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Framework: Polynomial systems solving

— by use of triangular decomposition,
— over the field Q of rational numbers,

— using a modular method (Hensel lifting).
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— over the field Q of rational numbers.
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e Why triangular decomposition?

1) Grobner basis: loss of geometric information during the classical algorithm
— makes a sharp modular method hard to design.
2) primitive element representation: lack of canonicity.

e Irreducible decomposition problem: irreducibility may not hold anymore

modulo any prime.

e Among all possible triangular decompositions, we introduce a canonical

one adapted to sharp modular computations:

The equiprojectable decomposition




Related work

e Modular methods for Grobner bases: (Trinks 1985), (Winkler
1988), (Arnold 2003); and, for primitive element representation:

(TERA group, 1997 - now), (Rouillier 1999, Noro and Yokoyama
1999) ...

e Non modular methods for triangular decomposition algorithms:
(Wu, 1987), (Chou & Gao 1990), (Lazard 1991), (Kalkbrener
1993), (Wang 1993), (Moreno Maza 2000), (Boulier, Lemaire &
Moreno Maza 2001), (Hubert, 2003), ...

e Modular method for only one triangular set (Schost 2003)



Specialization problem

The following example illustrates the difficulties of designing a modular
algorithm for triangular decompositions.

Let V be the zero-dimensional variety defined over Q by
{3262 — 10y°® + 51y° + 17y* + 306y> + 102y + 34, y™ + 6y* + 2y° + 12}.
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Specialization problem

The following example illustrates the difficulties of designing a modular
algorithm for triangular decompositions.

Let V be the zero-dimensional variety defined over Q by
{3262 — 10y°® + 51y° + 17y* + 306y> + 102y + 34, y* + 6y* + 2> + 12}.

The unique decomposition for x < y is A and B. Modulo p = 7, the zeros can be
described by C and D.
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Equiprojectable decomposition: what it improves

e We introduce a canonical way of decomposing a zero-dimensional
variety V into a union of equiprojectable ones: the equiprojectable
decomposition of V.

e The notion of equiprojectable variety is motivated by:
A zero-dimensional variety over a perfect field k is equiprojectable iff
its defining ideal is generated by a triangular set (Aubry and
Valibouze, 2000).

e The equiprojectable decomposition of V' has good specialization
properties modulo a prime number p.

e From any triangular decomposition of V' we show how to compute the
equiprojectable decomposition of V.

e Using Hensel lifting techniques, we deduce a modular algorithm for
computing the equiprojectable decomposition of V.



Equiprojectable variety definition (1/3)




Equiprojectable variety definition (2/3)
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Equiprojectable decomposition definition (2/3)




Equiprojectable decomposition definition (3/3)




From triangular to equiprojectable decomposition

e Let A be a triangular decomposition of V over a field k.

e We compute from A another triangular decomposition
{Tt, ..., T4 of V such that V(T1),...,V(T?) is the
equiprojectable decomposition of V.

e We proceed into two steps:

— split: reducing what we call critical pairs by means of GCD

computations modulo triangular sets,
— merge: reducing what we call solvable pairs by means of CRT

computations modulo triangular sets.

e Complexity is work in progress (see the poster for a preliminary
work).



Example: split + merge modulo 7

o Co =y? +6yz” + 2y +x D Dy =y+6
Ci1 = 2> 4 62% + 5z + 2 ’ Di=z+6
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Example: split+merge modulo 7

Cy =y? +6yz? + 2y + 2 D Dy =y+6

C ,
C1 =23 4+6x°+5x+2 Di=x+6

J Split C:GCD |
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Example: split+merge modulo 7

Co=9y*+6yz’+2y+=z D Dy =y+6

C ,
Cy=x34+6x°>+5x+2 Di=x+6
4 Split C: GCD |
Cy =y +x CYy=v?+y+1 Dy =y+6
2 Yy I 2 Yy Yy D 2 =Y

Y Y

Ci'=z*+5 C/ =x+6 Di=x+6
4 Merge F and D : CRT |
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Specialization properties

Oversimplified case: all points in V are in Q".
Theorem 1 If:
1. p divides no denominator of the coordinates;
2. the cardinality of none of the projections of V' decreases mod p;

then the equiprojectable decomposition specializes mod p.
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Specialization properties

Oversimplified case: all points in V are in Q".
Theorem 2 If:
1. p divides no denominator of the coordinates;
2. the cardinality of none of the projections of V decreases mod p;

then the equiprojectable decomposition specializes mod p.

| Py modulo 5

2 7
General case: Under similar assumptions, every coordinate of every

point of V' lies in a direct sum Z, ® - - - @ Z, where Z, is the ring of p-adic
integers. This implies that V' mod p is well defined.



Estimates for prime of good reduction

Let F' a polynomial system with V = V(F'). Let h the maximum
number of digits of all the coeflicients, and d the maximum degree.

Corollary 1 There exists A € N — {0} such that:
o h(A) < 2n2d?**T1(3h + Tlog(n + 1) + 5nlogd + 10).

o If p is a prime and does not divide A, then the equiprojectable
decomposition specializes well mod p.
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Estimates for prime of good reduction

Let F' a polynomial system with V =V (F). Let h the maximum
number of digits of all the coefficients, and d the maximum degree.

Corollary 4 There exists A € N— {0} such that:
o h(A) < 2n2d**1(3h + Tlog(n + 1) + 5nlogd + 10).

o If p is a prime and does not divide A, then the equiprojectable
decomposition specializes well mod p.

Sketch of proof:

e Height bounds of the coefficients of the polynomials in a
primitive element representation.

e Arithmetic Bézout theorem (Philippon, Krick-Pardo-Sombra).
e (Classical height bounds (Hadamard’s bound, ...)



A modular algorithm for triangular decomposition

Choice of primes:

e For a deterministic algorithm the prime p of reduction must be
larger than A. However, A is too large for an efficient modular
method.

e So, we present a probabilistic algorithm:
- involving smaller primes.

- the probability of success is explicitly quantified and can be made

arbitrarily close to 1.

- the choice of p ~ log A leads to more than 99% of success.



A modular algorithm for triangular decomposition

Choice of primes:

e For a deterministic algorithm the prime p of reduction must be
larger than A. However, A is too large for an efficient modular
method.

e So, we present a probabilistic algorithm:
- involving smaller primes.

- the probability of success is explicitly quantified and can be made

arbitrarily close to 1.
- the choice of p ~ log A leads to more than 99% of success.

Hensel lifting for a triangular set: Already pointed out by
(Schost 2003) (“Jacobian lifting”).
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Random choice of two primes : p; and ps

/

Triangular decomposition mod pg

V 7 L

3

Equiprojectable decomposition mod p;

V vV

Hensel lifting
Triangular sets modp12, p14, p18, e

A A A

Rational reconstruction

\

Triangular decomposition mod po

A A

3

Equiprojectable decomposition mod po

y VvV




->

Random choice of two primes : p; and po

/

Triangular decomposition mod pq

L LV V

¥

Equiprojectable decomposition mod pi

Hensel lifting
Triangular sets modp12, p14, p18, e

A A A

/ Y

Rational reconstruction

FAILS

\

Triangular decomposition mod po

A 7
i

Equiprojectable decomposition mod po

A A 4




Random choice of two primes :

p1 and ps3

/

Triangular decomposition mod pq

V V. V

¥

Equiprojectable decomposition mod pi

VoV

Hensel lifting
Triangular sets modp12, p14, p18, e

V7

Rational reconstruction

FAILS SUCCEEDS

!

\

Y

Triangular decomposition mod po

A 7

i

Equiprojectable decomposition mod po

A A A

Triangular sets over Q (good ones 7)




Random choice of two primes :

p1 and ps3

/

Triangular decomposition mod pq

V V. V

¥

Equiprojectable decomposition mod pi

VoV

Hensel lifting
Triangular sets modp12, p14, p18, e

V7

Rational reconstruction

FAILS SUCCEEDS

!

\

Y

Triangular decomposition mod po

A 7

i

Equiprojectable decomposition mod po

A A A

P bt

[s each triangular set in green

equals to one of the red ones 7

A A A

A A e

Reduction modulo po

A A A

Triangular sets over Q (good ones 7)

A7 7




Random choice of two primes : p1 and ps

/ \

Triangular decomposition mod pq Triangular decomposition mod po

Vv V A 7

¥ 3

Equiprojectable decomposition mod pi Equiprojectable decomposition mod po
e Vv LV LV
7 ? ? ?

t 1 1 1

Hensel lifting _ VES [s each triangular set in green

?
Triangular sets modp12, p14, p18, o equals to one of the red ones *

A A A

Y

V7

Algorithm

IRational reconstruc;ion succeeds V V V V

FAILS SUCCEEDS Reduction modulo po

l A A A

Y

A7 7

Triangular sets over Q (good ones 7)




Random choice of two primes :

p1 and ps3

/

Triangular decomposition mod pq

V V. V

{

Equiprojectable decomposition mod pi

VoV

2 Y y \

Hensel lifting
Triangular sets modp12, p14, p18, e

V7

\

Not

Y

Rational reconstruction

FAILS SUCCEEDS

!

Algorithm
succeeds

Triangular sets over Q (good ones 7)

Y

Triangular decomposition mod po

A 7
¥

Equiprojectable decomposition mod po

A A A

lifted ] ? ? ? ?

| 1 1 1

[s each triangular set in green

equals to one of the red ones 7

A A A

A A e

Reduction modulo po

A A A

A7 7




Table 1: Features of the polynomial systems and
prime number for the modular algorithm

Sys | Name n|d| h P1
1 fabfaux 3 13|13 121458749
2 geneig 6 | 3 2 303179363351
3 ecob 6 | 3 0 509110405373
4 Weispfenning-94 | 3 | 5 0 3441898787
5 [ssac97 4 | 2 2 49956859
6 dessin-2 10 | 2 7 | 2011551274283
7 eco’ 713 0 | 5433767329489
8 Reimer-4 4 |5 1 180771302617
9 Methan61 10 | 2 | 16 | 3557395585699
10 | Uteshev-Bikker 4 | 3 3 2197378999



on top of the RegularChains library in Maple (Lemaire, Moreno Maza, Xie)

Table 2: Experimental results from Maple

Sys | Trian.Mod | Trian. | gsolve Trian.Mod | Trian. | gsolve

(sec) (sec) (sec) (MB) (MB) (MB)
1 27 512 1041 9 275 34
2 18 2.5 - 5 4 fail
3 50 5 9 6 5! 5
4 100 3000 4950 12 250 66
5 161 - 1050 20 fail 31
6 524 - - 14 fail error
7 3795 1593 - 18 18 fail
8 5575 - - 38 fail fail
9 6184 00 - 12 - fail
10 8726 - - 64 fail fail




Conclusions

We have introduced a way of encoding the solutions of polynomial
systems, Equiprojectable Decomposition, which has good
computational properties.

Using Hensel lifting techniques we designed an efficient modular

algorithm for solving polynomial systems of dimension zero.

Our experimentation shows the capacity of this approach to solve
problems out of the scope of other comparable solvers.

Work is in progress on the complexity analysis of split + merge: see
poster On the complexity of the D5 principle.

We aim at extending this work to variable specialization
— to speed up modular triangular decompositions.

— to treat systems of positive dimension.

An optimized implementation for our algorithm is in progress.



