, China

ISSAC 2011, June 11, 2011

Plan

◆□> ◆圖> ◆理> ◆理> 三語

Plan

◆□> ◆圖> ◆理> ◆理> 三語

Related work

Triangular decomposition of an algebraic system: W.T. Wu, D.M. Wang, S.C. Chou, X.S. Gao, D. Lazard, M. Kalkbrener, L. Yang, J.Z. Zhang, D.K. Wang, M. Moreno Maza, ...

Decomposition of a semi-algebraic system (SAS): CAD (G.E. Collins, et.al)

Our previously work: [CDMMXX10] C. Chen, J.H. Davenport, J. May, M. Moreno Maza, B. Xia, and R. Xiao. *Triangular decomposition of semi-algebraic systems*. In Proc. of ISSAC 2010.

(日) (同) (三) (三)

Related work

Triangular decomposition of an algebraic system: W.T. Wu, D.M. Wang, S.C. Chou, X.S. Gao, D. Lazard, M. Kalkbrener, L. Yang, J.Z. Zhang, D.K. Wang, M. Moreno Maza, ...

Decomposition of a semi-algebraic system (SAS): CAD (G.E. Collins, et.al)

Our previously work: [CDMMXX10] C. Chen, J.H. Davenport, J. May, M. Moreno Maza, B. Xia, and R. Xiao. *Triangular decomposition of semi-algebraic systems*. In Proc. of ISSAC 2010.

Motivation

- Investigate geometrically intrinsic aspects of the decomposition
- Improve the algorithm: better runing time, better output
- Realize set-theoretic operations on semi-algebraic sets

Triangular decomposition of a semi-algebraic system

Example

RealTriangularize($[ax^2 + x + b = 0]$) w.r.t. $b \prec a \prec x$ consist of 3 regular semi-algebraic systems :

$$\left\{ \begin{array}{l} ax^2 + x + b = 0 \\ a \neq 0 \wedge 4ab < 1 \end{array} \right., \quad \left\{ \begin{array}{l} x + b = 0 \\ a = 0 \end{array} \right., \quad \left\{ \begin{array}{l} 2ax + 1 = 0 \\ 4ab - 1 = 0 \\ b \neq 0 \end{array} \right. \right.$$

RealTriangularize

- is an analogue of triangular decomposition of algebraic systems
- represents real solutions of a semi-algebraic system by regular semi-algebraic systems
- solves many foundamental problems related to semi-algebraic systems/sets: emptiness test, dimension, parametrization, sample points, ...

CDMXX (UWO, PKU, Bath)

Triangular decomposition of a semi-algebraic system

Example

RealTriangularize($[ax^2 + x + b = 0]$) w.r.t. $b \prec a \prec x$ consist of 3 regular semi-algebraic systems :

$$\begin{cases} ax^{2} + x + b = 0 \\ a \neq 0 \land 4ab < 1 \end{cases}, \begin{cases} x + b = 0 \\ a = 0 \end{cases}, \begin{cases} 2ax + 1 = 0 \\ 4ab - 1 = 0 \\ b \neq 0 \end{cases}$$

RealTriangularize

- is an analogue of triangular decomposition of algebraic systems
- represents real solutions of a semi-algebraic system by regular semi-algebraic systems
- solves many foundamental problems related to semi-algebraic systems/sets: emptiness test, dimension, parametrization, sample points, ...

Regular semi-algebraic system

Notation

- T: a regular chain of $\mathbb{Q}[\mathbf{x}]$
- $\mathbf{u} = u_1, \dots, u_d$ and $\mathbf{y} = \mathbf{x} \setminus \mathbf{u}$: the free and algebraic variables of T
- $P \subset \mathbb{Q}[\mathbf{x}]$: each polynomial in P is regular w.r.t. $\operatorname{sat}(T)$
- $\mathcal{Q}:$ a quantifier-free formula (QFF) of $\mathbb{Q}[\textbf{u}]$

Definition (regular semi-algebraic system)

We say that $\mathcal{R} := [\mathcal{Q}, \mathcal{T}, \mathcal{P}_{>}]$ is a regular semi-algebraic system (RSAS) if:

(i) the set $S = Z_{\mathbb{R}}(\mathcal{Q}) \subset \mathbb{R}^d$ is non-empty and open,

(*ii*) the regular system [T, P] specializes well at every point u of S

(iii) at each point u of S, the specialized system $[T(u), P(u)_{>}]$ has at least one real zero.

イロト イヨト イヨト イヨト

Notions related to generating RSAS

Pre-regular semi-algebraic system

Let $B \subset \mathbb{Q}[\mathbf{u}]$. A triple $[B_{\neq}, T, P_{>}]$ is called a *pre-regular semi-algebraic* system (PRSAS) if $\forall u \in B_{\neq}, [T, P]$ specializes well at u.

Definition (border polynomial)

Let R be a squarefree regular system [T, P]. The *border polynomial set* of R, denoted by bps(R), is the set of *irreducible factors* of

$$\prod_{f \in P \cup \{ \mathsf{diff}(t,\mathsf{mvar}(t)) | t \in T \}} \operatorname{res}(f, T).$$

Notions related to generating RSAS

Pre-regular semi-algebraic system

Let $B \subset \mathbb{Q}[\mathbf{u}]$. A triple $[B_{\neq}, T, P_{>}]$ is called a *pre-regular semi-algebraic* system (PRSAS) if $\forall u \in B_{\neq}$, [T, P] specializes well at u.

Definition (border polynomial)

Let R be a squarefree regular system [T, P]. The *border polynomial set* of R, denoted by bps(R), is the set of *irreducible factors* of

$$\prod_{f \in P \cup \{ \operatorname{diff}(t, \operatorname{\mathsf{mvar}}(t)) | t \in T \}} \operatorname{res}(f, T).$$

 $[T, P_{>}, H_{\neq}]$: $[bps([T, H \cup P])_{\neq}, T, P_{>}]$ is a PRSAS

Notions related to generating RSAS

Definition (border polynomial)

Let R be a squarefree regular system [T, P]. The *border polynomial set* of R, denoted by bps(R), is the set of *irreducible factors* of

$$\prod_{f \in P \cup \{ \text{diff}(t, \mathsf{mvar}(t)) | t \in T \}} \operatorname{res}(f, T).$$

Lemma (Property of the border polynomial set)

Let B := bps([T, P]).

- For any $u \in Z_{\mathbb{C}}(B_{\neq})$: R specializes well at u.
- Let S := [T, P_>], C be a connected component of Z_ℝ(B_≠) in ℝ^d. Then for any two points α₁, α₂ ∈ C:

$$\#Z_{\mathbb{R}}(S(\alpha_1)) = \#Z_{\mathbb{R}}(S(\alpha_2)).$$

The notion of a fingerprint polynomial set

$$\mathcal{M} = [B_{\neq}, T, P_{>}] \quad \stackrel{FPS}{\longrightarrow} \quad D, \mathcal{R}$$

Definition (fingerprint polynomial set) A polynomial set $D \subset \mathbb{Q}[\mathbf{u}]$ is a fingerprint polynomial set (FPS) of \mathcal{M} if: (*i*) for all $\alpha \in \mathbb{R}^d$, $b \in B : \alpha \in Z_{\mathbb{R}}(D_{\neq}) \Rightarrow b(\alpha) \neq 0$ (*ii*) for all $\alpha, \beta \in Z_{\mathbb{R}}(D_{\neq})$, if for all $p \in D$, $\operatorname{sign}(p(\alpha)) = \operatorname{sign}(p(\beta))$: $\#Z_{\mathbb{R}}(\mathcal{M}(\alpha)) > 0 \iff \#Z_{\mathbb{R}}(\mathcal{M}(\beta)) > 0.$

The notion of a fingerprint polynomial set

$$\mathcal{M} = [B_{\neq}, T, P_{>}] \quad \stackrel{FPS}{\longrightarrow} \quad D, \mathcal{R}$$

Definition (fingerprint polynomial set)

A polynomial set $D \subset \mathbb{Q}[\mathbf{u}]$ is a fingerprint polynomial set (FPS) of \mathcal{M} if: (*i*) for all $\alpha \in \mathbb{R}^d$, $b \in B : \alpha \in Z_{\mathbb{R}}(D_{\neq}) \Rightarrow b(\alpha) \neq 0$ (*ii*) for all $\alpha, \beta \in Z_{\mathbb{R}}(D_{\neq})$, if for all $p \in D$, $\operatorname{sign}(p(\alpha)) = \operatorname{sign}(p(\beta))$: $\#Z_{\mathbb{R}}(\mathcal{M}(\alpha)) > 0 \iff \#Z_{\mathbb{R}}(\mathcal{M}(\beta)) > 0.$

The polynomial set $\{a, 1-4ab\}$ is an FPS of

$$\mathcal{M} = [\{a \neq 0, 1 - 4ab \neq 0\}, \{ax^2 + x + b = 0\}, \{\}].$$

Generate RSAS from \mathcal{M} : {}, [{ $a \neq 0 \land 1 - 4ab > 0$ }, { $ax^2 + x + b = 0$ }, { }]

・ロン ・聞と ・ 聞と ・ 聞と … 間

The notion of a fingerprint polynomial set

$$\mathcal{M} = [B_{\neq}, T, P_{>}] \quad \stackrel{FPS}{\longrightarrow} \quad D, \mathcal{R}$$

Definition (fingerprint polynomial set) A polynomial set $D \subset \mathbb{Q}[\mathbf{u}]$ is a fingerprint polynomial set (FPS) of \mathcal{M} if: (i) for all $\alpha \in \mathbb{R}^d$, $b \in B : \alpha \in Z_{\mathbb{R}}(D_{\neq}) \Rightarrow b(\alpha) \neq 0$ (ii) for all $\alpha, \beta \in Z_{\mathbb{R}}(D_{\neq})$, if for all $p \in D$, $\operatorname{sign}(p(\alpha)) = \operatorname{sign}(p(\beta))$: $\#Z_{\mathbb{R}}(\mathcal{M}(\alpha)) > 0 \iff \#Z_{\mathbb{R}}(\mathcal{M}(\beta)) > 0$.

Lemma (A theoretical FPS, [CDMMXX10])

The polynomial set oaf(B) is an FPS of the PRSAS \mathcal{M} .

(oaf is the open and augmented projection, defined in [CDMMXX10])

イロト イヨト イヨト イヨト

Algorithm: GenerateRSAS

Input: A PRSAS $\mathcal{M} = [B_{\neq}, T, P_{>}]$ **Output:** An FPS *D* of \mathfrak{S} and RSAS \mathcal{R}

 $Z_{\mathbb{R}}(\mathcal{M}) \setminus Z_{\mathbb{R}}(D_{\neq}) = Z_{\mathbb{R}}(\mathcal{R})$

```
initialize D := B
loop
    S := \text{SamplePoints}(Z_{\mathbb{R}}(D_{\neq})), C_1 := \{ \}, C_0 := \{ \}
    for s \in S do
       if \#Z_{\mathbb{R}}(\mathcal{M}(s)) > 0 then
           C_1 := C_1 \cup \{\operatorname{sign}(D(s))\}
       else
           C_0 := C_0 \cup \{\operatorname{sign}(D(s))\}
       end if
    end for
    if C_1 \cap C_0 = \emptyset then
       return D, [qff(C_1), T, P_>]
    else
       add more polynomials from oaf(B) to D
    end if
end loop
```

CDMXX (UWO, PKU, Bath)

- 4 週 ト - 4 三 ト - 4 三 ト

Main contributions

- The minimality of border polynomial sets for certain type of regular chains/systems
- The notion of an effective boundary: invariant of a parametric system; improve the FPS construction process
- Relaxation technique in the RSAS generating process: to reduce recursive calls
- Improve decomposition algorithm based on an incremental process
- Difference and Intersection set-theoretic operations for SASes

Plan

◆□> ◆圖> ◆臣> ◆臣> □臣

Border polynomial: entrance to the "real" world

Border polynomials are at the core of our decomposition algorithm: generating PRSAS, constructing FPS

Border polynomial sets have an "algorithmic" nature: triangular decomposition are not canonical

Two natural questions:

- Can we compute regular systems having smaller border polynomial sets?
- Can we make better use of the computed border polynomial set in the FPS construction?

(日) (同) (三) (三)

Border polynomial: entrance to the "real" world

Border polynomials are at the core of our decomposition algorithm: generating PRSAS, constructing FPS

Border polynomial sets have an "algorithmic" nature: triangular decomposition are not canonical

Two natural questions:

- Can we compute regular systems having smaller border polynomial sets?
- Can we make better use of the computed border polynomial set in the FPS construction?

Canonical regular chains

Consider two regular chains T, T^* with $sat(T) = sat(T^*)$:

$$T = \begin{cases} x^2 - 2 \\ (a^2 - xa)y - xa + 2 \end{cases} \quad T^* = \begin{cases} x^2 - 2 \\ ay - x \end{cases}$$

bps
$$\{a, a^2 - 2\}$$
 $\{a\}$

< /₽ > < E > <

Canonical regular chains

Consider two regular chains T, T^* with $sat(T) = sat(T^*)$:

$$T = \begin{cases} x^2 - 2 \\ (a^2 - xa)y - xa + 2 \end{cases} \quad T^* = \begin{cases} x^2 - 2 \\ ay - x \end{cases}$$

bps
$$\{a, a^2 - 2\}$$
 $\{a\}$

Definition

Let T be a regular chain of $\mathbb{Q}[\mathbf{x}]$. We say that T is canonical ff

- (i) T is strongly normalized,
- (ii) T is reduced,

(iii) the polynomials in T are primitive and monic.

Canonical regular chains

Consider two regular chains T, T^* with sat $(T) = sat(T^*)$:

$$T = \begin{cases} x^2 - 2 \\ (a^2 - xa)y - xa + 2 \end{cases} \quad T^* = \begin{cases} x^2 - 2 \\ ay - x \end{cases}$$
bps $\{a, a^2 - 2\}$ $\{a\}$

Theorem (Properties of a canonical regular chain)

Given T a regular chain, then there exists a unique canonical regular chain T^* s.t. $\operatorname{sat}(T^*) = \operatorname{sat}(T)$. Moreover, $\operatorname{bps}(T^*) \subseteq \operatorname{bp}(T)$ holds.

Canonical vs practical

Canonical regular chains are good for theoretical analysis, but more **expensive** to compute in practice.

3 1 4

Where the number of real solutions does change?

Border polynomial set: more about the number does not change

Example

Consider the PRSAS $\mathcal{M} = [\{a \neq 0\}, \{ax^2 + bx + 1 = 0\}, \{\}]$: bps $(\mathcal{M}) = \{a, b^2 - 4a\}$.

not every border polynomial factor true boundary" of change

Where the number of real solutions does change?

Border polynomial set: more about the number does not change

Example

Consider the PRSAS $\mathcal{M} = [\{a \neq 0\}, \{ax^2 + bx + 1 = 0\}, \{\}]$: bps $(\mathcal{M}) = \{a, b^2 - 4a\}$.

not every border polynomial factor true boundary" of change

Effective boundary

Consider $\mathfrak{S} = [T, P_{>}]$ where $\mathbf{u} = u_1, \dots, u_d$ are the free variables of T.

Definition (irreducible effective boundary)

Let **h** be a hypersurface defined by an irreducible polynomial in **u**. We call **h** an *irreducible effective boundary* if there exists an open ball $O \subset R^d$ satisfying

(i) $O \setminus \mathbf{h}$ consists of two connected components O_1 , O_2 ;

(ii) for
$$i = 1, 2$$
 and any two points $\alpha_1, \alpha_2 \in O_i$:
 $\# Z_{\mathbb{R}}(\mathfrak{S}(\alpha_1)) = \# Z_{\mathbb{R}}(\mathfrak{S}(\alpha_2));$

(iii) for any $\beta_1 \in O_1, \beta_2 \in O_2$: $\# \mathbb{Z}_{\mathbb{R}}(\mathfrak{S}(\beta_1)) \neq \# \mathbb{Z}_{\mathbb{R}}(\mathfrak{S}(\beta_2)).$

Denote by $\mathcal{E}(\mathfrak{S})$ the union of all irreducible effective boundaries of \mathfrak{S} .

・ロン ・四 ・ ・ ヨン ・ ヨン

Properties of effective boundaries

Proposition

We have
$$\mathcal{E}(\mathfrak{S}) \subseteq Z_{\mathbb{R}}(\prod_{f \in \mathsf{bps}(\mathfrak{S})} f = 0)$$
.

Effective border polynomial factors (ebf(\mathfrak{S})): $p \in bps(\mathfrak{S})$ and $Z_{\mathbb{R}}(p = 0) \subseteq \mathcal{E}(\mathfrak{S})$

(日) (同) (三) (三)

Properties of effective boundaries

Theorem

For all
$$R_1 = [T_1, P_>]$$
 and $R_2 = [T_2, P_>]$:
 $\operatorname{sat}(T_1) = \operatorname{sat}(T_2) \implies \operatorname{ebf}(R_1) = \operatorname{ebf}(R_2).$

ISSAC 2011

Algorithmic benefits

Theorem

Given a PRSAS $\mathcal{M} = [B_{\neq}, T, P_{>}]$, let $D = \text{oaf}(ebf([T, P_{>}]))$. Then $D \cup B$ is an FPS of \mathcal{M} .

Form new candidate FPS by picking polynomials from D (instead of oaf(B))

(日) (同) (三) (三)

Algorithmic benefits

Theorem

Given a PRSAS $\mathcal{M} = [B_{\neq}, T, P_{>}]$, let $D = \text{oaf}(ebf([T, P_{>}]))$. Then $D \cup B$ is an FPS of \mathcal{M} .

Form new candidate FPS by picking polynomials from D (instead of oaf(B))

★御▶ ★ 国▶ ★ 国

Plan

◆□> ◆圖> ◆臣> ◆臣> □臣

Relaxation: why? $\mathcal{M} = [\{b\}, T, P_{>}]$

b > 0	<i>b</i> < 0
I, III	II

 ${\mathcal M}$ has solutions over ${\it I}$ and ${\it II}$

Relaxation: why? $\mathcal{M} = [\{b\}, T, P_{>}]$

b > 0	<i>b</i> < 0
I, III	II

 ${\mathcal M}$ has solutions over ${\it I}$ and ${\it II}$

Relaxation: why?

 $\widetilde{C_1}^t = b > 0 \land f \ge 0, \widetilde{C_2}^t = b < 0 \land f \ge 0, \widetilde{C_3}^t = b > 0 \land f \le 0$

 $\widetilde{C_1}^f \lor \widetilde{C_2}^f \lor \widetilde{C_3}^f \iff I \cup II$

Relaxation: why?

$$\widetilde{C_1}^f = b > 0 \land f \ge 0, \widetilde{C_2}^f = b < 0 \land f \ge 0, \widetilde{C_3}^f = b > 0 \land f \le 0$$

 $\widetilde{C_1}^f \vee \widetilde{C_2}^f \vee \widetilde{C_3}^f \Longleftrightarrow I \cup II$

Criterion for relaxation

Let $S := [T, P_{>}]$, B := bps([T, P]), $D \subset \mathbb{Q}[\mathbf{u}]$. Let Q_0, Q_1 be QFFs of \mathbf{u} . Suppose

- *B* ⊊ *D*
- $Z_{\mathbb{R}}(Q_1)\cup Z_{\mathbb{R}}(Q_0)=Z_{\mathbb{R}}(D_{\neq})$
- $Z_{\mathbb{R}}(Q_1) \cap Z_{\mathbb{R}}(Q_0) = \emptyset$
- For all $u \in Z_{\mathbb{R}}(D_{\neq})$: $\mathcal{S}(u)$ has real solutions $\Leftrightarrow Q_1(u)$

(The assumptions imply $Z_{\mathbb{R}}(Q_1)$, $Z_{\mathbb{R}}(Q_0)$ are both **open**)

Theorem (Criterion for relaxation)

Let $h \in D \setminus B$. The following two facts are equivalent: (i) $Z_{\mathbb{R}}(\widetilde{Q_1}^h) \cap Z_{\mathbb{R}}(\widetilde{Q_0}^h) = \emptyset$

(ii) For all $u\in Z_{\mathbb{R}}((D\setminus\{h\})_{
eq})\colon \mathcal{S}(u)$ has real solutions $\Leftrightarrow \widetilde{Q_1}''(u)$

Criterion for relaxation

Let $S := [T, P_{>}]$, B := bps([T, P]), $D \subset \mathbb{Q}[\mathbf{u}]$. Let Q_0, Q_1 be QFFs of \mathbf{u} . Suppose

- *B* ⊊ *D*
- $Z_{\mathbb{R}}(Q_1)\cup Z_{\mathbb{R}}(Q_0)=Z_{\mathbb{R}}(D_{\neq})$
- $Z_{\mathbb{R}}(Q_1) \cap Z_{\mathbb{R}}(Q_0) = \emptyset$
- For all $u \in Z_{\mathbb{R}}(D_{\neq})$: $\mathcal{S}(u)$ has real solutions $\Leftrightarrow Q_1(u)$

(The assumptions imply $Z_{\mathbb{R}}(Q_1)$, $Z_{\mathbb{R}}(Q_0)$ are both **open**)

Theorem (Criterion for relaxation)

Let $h \in D \setminus B$. The following two facts are equivalent: (i) $Z_{\mathbb{R}}(\widetilde{Q_1}^h) \cap Z_{\mathbb{R}}(\widetilde{Q_0}^h) = \emptyset$ (ii) For all $u \in Z_{\mathbb{R}}((D \setminus \{h\})_{\neq})$: S(u) has real solutions $\Leftrightarrow \widetilde{Q_1}^h(u)$.

< ロ > < 同 > < 三 > < 三

Applying the relaxation criterion

Let *F* be an FPS of $\mathcal{M} = [B_{\neq}, T, P_{>}]$; let C_1 (resp. C_0) be the sign conditions on *F* for \mathcal{M} to have (resp. have no) real solutions.

Input:
$$F, C_1, C_0$$

Output: D, Q_1 s.t. $Z_{\mathbb{R}}([B \cup D_{\neq}, T, P_{>}]) = Z_{\mathbb{R}}([Q_1, T, P_{>}])$
 $D := F, Q_1 := C_1, Q_0 := C_0$
for $h \in F \setminus B$ do
if $Z_{\mathbb{R}}(\widetilde{Q_1}^h) \cap Z_{\mathbb{R}}(\widetilde{Q_0}^h) = \emptyset$ then
 $D := D \setminus \{h\}$
 $Q_1 := \widetilde{Q_1}^h, Q_0 := \widetilde{Q_0}^h$
end if
end for
return D, Q_1

(日) (同) (三) (三)

Relaxation

Gain: running time (hard problems), less redundancy

Pay: testing
$$Z_{\mathbb{R}}(\widetilde{Q_1}^h) \cap Z_{\mathbb{R}}(\widetilde{Q_0}^h) = \emptyset$$

A short Maple worksheet demo

An expirical fact: all polynomials in $F \setminus B$ can be relaxed

★ 3 → < 3</p>

Conclusion and future work

- The minimality of border polynomial of an cananical regular chain
- A more intrinsic notion, effective boundary, for real solution classification
- Relaxation technique in our FPS based QFF constrution: less redundancy in output, solve some hard problems

Conclusion and future work

- The minimality of border polynomial of an cananical regular chain
- A more intrinsic notion, effective boundary, for real solution classification
- Relaxation technique in our FPS based QFF constrution: less redundancy in output, solve some hard problems

Work in progress:

- integrate effective bounday to the implementation
- better implementation of the relaxation criterion

• ...

Conclusion and future work

- The minimality of border polynomial of an cananical regular chain
- A more intrinsic notion, effective boundary, for real solution classification
- Relaxation technique in our FPS based QFF constrution: less redundancy in output, solve some hard problems

Work in progress:

- integrate effective bounday to the implementation
- better implementation of the relaxation criterion

• ...

Thank you!

The decomposition algorithm

Step 1 "Algebraic" decomposition: pre-regular semi-algebraic systems

Step 2 "Real" decomposition: generate RSAS from each pre-regular semi-algebraic system \mathcal{M} $Z_{\mathbb{R}}(\mathcal{M}) \setminus Z_{\mathbb{R}}(D_{\neq}) = Z_{\mathbb{R}}(\mathcal{R})$

Step 3 Making recursive calls: for each $f \in D$, compute and output

 $\texttt{RealTriangularize}([T \cup \{f\}, P_{>}, (B)_{\neq}])$

RealTriangularize

(日) (同) (三) (三)

The decomposition algorithm

- Step 1 "Algebraic" decomposition: pre-regular semi-algebraic systems
- Step 2 "Real" decomposition: generate RSAS from each pre-regular semi-algebraic system \mathcal{M} $Z_{\mathbb{R}}(\mathcal{M}) \setminus Z_{\mathbb{R}}(D_{\neq}) = Z_{\mathbb{R}}(\mathcal{R})$
- Step 3 Making recursive calls: for each $f \in D$, compute and output

 $\texttt{RealTriangularize}([\mathsf{T}\cup\{f\},\mathsf{P}_{>},(B)_{\neq}])$

RealTriangularize

(日) (同) (三) (三)

The decomposition algorithm

- Step 1 "Algebraic" decomposition: pre-regular semi-algebraic systems
- Step 2 "Real" decomposition: generate RSAS from each pre-regular semi-algebraic system \mathcal{M} $Z_{\mathbb{R}}(\mathcal{M}) \setminus Z_{\mathbb{R}}(D_{\neq}) = Z_{\mathbb{R}}(\mathcal{R})$
- Step 3 Making recursive calls: for each $f \in D$, compute and output

RealTriangularize([$T \cup \{f\}, P_>, (B)_{\neq}$])

RealTriangularize

< 回 ト < 三 ト < 三 ト