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Introduction

Introductory example. Let L = K[X ]/〈p〉 be an extension of a

field K, with p square-free, but not necessarily irreducible: L is

a Direct Product of Fields (DPF).

We want to decide whether some q ∈ K[X ] is invertible in L.

Writing g = gcd(p, q), then

• q is zero modulo g

• q is invertible modulo p/g.

This is called a quasi-inverse computation. Up to splitting, it

allows one to compute in L as if it were a field.

This idea is known as the D5 Principle. It has been employed in

many areas of symbolic computations: linear algebra, polynomial

system solving, dynamic evaluation, . . .

Main Results

Let now T = T1(X1), T2(X1, X2), . . . , Tn(X1, X2, . . . , Xn) be a

triangular set, defining a radical ideal. Then

Ln = K[X1, X2, . . . , Xn]/〈T1, T2, . . . , Tn〉

is again a DPF. Let δ be the degree of K → L. Then for any

ε > 0, we have the following results.

•Theorem 1 There exists a constant K1 such that the addi-

tion, multiplication, and quasi-inverses in Ln can be done in

Kn
1 δ1+ε operations in K.

•Theorem 2 There exists a constant K2 such that the GCD

of two polynomials in Ln[Xn+1] of degree d can be done in

Kn
2 δ1+εd1+ε operations in K.

These results extend classical ones known when L is a field. In

view of their dependence in the degree δ, we call such estimates

quasi-linear; they are nearly optimal.

Main Difficulties

Using the D5 Principle over Ln leads to splitting, i.e. re-

placing the triangular set T by a triangular decomposition

∆ = T 1, . . . , T e. Then, we have to evaluate fast the map

split : Ln →
∏

1≤i≤e K[X1, . . . , Xn]/〈T
i〉

Example. Let a, a′, a′′ ∈ K[X1] be pairwise coprime polynomials

and b, b′ ∈ K[X2] be coprime polynomials. Then

∆ = {aa′, b}, {a′′, b}, {aa′′, b′}, {a′, b′}

is a triangular decomposition of T = {aa′a′′, bb′}. Evaluating

split implies to compute

p 7→ (p mod aa′), (p mod a′′), (p mod aa′′), (p mod a′),

whence some redundancy. We call critical pairs the non-trivial

GCD’s between the moduli: they prevent us from obtaining a

quasi-linear algorithm for split, so we have to remove them.

Here, we need to refine ∆ into

∆′ = {a, b}, {a′, b}, {a′′, b}, {a, b′}, {a′, b′}, {a′′, b′}.

This is done by coprime factorization in K[X1].

Key Solutions

We have to extend fast algorithms over fields to DPF:

•Half-GCD for computing gcds and thus quasi-inverses.

•Coprime factorization for removing critical pairs.

Algorithms using only additions and multiplications adapt in a

direct manner, and their complexity is preserved. Those with

divisions require invertibility tests, splittings and critical pairs re-

moval: preserving their complexity is not obvious. To do so, we

propose the following inductive process, explained hereafter. We

set Li = K[X1, . . . , Xi]/〈T1, . . . , Ti〉 and δi = degree of Ki → Li.
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Figure: A View of the Inductive Process

•Assuming that GCDs can be computed fast in Ln−1[Xn], we

obtain fast coprime factorization in Ln−1[Xn].

•Then we obtain fast removal of critical pairs and thus fast eval-

uation of the split map.

•We can then adapt the Half-GCD and preserve its complexity.

Conclusions and Future Work

•We have proposed nearly optimal algorithms for computing

quasi-inverses and GCDs over direct products of fields pre-

sented by triangular sets.

•An implementation of these techniques is in progress.

•This should lead to faster algorithms for computing triangu-

lar decompositions, in particular, for computing the equipro-

jectable decomposition of a variety and thus in developing mod-

ular methods for triangular decompositions.

•More generally, our work provides tools for analyzing the com-

plexity of algorithms based on the D5 Principle.
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