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Tentative Plan

1 Parallel programming patterns

2 Their BPAS implementation (this part is skipped)

3 Parallelization and automatic parallelization

4 Pipeline pattern detection

5 Automatic GPU offloading

6 Automatic determination of optimal launch parameters for GPU
kernels
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5.1 Overview
5.2 GPUs and the CUDA programming model
5.3 Klaraptor
5.4 Experimentation
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Parallel map and workpile
Map is the possibly the best known parallel programming pattern

ë It executes a function on each item in a collection concurrently.
ë With multiple Maps, tasks may execute in lockstep.

Map Pattern [16] Thread Pool (Wikipedia)

Workpile generalizes Map to a queue of a tasks, allowing tasks to add
more tasks, thus enabling load-balancing as tasks start asynchronously

ë one possible implementation of workpile is a thread pool

Data Item Function Execution
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Parallel map and workpile in computer algebra

Opportunities exist and have been studied in
∎ completion algorithms (Buchberger algorithm, the characteristic set

method, etc.)
∎ dynamic evaluation (computations with regular chains)
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Divide-and-conquer and fork-join

∎ Divide a problem into
sub-problems, solving each
recursively

∎ Combine sub-solutions to
produce a full solution

∎ Fork: execute multiple
recursive calls in parallel
(divide)

∎ Join: merge parallel
execution back into serial
execution (combine)
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Divide-and-conquer and fork-join in computer algebra

Opportunities exist and have been intensively studied in
∎ plain dense linear algebra and plain dense polynomial algebra,
∎ FFTs,
∎ asymptotically fast algorithms for matrices, polynomials, series, etc.
∎ real root isolation, etc.
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Generators and pipelines

Generators
∎ A generator function (i.e. iterator) yields data items one at a time,

allowing the function’s control flow to resume on its next execution.

Asynchronous Generators, Producer-Consumer
∎ async generators can concurrently produce items while the generator’s

caller is consuming items, creating a producer-consumer pair

Pipeline
∎ By connecting many producer-consumer pairs we create a pipeline
∎ Pipelines need not be linear, they can be directed acyclic graphs
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Generators and pipelines in computer algebra

Opportunities exist and but have received too little attention:
∎ linear pipeline: factorization over a finite field with its usual 3 stages

(squarefree, distinct degree, equal degree),
∎ non-linear pipeline: computations of inverses and polynomial GCDs

over direct product of fields with (at most) 2𝑛 stages for towers of 𝑛
field extensions,

∎ another non-linear pipeline: iterative methods in numerical linear
algebra.

In this talk, we are interested in discovering pipelines from a sequence of
for-loop nests accessing/updating arrays.

skip slide
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Compiler-Level automatic parallelization

∎ Cilk and OpenMP provide automatic parallelization though
compiler extensions

∎ Very easy but flexibility more challenging

void mergeSort (int* A, int i,
int j) {

//... base case , k
cilk_spawn mergeSort (A, i, k);
mergeSort (A, k, j);
cilk_sync
merge (A, i, k, j);

}

void mergeSort (int* A, int i, int
j) {

//... base case , k
# pragma omp parallel

num_threads (2)
{

# pragma omp sections {
# pragma omp section {

mergeSort (A, i, k);
}
# pragma omp section {

mergeSort (A, k, j);
}

}
}
merge (A, i, k, j);

}
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Fork-Join parallelism with BPAS

∎ Object-oriented

∎ Standard C++, no compiler extensions

∎ Extends the Thread Support Library of C++11

1 void mergeSort (int* A, int i, int j) {
2 //... base case , k
3 threadID id;
4 ExecutorThreadPool & pool =
5 ExecutorThreadPool :: getThreadPool ();
6
7 pool. obtainThread (id);
8 pool. executeTask (id , std :: bind (mergeSort , A, i, k));
9 mergeSort (A, k, j);

10
11 pool. returnThread (id);
12
13 merge (A, i, k, j);
14 }
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Threading primitives
C++11 introduced the Thread Support Library
∎ std::thread

ë C++ class encapsulating a thread (often a pthread) and its low-level
spawn and join

∎ std::mutex
ë shared object between threads to indicate mutual exclusion to a

critical region.
ë mutex is locked or owned by at most one thread at a time.

∎ std::lock_guard, std::unique_lock
ë temporary object wrapping a mutex whose object lifetime

automatically locks and unlocks the mutex.
ë the constructor blocks and only returns once the shared mutex is

successfully owned by the calling thread.

∎ std::condition_variable
ë blocks the current thread and temporarily releases a lock
ë receives notification from another thread to awaken the blocked thread
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std::function

Functors, function objects, callable objects

∎ First-class objects which are callable using normal function syntax
∎ Are often constructed by passing function names, function pointers
∎ std::bind binds arguments to a function or function object,

returning a function object which requires fewer arguments

1 void printInteger (int a) {
2 std :: cout << a << std :: endl ;
3 }
4
5 // Function object from function name
6 std :: function <void(int)> f_printInt ( printInteger );
7 f_printInt (12);
8
9 // Function object binding arguments to function name

10 std :: function <void () > f_print 42( std :: bind ( printInteger ,42) );
11 f_print 42();
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Parallel overheads

Creating and managing multiple threads of execution can be expensive
∎ Every thread spawn requires non-insignificant amount of time
∎ If more threads are active than the hardware supports,

over-subscription occurs and repeated context switching slows
down the program

∎ Thread synchronization, locking mutexs, accessing critical regions
require special care

Thread pools mitigate the first two, by supplying a fixed number of
long-running threads.

Parallel programming patterns are algorithmic designs for efficient
thread scheduling and minimizing locking
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Long-Running threads

Threads typically terminate once their assigned function/code block
finishes

In order to implement and benefit from a thread pool, we require a
mechanism which allows threads to:

1 Remain active until explicitly told to exit (or the entire program exits)

2 Receive new code blocks to execute on demand

FunctionExecutorThreads are such long-running threads which receive
functions or code blocks and executes them asynchronously.
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FunctionExecutorThread usage

1 int A[N];
2 int* ret = new int ();
3 FunctionExecutorThread t;
4
5 t. sendRequest ( [=]() void -> {
6 int s = 0;
7 for (int i = 0; i < N; ++i) {
8 s += A[i];
9 }

10 *ret = s;
11 });
12
13 doSomethingElse ();
14
15 // make sure result is available before continuing
16 t. waitForThread ();
17
18 std :: cout << "sum: " << *ret << std :: endl ;
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Object streams

The key to the implementation of FunctionExectorThread is the
AyncObjectStream class. It provides:

1 a queue for tasks (or any object) and
2 a blocking mechanism to keep the FunctionExecutorThread alive

and idle when waiting for tasks

∎ Actually a class template for any kind of object being passed between
two threads

∎ Implements a queue satisfying the producer-consumer problem

∎ A std::queue combined with a mutex and condition variable
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Thread pools

A thread pool manages a collection of long-running threads and a queue
of tasks
∎ spawn all threads once at the beginning of program
∎ idle threads receive and execute tasks as required
∎ if all threads busy, tasks are added to queue
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ExecutorThreadPool

∎ A thread pool built using FunctionExecutorThreads
∎ An internal queue of tasks and queue of threads
∎ When threads are busy, they are temporarily removed from the pool
∎ When all threads busy, tasks are added to task queue

1 class ExecutorThreadPool {
2
3 private :
4 std :: deque <FunctionExecutorThread *> threadPool ;
5 std :: deque <std :: function <void () >> taskPool ;
6 std :: mutex m_mutex ;
7 std :: condition_variable m_cv; // used in waitForThreads
8
9 void tryPullTask ();

10 void putBackThread ( FunctionExecutorThread * t);
11
12 public :
13 void addTask (std :: function <void () > f);
14 void waitForThreads ();
15 }
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ExecutorThreadPool: flexible usage
∎ In support of certain parallel patterns, clients can (temporarily)

obtain ownership of threads from the pool, rather than using addTask
∎ Abstract away actual threads through thread IDs
∎ Once thread obtained, repeat Steps 2–3 as often as necessary

1 class ExecutorThreadPool {
2 // Storage for threads removed from pool by obtainThread
3 std :: vector <FunctionExecutorThread *> occupiedThreads ;
4
5 // Step 1: obtain a thread 's ID , removing it from the pool
6 void obtainThread ( threadID & id);
7
8 // Step 2: execute a task on a particular thread
9 void executeTask ( threadID id , std :: function <void () >& f);

10
11 // Step 3 ( optional ): wait for thread to become idle
12 void waitForThread ( threadID id);
13
14 // Step 4: return thread to pool ( waits before returning )
15 void returnThread ( threadID id);
16 }
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Fork-Join with ExecutorThreadPool

1 void mergeSort (int* A, int i, int j) {
2 if (j <= i) { return ; }
3 int k = i + (j-1)/2;
4 mergeSort (A, i, k);
5 mergeSort (A, k, j);
6 merge (A, i, k, j);
7 }

1 void mergeSort (int* A, int i, int j) {
2 if (j <= i) { return ; }
3 int k = i + (j-1)/2;
4 threadID id;
5 ExecutorThreadPool & pool = getThreadPool ();
6
7 pool. obtainThread (id);
8 pool. executeTask (id , std :: bind (mergeSort , A, i, k));
9 mergeSort (A, k, j);

10
11 pool. returnThread (id);
12 merge (A, i, k, j);
13 }
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Workpile with ExecutorThreadPool

1 void processInt (std :: queue <int > B, int a) {
2 a -= 10;
3 if (a > 0) {
4 getThreadPool (). addTask (std :: bind ( processInt , B, a));
5 } else {
6 B.push(a);
7 }
8 }
9

10 void WorkpileExample (std :: queue <int > B, std :: queue <int > A) {
11 ExecutorThreadPool & pool = getThreadPool ();
12 while (!A. empty ()) {
13 pool. addTask ( std :: bind ( processInt , B, A. front ()) );
14 A.pop ();
15 }
16 pool. waitForAllThreads ();
17 }
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AsyncGenerator and AsyncObjectStream

We want an object-oriented approach to create and use generators.

AsyncObjectStream already solves the producer-consumer problem.
∎ It provides a queue which blocks and notifies the consumer as data is

produced, implemented using a condition variable
∎ As a class template, can be used within AsyncGenerator to yield any

type of object

1 template <class Object >
2 class AsyncObjectStream {
3 void addResult ( Object && res); // Producer
4
5 void resultsFinished (); // Producer
6
7 bool getNextObject ( Object & res); // Consumer
8
9 void streamEmpty (); // Consumer

10 };
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AsyncGenerator

AsyncGenerator is itself a class template, templated by Object, the type
of object to generate.
∎ The AsyncGenerator acts as interface between producer and

consumer

∎ The consumer constructs the AsyncGenerator, passing the
constructor the producer’s function and arguments

∎ The producer’s signature should be:

1 void producerFunction (..., AsyncGenerator <Object >&);

∎ The AsyncGenerator being constructed inserts itself into the
producer’s list of arguments so that it has reference to the generator
object
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AsyncGenerator example
1 void FibonacciGen (int n, AsyncGenerator <int >& gen) {
2 int Fn_1 = 0;
3 int Fn = 1;
4 for (int i = 0; i < n; ++i) {
5 gen. generateObject (Fn_1); // yield Fn_1 and continue
6 Fn = Fn + Fn_1;
7 Fn_1 = Fn - Fn_1;
8 }
9 gen. setComplete ();

10 }
11
12 void Fib () {
13 int n;
14 std :: cin >> n;
15 AsyncGenerator <int > gen( FibonacciGen , n);
16
17 int fib;
18 // get one integer at a time until generator is finished
19 while (gen. getNextObject (fib)) {
20 std :: cerr << fib << std :: endl ;
21 }
22 }
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Cooperative parallelism

With several simultaneous clients of ExecutorThreadPool (workpile,
fork-join, generators), some tasks should be given priority.
∎ Some tasks are more coarse-grained, offer more potential speed-up
∎ Some tasks may expose more parallelism and should be executed first

Often, parallelism coming from Fork-Join or Map is preferred over
Producer-Consumer.
∎ Goal: allow Fork-Join and Map to access thread pool threads over

Producer-Consumer while still keeping the latter possible when there
are idle threads

∎ Solution: priority tasks
∎ addTask() vs addPriorityTask()

∎ If all threads busy, addPriorityTask() temporarily spawns new
thread to start execution immediately
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The BPAS library

A high-performance polynomial algebra library
∎ Core of library written in C, wrapped in C++ interface for usability

and object-oriented programming

Optimized algorithms and data structures, data locality, and parallelism
∎ Sparse multivariate polynomials [3], dense univariate and bivariate [21]
∎ Triangular decomposition of polynomial systems [2, 4]

User-friendly, object-oriented interface based on template
meta-programming [5]
∎ A natural encoding of the algebraic hierarchy
∎ “Dynamic” creation of algebraic types through composition
∎ Compile-time type safety between algebraic types

Generic support for parallel programming and parallel patterns (this talk)

http://www.bpaslib.org/
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Parallelization and automatic parallelization

∎ Parallelization usually refers to the programmer

1 applying the fork-join pattern to a divide-and-conquer algorithm, or
2 turning a for into parallel-for.

∎ Automatic parallelization usually refers to the compiler

1 exposing parallelism (dependence analysis, tiling, loop transformations,
etc.)

2 scheduling tasks (load balancing, reducing parallelism overheads, etc.),
3 generating parallel code (allocating resources, in particular memory).
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Dependence analysis in the polyhedral model

Cholesky’s LU decomposition:
for(𝑖 = 1; 𝑖 <= 𝑛; 𝑖 + +){

1: 𝑥 = 𝑎(︀𝑖⌋︀(︀𝑖⌋︀;
for(𝑘 = 1; 𝑘 < 𝑖; 𝑘 + +)

2: 𝑥 = 𝑥 − 𝑎(︀𝑖⌋︀(︀𝑘⌋︀ ∗ 𝑎(︀𝑖⌋︀(︀𝑘⌋︀;
3: 𝑝(︀𝑖⌋︀ = 1.0⇑sqrt(𝑥);

for(𝑗 = 𝑖 + 1; 𝑗 <= 𝑛; 𝑗 + +){

4: 𝑥 = 𝑎(︀𝑖⌋︀(︀𝑗⌋︀;
for(𝑘 = 1; 𝑘 < 𝑖; 𝑘 + +)

5: 𝑥 = 𝑥 − 𝑎(︀𝑗⌋︀(︀𝑘⌋︀ ∗ 𝑎(︀𝑖⌋︀(︀𝑘⌋︀;
6: 𝑎(︀𝑗⌋︀(︀𝑖⌋︀ = 𝑥 ∗ 𝑝(︀𝑖⌋︀;

}

}

system 1:
)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

1 ≤ 𝑖 ≤ 𝑛

𝑖 + 1 ≤ 𝑗 ≤ 𝑛

1 ≤ 𝑘 ≤ 𝑖 − 1
1 ≤ 𝑖′ ≤ 𝑛

𝑖′ + 1 ≤ 𝑗′ ≤ 𝑛

𝑗 = 𝑗′, 𝑘 = 𝑖′

𝑖 < 𝑖′

system 2:
)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

1 ≤ 𝑖 ≤ 𝑛

𝑖 + 1 ≤ 𝑗 ≤ 𝑛

1 ≤ 𝑘 ≤ 𝑖 − 1
1 ≤ 𝑖′ ≤ 𝑛

𝑖′ + 1 ≤ 𝑗′ ≤ 𝑛

𝑗 = 𝑗′, 𝑘 = 𝑖′

𝑖 = 𝑖′, 𝑗 < 𝑗′

system 3:

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

1 ≤ 𝑖 ≤ 𝑛

𝑖 + 1 ≤ 𝑗 ≤ 𝑛

1 ≤ 𝑘 ≤ 𝑖 − 1
1 ≤ 𝑖′ ≤ 𝑛

𝑖′ + 1 ≤ 𝑗′ ≤ 𝑛

𝑗 = 𝑗′, 𝑘 = 𝑖′

𝑖 = 𝑖′, 𝑗 = 𝑗′
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Dependence analysis in the polyhedral model

Cholesky’s LU decomposition:
for(𝑖 = 1; 𝑖 <= 𝑛; 𝑖 + +){

1: 𝑥 = 𝑎(︀𝑖⌋︀(︀𝑖⌋︀;
for(𝑘 = 1; 𝑘 < 𝑖; 𝑘 + +)

2: 𝑥 = 𝑥 − 𝑎(︀𝑖⌋︀(︀𝑘⌋︀ ∗ 𝑎(︀𝑖⌋︀(︀𝑘⌋︀;
3: 𝑝(︀𝑖⌋︀ = 1.0⇑sqrt(𝑥);

for(𝑗 = 𝑖 + 1; 𝑗 <= 𝑛; 𝑗 + +){

4: 𝑥 = 𝑎(︀𝑖⌋︀(︀𝑗⌋︀;
for(𝑘 = 1; 𝑘 < 𝑖; 𝑘 + +)

5: 𝑥 = 𝑥 − 𝑎(︀𝑗⌋︀(︀𝑘⌋︀ ∗ 𝑎(︀𝑖⌋︀(︀𝑘⌋︀;
6: 𝑎(︀𝑗⌋︀(︀𝑖⌋︀ = 𝑥 ∗ 𝑝(︀𝑖⌋︀;

}

}

system 1:
)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

1 ≤ 𝑖 ≤ 𝑛

𝑖 + 1 ≤ 𝑗 ≤ 𝑛

1 ≤ 𝑘 ≤ 𝑖 − 1
1 ≤ 𝑖′ ≤ 𝑛

𝑖′ + 1 ≤ 𝑗′ ≤ 𝑛

𝑗 = 𝑗′, 𝑘 = 𝑖′

𝑖 < 𝑖′

system 2:
)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

1 ≤ 𝑖 ≤ 𝑛

𝑖 + 1 ≤ 𝑗 ≤ 𝑛

1 ≤ 𝑘 ≤ 𝑖 − 1
1 ≤ 𝑖′ ≤ 𝑛

𝑖′ + 1 ≤ 𝑗′ ≤ 𝑛

𝑗 = 𝑗′, 𝑘 = 𝑖′

𝑖 = 𝑖′, 𝑗 < 𝑗′

system 3:

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

1 ≤ 𝑖 ≤ 𝑛

𝑖 + 1 ≤ 𝑗 ≤ 𝑛

1 ≤ 𝑘 ≤ 𝑖 − 1
1 ≤ 𝑖′ ≤ 𝑛

𝑖′ + 1 ≤ 𝑗′ ≤ 𝑛

𝑗 = 𝑗′, 𝑘 = 𝑖′

𝑖 = 𝑖′, 𝑗 = 𝑗′
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Automatic parallelization: plain multiplication

Serial dense univariate polynomial multiplication

for(i=0; i<=n; i++){
c[i] = 0; c[i+n] = 0;
for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];
}

Dependence analysis suggests to set 𝑡(𝑖, 𝑗) = 𝑛 − 𝑗 and 𝑝(𝑖, 𝑗) = 𝑖 + 𝑗.

Asynchronous parallel dense univariate polynomial multiplication

parallel_for (p=0; p<=2*n; p++){
c [ p ] =0;
for (t=max(0,n-p); t<= min(n,2*n-p);t++)

C [ p ] = C [ p ]
+ A [ t+p-n ] * B [ n-t ] ;

}
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Generating parametric code & use of tiling techniques

parallel_for (p=0; p<=2*n; p++){
c [ p ] =0;
for (t=max(0,n-p); t<= min(n,2*n-p);t++)

C [ p ] = C [ p ]
+ A [ t+p-n ] * B [ n-t ] ;

}

Improving the parallelization

∎ The above generated code is not practical for multicore implementation: the
number of processors is in Θ(𝑛). (Not to mention poor locality!) and the work is
unevenly distributed among the workers.

∎ We group the virtual processors (or threads) into 1D blocks, each of size 𝐵. Each
thread is known by its block number 𝑏 and a local coordinate 𝑢 in its block.

∎ Blocks represent good units of work which have good locality property.
∎ This yields the following constraints: 0 ≤ 𝑢 < 𝐵, 𝑝 = 𝑏𝐵 + 𝑢.
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Generating parametric code: using tiles
We apply Regular-Chains:-QuantifierElimination on the left system
(in order to get rid off 𝑖, 𝑗) leading to the relations on the right:

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑜 < 𝑛
0 ≤ 𝑖 ≤ 𝑛
0 ≤ 𝑗 ≤ 𝑛
𝑡 = 𝑛 − 𝑗
𝑝 = 𝑖 + 𝑗

0 ≤ 𝑏
𝑜 ≤ 𝑢 < 𝐵

𝑝 = 𝑏𝐵 + 𝑢,

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝐵 > 0
𝑛 > 0

0 ≤ 𝑏 ≤ 2𝑛⇑𝐵
0 ≤ 𝑢 < 𝐵

0 ≤ 𝑢 ≤ 2𝑛 −𝐵𝑏
𝑝 = 𝑏𝐵 + 𝑢,

(1)

From where we derive the following program:
for (p=0; p<=2*n; p++) c [ p ] = 0;
parallel_for (b=0; b<= 2 n / B; b++) {

parallel_for (u=0; u<=min(B-1, 2*n - B * b); u++) {
p = b * B + u;
for (t=max(0,n-p); t<=min(n,2*n-p) ;t++)

c [ p ] = c [ p ] + a [ t+p-n ] * b [ n-t ];
}

}

Marc Moreno Maza Contributions to Automatic Parallelization RTCA 2023 38 / 84



Outline

1. Parallel programming patterns
2. BPAS implementation of parallel patterns
2.1 Multi-threading in C++
2.2 Implementing a thread pool
2.3 Parallel patterns with ExecutorThreadPool

3. Parallelization and automatic parallelization
4. Pipeline pattern detection
5. Automatic determination of optimal launch parameters for GPU kernels
5.1 Overview
5.2 GPUs and the CUDA programming model
5.3 Klaraptor
5.4 Experimentation
6. Automatic prefetching of data to GPU’s shared memory
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This is a joint work with:
∎ Delaram Talaashrafi (NVIDIA)
∎ Johannes Doerfert (Lawrence Livermore National Laboratory)

Published in LLPP-2022:
∎ Delaram Talaashrafi, Johannes Doerfert, and MMM, “A Pipeline

Pattern Detection Technique in Polly," in ICPP Workshops ’22: 51th
International Conference on Parallel Processing Workshop, Bordeaux,
France, August 2022.
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The problem

The polyhedral model

∎ The polyhedral model is effective for optimizing loop nests using
different methods: dependence analysis, loop tiling (blocking), . . .

∎ They all optimize for-loop nests on a per-loop basis.

Our work
∎ is about exploiting cross-loop parallelization, through tasking.
∎ is done by detecting pipeline pattern between iteration blocks of

different loop nests.

Polly
Polly is an LLVM-based framework, which applies polyhedral
transformations: analysis, transformation, scheduling, code generation.

We use OpenMP task construct and the depend clause to exploit the
detected parallelism.
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Motivating example

∎ The Statement S of he first loop nest updates the array A
∎ The Statement T of he second loop nest updates the array B and uses

the array A
∎ Before the first loop completes one can start executing the second.
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Motivating example

Marc Moreno Maza Contributions to Automatic Parallelization RTCA 2023 43 / 84



Motivating example

Marc Moreno Maza Contributions to Automatic Parallelization RTCA 2023 44 / 84



Motivating example

Marc Moreno Maza Contributions to Automatic Parallelization RTCA 2023 45 / 84



Motivating example
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Motivating example
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Transformation Algorithm (1/3)

Consider two statements in a program:
∎ S: with iteration domain ℐ, which writes a memory location in ℳ,

thus defining a binary relation 𝑊𝑟(ℐ →ℳ)

∎ T: with iteration domain 𝒥 , which reads a memory location from ℳ,
thus defining a binary relation 𝑅𝑑(𝒥 →ℳ)

The pipeline map between S and T is 𝒯S,T(ℐ → 𝒥 ), where (⃗𝑖, �⃗�) ∈ 𝒯S,T if
and only if:

1 after running all iterations of S up to �⃗�, we can safely run all iterations
of T up to �⃗�,

2 �⃗� is the smallest vector and �⃗� is the largest vector with Property (1).
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Transformation Algorithm (2/3)

1 We first find the pipeline map between all pairs of dependent
statements,

2 then, use them to block the iteration domains and find pipeline
blocking maps.

The final blocks are such that:
1 each block is an atomic task,
2 we can establish a pipeline relation between all blocks of all

statements,
3 maximize the number of blocks of different loops that can execute in

parallel.
In the last step, we find dependency relations between the tasks.
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Transformation Algorithm (3/3)

S1 S2

S3

S4

𝒯1 𝒯2

𝒯3

Optimal block of S3: ∐︀S3, 𝑗3̃︀
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∐︀S2, �⃗�2̃︀

S4
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𝑗2𝑗3 𝑗1𝑗0

S3

S2
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S3 iterations

S2 iterations

S1 iterations

skip slide
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Implementation (1/2)

Analysis passes of Polly
We extend the analysis passes of Polly to compute pipeline information
for the iteration domains.

Scheduling

1 Create a schedule tree to iterate over blocks,
2 Create a schedule tree to iterate inside each block,
3 Expand the first tree with the second tree.
4 Create pw_multi_aff_list objects from pipeline dependency

relations,
5 Add the pw_multi_aff_list objects as mark nodes to the schedule

tree.
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Implementation (2/2)

1 We generate AST from the new schedule tree.
2 The mark nodes in the schedule tree annotates the AST.

Code generation

1 Outline tasks to function calls,
2 Compute unique integer numbers from pw_multi_aff_list objects

ë this can be used in OpenMP depend clauses.
3 Replace the tasks part in the code with call to the CreateTask

function that:
ë gets tasks and dependencies, creates OpenMP tasks with proper

depend clauses,
ë handles the order between tasks created from the same loop nest.
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Evaluation
Pipelining speed-up of the tests with different access functions, and
different sizes on 4 cores.

Marc Moreno Maza Contributions to Automatic Parallelization RTCA 2023 53 / 84



Related Works

Pipelined multithreading generation in a polyhedral compiler [22]:
- a limited, polyhedral model based, source-to-source method to solve a

similar problem
- uses nowait and order clauses of OpenMP to exploit pipeline

parallelism
Compiling neural networks for a computational memory accelerator
[15]

- an algorithm to detect pipeline parallelism between two loop nests
- applicable on the computational memory accelerators considered in

that paper
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Future works

Generalize transformation algorithm:
∎ works with non-injective write functions,

Generalize our code generation phase:
∎ generate code for loops with arbitrary depth and arbitrary number of

tasks per loop.
Develop an algorithm to choose a good task granularity when there are
multiple choices.

Change the tasking layer from the OpenMP task to other platforms.

Take advantage of other parallelization opportunities, when using the
cross-loop tasking.
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∎ KLARAPTOR: A Tool for Dynamically Finding Optimal Kernel
Launch Parameters Targeting CUDA Program.

∎ This is a joint work with Alexander Brandt, Taabish Jeshani, Davood
Mohajerani, Jeeva Paudel (IBM) and Linxiao Wang.

∎ This is a US Patent (US 10,901,713 B2)
∎ https://github.com/orcca-uwo/KLARAPTOR
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Vector addition in CUDA
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∎ Launch parameters greatly impact the performance of a given kernel
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Figure: Example polybench
_2DCONV Kernel Convolution2D_kernel for input size 8192

∎ They depend on data size and cannot be determined at compile time.
∎ klaraptor’s goal: automatically and dynamically find the values of the

launch parameters which optimize the performance of a CUDA kernel.
∎ We achieve this goal for CUDA kernels implementing data-oblivious

algorithms.
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Figure: Example polybench
_2DCONV Kernel Convolution2D_kernel for input size 8192

∎ They depend on data size and cannot be determined at compile time.

∎ klaraptor’s goal: automatically and dynamically find the values of the
launch parameters which optimize the performance of a CUDA kernel.

∎ We achieve this goal for CUDA kernels implementing data-oblivious
algorithms.
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_2DCONV Kernel Convolution2D_kernel for input size 8192

∎ They depend on data size and cannot be determined at compile time.
∎ klaraptor’s goal: automatically and dynamically find the values of the

launch parameters which optimize the performance of a CUDA kernel.

∎ We achieve this goal for CUDA kernels implementing data-oblivious
algorithms.
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∎ They depend on data size and cannot be determined at compile time.
∎ klaraptor’s goal: automatically and dynamically find the values of the

launch parameters which optimize the performance of a CUDA kernel.
∎ We achieve this goal for CUDA kernels implementing data-oblivious

algorithms.
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Graphics Processing Units (GPUs)

∎ GPUs are designed for massive parallelism, while CPUs focus on
sequential processing.

∎ GPUs handle massive amounts of data and perform the same operation
on them simultaneously (SIMD).
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Heterogeneous programming

∎ A CUDA program is a serial program with parallel kernels, all in C.
∎ The serial C code executes in a host (= CPU) thread
∎ The parallel kernel C code executes in many device threads across

multiple GPU processing elements, called streaming processors (SP).
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Blocks Run on Multiprocessors
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Streaming processors and multiprocessors
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Example: increment array elements
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Estimating running time with the MWP-CWP model (1/2)

∎ Data transfer between one streaming multiprocessors (SMs) and the
global memory can take 100’s of clock cycles

∎ SMs typically run several groups of threads (warps) concurrently so as
to hide those delays with computations

∎ Two quantities measure the effectiveness of this mechanism: the
Memory Warp Parallelism (MWP) and the Computation Warp
Parallelism (CWP), see [14].

∎ MWP and CWP can be determined by code profiling and cannot
determined by static analysis.

∎ MWP and CWP (combined with hardware characteristics) produces a
sharp estimate of the running time of a (simple) kernel.

∎ The formula is given by a piece-wise multivariate rational function,
see [14]
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Estimating running time with the MWP-CWP model (2/2)
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Klaraptor’s underlying theory (1/2)

∎ Let 𝒫 be a multithreaded program implementing a data-oblivious
algorithms to be executed on a specific multiprocessor.

∎ Parameters influencing the performance of 𝒫 include:

1 data parameters 𝐷 = (𝐷1, . . . , 𝐷𝑑), specifying the size and possibly
structural characteristics of the data,

2 hardware parameters, specifying characteristics of hardware resources,
and

3 program parameters 𝑃 = (𝑃1, . . . , 𝑃𝑝), specifying how work (e.g.
threads) is mapped to hardware resources.

∎ Let ℰ be a high-level performance metric (e.g. running time, memory
consumption) for 𝒫 that we want to optimize.

∎ Given values of 𝐷, our goal is to find values of the 𝑃 such that the
execution of 𝒫 optimizes ℰ .
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Klaraptor’s underlying theory (2/2)

∎ Performance prediction models (like the MWP-CWP model) attempt
to estimate ℰ from a combination of 𝑃 , 𝐷, and platform-specific
low-level metrics 𝐿 = (𝐿1, . . . , 𝐿ℓ) (memory throughput, cache miss
rate, etc.).

∎ Thanks to our data-oblivious hypothesis, We deduce that these
low-level performance metrics are themselves rational functions of 𝑃 ,
𝐷.

To address our optimization goal, we use the following strategy.
∎ At the compile-time of program 𝒫, for each metric, we determine (by

evaluation-interpolation) a mathematical formula expressing that
metric as a function of the data and program parameters.

∎ This mathematical formula takes the form of a piece-wise rational
function.

∎ At the runtime of 𝒫, given specific values of 𝐷 and a choice of 𝑃 , we
can evaluate those functions for each metric and thus compute ℰ .

∎ Repeating this for all possible choices of 𝑃 (assumed to be finite in
number) yields values of 𝑃 optimizing ℰ .
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Main steps of Klaraptor’s algorithm

Data collection: Run the CUDA kernel with small input sizes
and various program parameters to collect low-level metrics

Rational function estimation: Determine rational functions
estimating low-level metrics by solving curve fitting problems

Code generation: link the rational program to
the original CUDA program

Helper program evaluation: evaluate the rational program
with the known runtime data parameters and all meaningful

program parameters to estimate program performance

Program execution: Launch the program
with the selected kernel launch parameters
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High-level view of Klaraptor’s implementation

src.cu (original source code)

src_instrumented.cu (modified source code)

DP-builder (data collection + interpolation)

IO-builder (via LLVM Pass Framework)

src_instrumented.bin

We have used:

∎ LLVM Pass Framework for
modifying the code at the IR
level

∎ NVIDIA Nsight Compute CLI to
do the data collection

∎ CLAPACK and ATLAS for the
numerical computations done in
the curve fitting step

∎ system specs: LLVM 11, CUDA
11, CLAPACK, python 2.7.
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Annotations and preprocessing source code

#pragma kernel_info_size_param_idx_Sample = 1;
#pragma kernel_info_dim_sample_kernel = 2;

__global__ void Sample (int *A, int N) {
int tid_x = threadIdx.x + blockIdx.x*blockDim.x;
int tid_y = threadIdx.y + blockIdx.y*blockDim.y;
...

}

∎ Annotating and preprocessing the source code makes it compatible
with the KLARAPTOR tool, enabling the automatic determination of
optimal kernel launch parameters.

∎ CUDA program should target at least CUDA Compute Capability 7.5,
no CUDA runtime API calls, and block and grid dimensions must be
declared as dim3 structs.

∎ Add two pragmas for each kernel, specifying kernel dimension and the
index of the kernel input argument corresponding to the data size N
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Figure: Comparing kernel execution time (log-scaled) for the thread block
configuration chosen by KLARAPTOR versus the minimum and maximum times
as determined by an exhaustive search over all possible configurations. Kernels
are part of the PolyBench/GPU benchmark suite and executed on a RTX 2070
SUPER with a data size of 𝑁 = 8192 (except convolution3d with 𝑁 = 512)
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Table: KLARAPTOR Optimization Times on Polybench/GPU, RTX 2070 SUPER
Comparing times for (1) compile-time optimization steps of KLARAPTOR, (2)
exhaustive search over all thread block configurations, the execution time for a
kernel given (3) the best thread block configuration, and (4) the worst thread block
configuration. Exhaustive search is given as a sum for values up to 𝑁 = 8192
(except convolution3d with 𝑁 = 512).

Kernel KLARAPTOR Time (s) Ex. Search Time (s) Min Time (s) Max Time (s)
128 ≤ 𝑁 <∞ 128 ≤ 𝑁 ≤ 8192 𝑁 = 8192 𝑁 = 8192

2DCONV 210.29 82.78 0.002 0.023
ATAX 507.59 59.60 0.006 1.940
MVT 508.03 60.03 0.005 1.978
BICG 510.91 60.16 0.006 2.050
GESUMMV 398.54 142.78 0.006 0.129
GEMM 456.50 987.77 3.941 126.052
SYRK 579.84 2772.64 9.069 160.944
SYR2K 1173.68 9553.64 15.534 459.169
2MM 700.49 1889.62 7.851 240.828
3MM 944.54 2798.12 11.779 361.310
CORR 1032.92 10924.12 28.365 861.289
COVAR 1141.45 23251.12 27.670 3900.855
3DCONV 132.88 52.06 0.006 0.053
GRAMSCHM 2113.27 94206.06 45.418 35146.314
FDTD_2D 489.21 495.79 3.304 21.107
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This is a joint work with:
∎ Delaram Talaashrafi (NVIDIA)
∎ Johannes Doerfert (Lawrence Livermore National Laboratory)

Published in IWOMP-2022:
∎ D. Talaashrafi, MMMM, and J. Doerfert, “Towards automatic

openmp-aware utilization of fast GPU memory," in International
Workshop on OpenMP, Springer, 2022, pp. 67–80.
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Conclusions
Pipelines:
∎ Pipelining is an underutilized pattern with lots of potential application

in computer algebra
∎ We presented a mechanism for discovering and exploiting pipelines

over a sequence of for-loop nests
∎ This is completely (no competitive methods) and implemented in

LLVM/Polly
∎ Ask Delaram or Johannes if you are interested.

Klaraptor:
∎ Kernel launch parameters of GPU kernels are important-and-hard right
∎ We propose an AI-free approach which works successfully with

data-oblivious algorithms
∎ All other approaches for that problem use AI . . .
∎ Ask me if you are interested.
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Thank You!

http://www.bpaslib.org/
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