

Motivation and examples

We describe an algorithm for changing the order of regular **chains**^{*} in positive dimension.

Example: invariant theory. Polynomials P(X, Y) invariant under $(X, Y) \mapsto (-X, -Y)$ can be written in terms of $S = X^2, T = Y^2, U = XY.$

To rewrite an invariant polynomial, it helps to obtain the expression of X and Y in term of S, T, U. This is done by changing the order in the input system

to

 \mathbf{U}^2 – STThis is also an example of an **implicitization** problem.

Main result. Let C be a regular chain, whose saturated ideal^{*} is prime.

We give a probabilistic algorithm, of complexity polynomial in the size of input (degree, complexity of evaluation) and output (number of monomials), and in the degree of the quasi-component^{*} of C.

Let d be the maximum degree in C, let n be the number of variables. If all random choices are made uniformly in a finite set Γ , the probability of failure is at most $\frac{2n(3d^n+n^2)d^{2n}}{|\Gamma|}$.

Specificities. We use a small set of well-defined subroutines.

- change of order in dimension zero;
- Newton-Hensel lifting.

Definition (regular chain, quasi-component)

Let X be n ordered variables. Let $C = C_1, \ldots, C_s$ be in k[X], with main variables $X_{\ell_1} < \cdots < X_{\ell_s}$. • the initial h_i is the leading coefficient of C_i in X_{ℓ_i} ; • the *i*th saturated ideal is $\operatorname{Sat}_i = \langle C_1, \ldots, C_i \rangle : (h_1 \cdots h_i)^{\infty};$

- C is a regular chain if h_i is regular mod Sat_i for all i;
- the quasi-component is the zero-set of Sat_n .

Change of order for regular chains in positive dimension

Xavier Dahan^{*}, Xin Jin[†], Marc Moreno Maza[†], and Éric Schost[†] *: LIX, École polytechnique, 91128 Palaiseau, France.
†: ORCCA, University of Western Ontario, London, Canada. ISSAC, Genova, July 9-12th, 2006.

Basic setup

Let V be an irreducible variety of dime nomials in $k[X] = k[X_1, \ldots, X_n].$

Free / algebraic variables. A set Y of free if the image

$$(x_1,\ldots,x_n)\in V\mapsto (y)$$

is dense. Then, the generic points of regular chain

 $|T_s(Y, Z_1, \dots, Z_s)|$ with $Z = (Z_1)$ (algebraic vari $T_1(Y, Z_1)$

Data structure. If Y are free variable

$$y = (y_1, \dots, y_r) \in k^r, \quad \begin{vmatrix} T_s(x_1, \dots, x_r) \\ T_1(x_1, \dots, x_r) \\ T$$

Specialize and lift paradigm: interme done in **dimension 0 and 1**.

Exchange property. Let Y and Y'and let $v \in Y - Y'$. Then, there exists Y - v + w is free.

This means that the sets of free variab coordinate matroid of V.

Algorithmically, given $T_1(y, Z_1), \ldots, T_n$ subroutine called **Swap**:

- **1.** change of order in T to put w as la
- **2.** lift v in T;
- **3.** specialize w at a random value.

Definition (matroid)

Let X be a finite set. A matroid over X is a collection B(M) of subse r and satisfying the exchange property: For all Y and Y' in B(M), for every $v \in Y$ that Y - v + w is in B(M).

$$< X_{\ell_{\alpha}}.$$

ension r , defined by poly-
of r variables Y_1, \ldots, Y_r is
(y_1, \ldots, y_r) V can be described by a
$(X_1, \ldots, Z_s) = X - Y$ iables)
les, we represent V by (y, Z_1, \dots, Z_s) : (y, Z_1) ediate computations are
be sets of free variables, ts $w \in Y' - Y$ such that
bles form a matroid *, the
$Y_s(y, Z_1, \ldots, Z_s)$, we use a
ast variable; [dim. 0] [dim. 1] [dim. 0]
ets of X with the same cardinality Y' there exists $w \in Y' - Y$ such

Input. • A regular chain T_{in} , w • A target order \succ on T_{in}
Output. • A regular chain T_{out} f
Step 1 . Determine
Prop. For a generic α variety V and (ii) the
Prop. The algebraic version of the braic variables for a structure of the structure of the brain of the bra
Then, using linear alge find by a greedy algori
$Y_0 = Y_{\text{in}} \text{(free variab)}$ $ \Rightarrow Y_1 = Y_0 - v_0 + u$
$\blacktriangleright Y_N = Y_{N-1}$
Step 2. Apply the T_0 (specialization of T_1 $\Rightarrow T_1 = Swap(T_0, v_0, \dots)$ \dots $\Rightarrow T_N = Swap(T_0, v_0, v_0)$
Step 3 . Lift all free
Implementation.
References
Regular chains Aubry Lemaire-Moreno Maza-X Lifting / specialization Change of order Fair
(Cröbner welk) Boulier

Algorithm

whose saturated ideal I is prime. the variables.

for the order \succ , with saturated ideal I.

a sequence of **exchanges**.

 $\alpha \in V$, the coordinates matroids of (i) the tangent space $T_{\alpha}V$ coincide.

variables in T_{out} are the maximal set of algesuitable lexicographic order.

ebra in the Jacobian matrix at α , we can ithm a sequence of exchanges:

les of T_{in}) v_0

 $-v_{N-1} + w_{N-1}$ (free variables of T_{out})

exchanges to the triangular sets.

 $T_{\sf in})$ $, w_0)$

 $T_{N-1}, v_{N-1}, w_{N-1}$ (specialization of T_{out})

e variables in T_N .

This algorithm is implented in the le package.

Kalkbrener, Lazard, Moreno Maza, Xie (**RegularChains**), ... **n** Giusti, Heintz, Lecerf, Pardo *et al.* ugère-Gianni-Lazard-Mora, Collart-Kalkbrener-Mall (Gröbner walk), Boulier-Lemaire-Moreno Maza (Pardi) **Implicitization** Buzé, Chardin, Cox, D'Andrea, Jouanolou, Khetan, ...