Lifting Techniques for Triangular Decompositions

X. Dahan*, M. Moreno Maza†, É. Schost*, W. Wu† & Y. Xie†

*: LIX, École polytechnique, Palaiseau, France.

†: ORCCA, University of Western Ontario, London, Canada.

ISSAC-05, July 24-27, 2005.

Framework: Polynomial systems solving

- \rightarrow by use of triangular decomposition,
- \rightarrow over the field \mathbb{Q} of rational numbers,
- \rightarrow using a modular method (Hensel lifting).

Framework: Polynomial systems solving

- \rightarrow by use of triangular decomposition
- \rightarrow over the field \mathbb{Q} of rational numbers.
- \rightarrow using a modular method (Hensel lifting).
- Why triangular decomposition?
 - 1) Gröbner basis: loss of geometric information during the classical algorithm

 ⇒ makes a sharp modular method hard to design.
 - 2) primitive element representation: lack of canonicity.
- Irreducible decomposition problem: irreducibility may not hold anymore modulo any prime.
- Among all possible triangular decompositions, we introduce a *canonical* one adapted to sharp modular computations:

The equiprojectable decomposition

Related work

- Modular methods for Gröbner bases: (Trinks 1985), (Winkler 1988), (Arnold 2003); and, for primitive element representation: (TERA group, 1997 now), (Rouillier 1999, Noro and Yokoyama 1999) ...
- Non modular methods for triangular decomposition algorithms: (Wu, 1987), (Chou & Gao 1990), (Lazard 1991), (Kalkbrener 1993), (Wang 1993), (Moreno Maza 2000), (Boulier, Lemaire & Moreno Maza 2001), (Hubert, 2003), ...
- Modular method for only one triangular set (Schost 2003)

Specialization problem

The following example illustrates the difficulties of designing a modular algorithm for triangular decompositions.

Let V be the zero-dimensional variety defined over \mathbb{Q} by

$${326x - 10y^6 + 51y^5 + 17y^4 + 306y^2 + 102y + 34, y^7 + 6y^4 + 2y^3 + 12}.$$

Specialization problem

The following example illustrates the difficulties of designing a modular algorithm for triangular decompositions.

Let V be the zero-dimensional variety defined over \mathbb{Q} by

$${326x - 10y^6 + 51y^5 + 17y^4 + 306y^2 + 102y + 34, y^7 + 6y^4 + 2y^3 + 12}.$$

The unique decomposition for x < y is A and B.

$$A \begin{vmatrix} y^3 + 6 \\ x - 1 \end{vmatrix}, B \begin{vmatrix} y^2 + x \\ x^2 + 2 \end{vmatrix}$$

Specialization problem

The following example illustrates the difficulties of designing a modular algorithm for triangular decompositions.

Let V be the zero-dimensional variety defined over \mathbb{Q} by

$${326x - 10y^6 + 51y^5 + 17y^4 + 306y^2 + 102y + 34, y^7 + 6y^4 + 2y^3 + 12}.$$

The unique decomposition for x < y is A and B. Modulo p = 7, the zeros can be described by C and D.

$$A \begin{vmatrix} y^3 + 6 \\ x - 1 \end{vmatrix}, B \begin{vmatrix} y^2 + x \\ x^2 + 2 \end{vmatrix} C \begin{vmatrix} y^2 + 6yx^2 + 2y + x \\ x^3 + 6x^2 + 5x + 2 \end{vmatrix}, D \begin{vmatrix} y + 6 \\ x + 6 \end{vmatrix}$$

Equiprojectable decomposition: what it improves

- We introduce a canonical way of decomposing a zero-dimensional variety V into a union of equiprojectable ones: the equiprojectable decomposition of V.
- The notion of equiprojectable variety is motivated by:
 A zero-dimensional variety over a perfect field k is equiprojectable iff its defining ideal is generated by a triangular set (Aubry and Valibouze, 2000).
- The equiprojectable decomposition of V has good specialization properties modulo a prime number p.
- From any triangular decomposition of V we show how to compute the equiprojectable decomposition of V.
- Using Hensel lifting techniques, we deduce a modular algorithm for computing the equiprojectable decomposition of V.

Equiprojectable variety definition (1/3)

Equiprojectable variety definition (2/3)

Equiprojectable variety definition (3/3)

Equiprojectable decomposition definition (1/3)

Equiprojectable decomposition definition (2/3)

Equiprojectable decomposition definition (3/3)

From triangular to equiprojectable decomposition

- Let Δ be a triangular decomposition of V over a field k.
- We compute from Δ another triangular decomposition $\{T^1, \ldots, T^d\}$ of V such that $V(T^1), \ldots, V(T^d)$ is the equiprojectable decomposition of V.
- We proceed into two steps:
 - split: reducing what we call *critical pairs* by means of GCD computations modulo triangular sets,
 - merge: reducing what we call *solvable pairs* by means of CRT computations modulo triangular sets.
- Complexity is work in progress (see the poster for a preliminary work).

Example: $split + merge \mod 7$

$$C \begin{vmatrix} C_2 = y^2 + 6yx^2 + 2y + x \\ C_1 = x^3 + 6x^2 + 5x + 2 \end{vmatrix}, D \begin{vmatrix} D_2 = y + 6 \\ D_1 = x + 6 \end{vmatrix}$$

Example: $split+merge \mod 7$

$$C \begin{vmatrix} C_2 = y^2 + 6yx^2 + 2y + x \\ C_1 = x^3 + 6x^2 + 5x + 2 \end{vmatrix}, D \begin{vmatrix} D_2 = y + 6 \\ D_1 = x + 6 \end{vmatrix}$$

 \downarrow Split C : GCD \downarrow

$$E \begin{vmatrix} C_2' = y^2 + x \\ C_1' = x^2 + 5 \end{vmatrix}, F \begin{vmatrix} C_2'' = y^2 + y + 1 \\ C_1'' = x + 6 \end{vmatrix}, D \begin{vmatrix} D_2 = y + 6 \\ D_1 = x + 6 \end{vmatrix}$$

Example: split+merge modulo 7

$$C \begin{vmatrix} C_2 = y^2 + 6yx^2 + 2y + x \\ C_1 = x^3 + 6x^2 + 5x + 2 \end{vmatrix}, D \begin{vmatrix} D_2 = y + 6 \\ D_1 = x + 6 \end{vmatrix}$$

$$\downarrow \text{Split C : GCD } \downarrow$$

$$E \begin{vmatrix} C_2' = y^2 + x \\ C_1' = x^2 + 5 \end{vmatrix}, F \begin{vmatrix} C_2'' = y^2 + y + 1 \\ C_1'' = x + 6 \end{vmatrix}, D \begin{vmatrix} D_2 = y + 6 \\ D_1 = x + 6 \end{vmatrix}$$

$$\downarrow \text{Merge F and D : CRT } \downarrow$$

$$E \begin{vmatrix} C_2' = y^2 + x \\ C_1' = x^2 + 5 \end{vmatrix}, G \begin{vmatrix} G_2 = y^3 + 6 \\ G_1 = x + 6 \end{vmatrix}$$

Specialization properties

Oversimplified case: all points in V are in \mathbb{Q}^n .

Theorem 1 If:

- 1. p divides no denominator of the coordinates;
- 2. the cardinality of none of the projections of V decreases mod p; then the equiprojectable decomposition specializes mod p.

Specialization properties

Oversimplified case: all points in V are in \mathbb{Q}^n .

Theorem 2 If:

- 1. p divides no denominator of the coordinates;
- 2. the cardinality of none of the projections of V decreases mod p; then the equiprojectable decomposition specializes mod p.

General case: Under *similar* assumptions, every coordinate of every point of V lies in a direct sum $\mathbb{Z}_p \oplus \cdots \oplus \mathbb{Z}_p$ where \mathbb{Z}_p is the ring of p-adic integers. This implies that $V \mod p$ is well defined.

Let F a polynomial system with V = V(F). Let h the maximum number of digits of all the coefficients, and d the maximum degree.

Corollary 1 There exists $A \in \mathbb{N} - \{0\}$ such that:

- $h(A) \le 2n^2 \frac{d^{2n+1}}{d^{2n+1}} (3h + 7\log(n+1) + 5n\log d + 10).$
- If p is a prime and does not divide A, then the equiprojectable decomposition specializes well mod p.

Let F a polynomial system with V = V(F). Let h the maximum number of digits of all the coefficients, and d the maximum degree.

Corollary 2 There exists $A \in \mathbb{N} - \{0\}$ such that:

- $h(A) \le 2n^2 d^{2n+1} (3h + 7\log(n+1) + 5n\log d + 10).$
- If p is a prime and does not divide A, then the equiprojectable decomposition specializes well mod p.

Sketch of proof:

• Height bounds of the coefficients of the polynomials in a primitive element representation.

Let F a polynomial system with V = V(F). Let h the maximum number of digits of all the coefficients, and d the maximum degree.

Corollary 3 There exists $A \in \mathbb{N} - \{0\}$ such that:

- $h(A) \le 2n^2 d^{2n+1} (3h + 7\log(n+1) + 5n\log d + 10)$.
- If p is a prime and does not divide A, then the equiprojectable decomposition specializes well mod p.

Sketch of proof:

- Height bounds of the coefficients of the polynomials in a primitive element representation.
- Arithmetic Bézout theorem (Philippon, Krick-Pardo-Sombra).

Let F a polynomial system with V = V(F). Let h the maximum number of digits of all the coefficients, and d the maximum degree.

Corollary 4 There exists $A \in \mathbb{N} - \{0\}$ such that:

- $h(A) \le 2n^2 d^{2n+1} (3h + 7\log(n+1) + 5n\log d + 10)$.
- If p is a prime and does not divide A, then the equiprojectable decomposition specializes well mod p.

Sketch of proof:

- Height bounds of the coefficients of the polynomials in a primitive element representation.
- Arithmetic Bézout theorem (Philippon, Krick-Pardo-Sombra).
- Classical height bounds (Hadamard's bound, ...)

A modular algorithm for triangular decomposition

Choice of primes:

- For a deterministic algorithm the prime p of reduction must be larger than A. However, A is too large for an efficient modular method.
- So, we present a *probabilistic* algorithm:
- involving smaller primes.
- the probability of success is explicitly quantified and can be made arbitrarily close to 1.
- the choice of $p \simeq \log A$ leads to more than 99% of success.

A modular algorithm for triangular decomposition

Choice of primes:

- For a deterministic algorithm the prime p of reduction must be larger than A. However, A is too large for an efficient modular method.
- So, we present a *probabilistic* algorithm:
- involving smaller primes.
- the probability of success is explicitly quantified and can be made arbitrarily close to 1.
- the choice of $p \simeq \log A$ leads to more than 99% of success.

Hensel lifting for a triangular set: Already pointed out by (Schost 2003) ("Jacobian lifting").

Rational reconstruction

FAILS

Table 1: Features of the polynomial systems and prime number for the modular algorithm

Sys	Name	n	d	h	p_1
1	fabfaux	3	3	13	121458749
2	geneig	6	3	2	303179363351
3	eco6	6	3	0	509110405373
4	Weispfenning-94	3	5	0	3441898787
5	Issac97	4	2	2	49956859
6	dessin-2	10	2	7	2011551274283
7	eco7	7	3	0	5433767329489
8	Reimer-4	4	5	1	180771302617
9	Methan61	10	2	16	3557395585699
10	Uteshev-Bikker	4	3	3	2197378999

Table 2: Experimental results from Maple

on top of the RegularChains library in Maple (Lemaire, Moreno Maza, Xie)

Sys	Trian.Mod	Trian.	gsolve	Trian.Mod	Trian.	gsolve	
	(sec)	(sec)	(sec)	(MB)	(MB)	(MB)	
1	27	512	1041	9	275	34	
2	18	2.5	-	5	4	fail	
3	50	5	9	6	5	5	
4	100	3000	4950	12	250	66	
5	161	-	1050	20	fail	31	
6	524	-	-	14	fail	error	
7	3795	1593	-	18	18	fail	
8	5575	-	-	38	fail	fail	
9	6184	∞	-	12	-	fail	
10	8726	_	-	64	fail	fail	

Conclusions

- We have introduced a way of encoding the solutions of polynomial systems, **Equiprojectable Decomposition**, which has good computational properties.
- Using Hensel lifting techniques we designed an efficient modular algorithm for solving polynomial systems of dimension zero.
- Our experimentation shows the capacity of this approach to solve problems out of the scope of other comparable solvers.
- Work is in progress on the complexity analysis of *split + merge*: see poster On the complexity of the D5 principle.
- We aim at extending this work to variable specialization
 - to speed up modular triangular decompositions.
 - to treat systems of positive dimension.
- An optimized implementation for our algorithm is in progress.