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Abstract

We discuss changing the variable ordering for a regular chain in positive dimension.
This quite general question has applications going from implicitization problems to the
symbolic resolution of some systems of differential algebraic equations.

We propose a modular method, reducing the problem to dimension zero and using
Newton-Hensel lifting techniques. The problems raised by the choice of the special-
ization points, the lack of the (crucial) information of what are the free and algebraic
variables for the new ordering, and the efficiency regarding the other methods are dis-
cussed. Strong hypotheses (but not unusual) for the initial regular chain are required.
Change of ordering in dimension zero is taken as a subroutine.

We report on an implementation of our method realized in Maple within the
RegularChains library.

1 Introduction

Change of variable ordering and, more generally, change of variables, is a fundamental tech-
nique in many areas of mathematics. Discovering a good change of variables for a given
problem may lead to dramatic simplifications. This is a well-known fact in physics, for
instance. Conversely, implementing a target change of variables may lead to difficult com-
putational questions, inducing for instance expression swell: this is the case when replacing
x by x + 1000 in a univariate polynomial such as 1 + x + · · ·+ x20.

In this paper, we discuss this second computational challenge. We consider an input
system of polynomial equations

P1(X1, . . . , Xn) = · · · = Pm(X1, . . . , Xn) = 0 (1)

with coefficients in a field K and with zero set V ⊂ K
n
, where K is an algebraic closure of

K. We consider also an invertible change of variables (X1, . . . , Xn) 7−→ (U1, . . . , Un) given
by another set of polynomial equations

U1 = F1(X1, . . . , Xn), . . . , Un = Fn(X1, . . . , Xn) (2)

with coefficients in K. We are interested in describing the zero set V by means of the
variables (U1, . . . , Un) instead of the variables (X1, . . . , Xn). A quite common type of change
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of variables is a change of variable ordering; in this case (U1, . . . , Un) is just a permutation
of (X1, . . . , Xn).

In order to propose an efficient computational solution, we shall transform our problem
twice. First, we assume that the system of equations (1) has a particular shape. To be precise,
see Section 2, we assume that P1, . . . , Pm is a regular chain whose saturated ideal is prime.
This assumption is matched by many practical situations, for instance those arising from
implicitization problems. Moreover, without this assumption, developing a computational
solution which would be more efficient than any general procedure for solving systems of
equations is, as far as know, an unsolved question. Our assumption implies that the system
of equations (1) has a triangular shape in the following sense. Let us order the variables
X1 < · · · < Xn and let vj be the greatest variable occurring in Pj, for all 1 ≤ j ≤ m; then
we have v1 < · · · < vm.

Second, we observe that the computation of a change of variables reduces to that of a
change of variable ordering. Indeed, defining

Pm+1 = U1 − F1(X1, . . . , Xn), . . . , Pm+n = Un − Fn(X1, . . . , Xn) (3)

the polynomial set P1, . . . , Pm, Pm+1, . . . , Pm+n is a regular chain for the variable ordering
X1 < · · ·Xn < U1 < · · · < Un; moreover its saturated ideal is prime. We shall see that one
can compute a regular chain q1, . . . , qm, qm+1, . . . , qn+m for the variable ordering U1 < · · · <
Un < X1 < · · ·Xn. The polynomials q1, . . . , qm form a regular chain representing the zero
set V by means of the variables U1, . . . , Un. To summarize, the algorithms presented here
have the following characteristics.

Input: a regular chain C = C1, . . . , Cs in the polynomial ring K[X1, . . . , Xn] (for some
ordering R on the variables X1, . . . , Xn) and a second ordering R on X1, . . . , Xn.

Output: a regular chain C = C1, . . . , Cs for the second ordering R, such that C and C
have the same saturated ideal.

Conditions: the saturated ideal of C is a prime.

Example 1 In this paper, we shall use the following driving example from invariant theory.
Consider the set of polynomials P in Q[X1, X2] such that P (X1, X2) = P (−X1,−X2). Clas-
sical invariant theory tells us that any such polynomial P can be written as a polynomial in
X2

1 , X
2
2 and X1X2; natural questions to ask are whether such a representation is unique, and

how to perform the rewriting. To solve these problems, we are led to introduce the system of
polynomial equations
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π1 = X2
1

π2 = X2
2

σ = X1X2

or

∣

∣

∣

∣

∣

∣

π1 −X2
1 = 0

π2 −X2
2 = 0

σ −X1X2 = 0
,

the new variables’ names coming from the fact that π1, π2 and σ are respectively called Pri-
mary and Secondary invariants in the invariant literature.

This input describes π1, π2 and σ in terms of X1, X2. To answer the questions above, we
wish to reverse the dependencies, so as to rewrite X1 and X2 in terms of π1, π2, σ. This is
done by applying an algorithm for change of variable ordering, yielding
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π1X2 − σX1 = 0
X2

1 − π1 = 0
σ2 − π1π2 = 0

or
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X2 = σ
π1

X1

X2
1 = π1

σ2 = π1π2

.

In this form, we observe the relation σ2 = π1π2 between our basic invariants, which establishes
that the representation cannot be unique. Furthermore, the new form of the system can be
used as a set of rewriting rules, so as to obtain a canonical form for any invariant polynomial.

Many solutions exist to treat our problems, including Gröbner bases [4, 8] and resul-
tant/GCD computations [2]. The complexity of these methods is hard to control, as the
following situation shows: suppose that the sets of free variables are the same for the input
and output orders, and that the algebraic variables have to be permuted. Then, the prob-
lem can be handled by zero-dimensional change-of-ordering over a rational function field; it
seems however difficult to control the degrees of the expressions met in the indeterminate
steps. One specificity of our approach consists in the use of modular methods, so as to keep
under control the size of all expressions met during the computations.

2 Problem statement and main ideas of our approach

Define X = {X1, . . . , Xn} and letR be a total ordering on X. Every non-constant polynomial
P ∈ K[X] is viewed as a univariate one w.r.t. its greatest variable; then, the initial of P is its
leading coefficient. Let C = C1, . . . , Cs be non-constant polynomials in K[X] with respective
(pairwise distinct) main variables v1 < · · · < vs. We recall below the notion of a saturated
ideal and a regular chain and refer the reader to [9, 1, 3] for more detail.

• For all 1 ≤ i ≤ s the saturated ideal of C1, . . . , Ci is the ideal 〈C1, . . . , Ci〉 : (h1 · · ·hi)
∞

where hi is the initial of Ci .

• The set C is a regular chain if for all 2 ≤ i ≤ s the initial hi is regular modulo the
saturated ideal of C1, . . . , Ci−1.

Let P ⊂ K[X] be a prime ideal of dimension d and let C be a regular chain for R with P
as saturated ideal. (Note that C has n− d elements.) Given a new variable ordering R, we
aim at computing from C a regular chain C for R with P as saturated ideal.

Example 2 The following implicitization problem provides a second example. Consider
R = x > y > z > s > t and R = t > s > z > y > x. The polynomial system below

∣
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∣

∣

x− t3

y − s2 − 1
z − s t

is a regular chain C for R; let P be its saturated ideal, which is simply in this example the
ideal generated by C; then, P is prime. For the ordering R

∣

∣

∣

∣

∣

∣

s t− z
(x y + x)s− z3

z6 − x2y3 − 3x2y2 − 3x2y − x2
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is a regular chain C with P as saturated ideal. One can view C as the parametric equations
of an irreducible variety V . The last equation in C is its implicit equation. Hence, changes
of variable ordering are a tool for solving implicitization problems [5].

The key point of our approach is to reduce to the dimension zero case, that is when
s = n, isolating this particular case as the central one. In order to achieve this reduction, we
transform the input regular chain by a sequence of elementary changes of variable orders in
dimension zero. We use matroid theory to compute this sequence of intermediate variable
orders, as described in Section 3. We rely on several known techniques, notably lifting
techniques and rational reconstruction [12]. In Section 4 we present our algorithm and
show how all these tools interact together. We have implemented this algorithm within the
RegularChains library in Maple [10], as illustrated in Section 5.

3 A tool from combinatorics: matroid theory

Matroid theory [13] plays a central role in our approach. We review in this section the notion
of a matroid and we define that of the coordinate matroid of an irreducible variety. The proofs
our statements are not reported here and rely on results appearing in [1, 3, 5, 9, 13].

Definition 1 A matroid M over a finite set X is given by a non-empty family B(M) of
subsets of X with the same cardinality r and satisfying the exchange property: for all e, f ∈
B(M), for every v ∈ e− f there exists w ∈ f − e such that e− v + w ∈ B(M) holds.

The elements of B(M) are called the bases of M and r is its rank. The family of the
X − e, for all e ∈ B, is the set of the bases of a matroid M∗, the dual matroid of M .

Example 3 Consider a m× n matrix A over a field K. Let X be the set of the columns of
A and let B(A) be the set all e ⊆ X such that the columns of e are linearly independent and
e is maximal w.r.t. inclusion. Then, the elements of B(A) are the bases of a matroid over
X. Matroids arising from this construction are called linear over K.

Let V ⊂ K
n

be an irreducible algebraic variety defined over a field K. Let X be a set of
n variables. let P be the prime ideal of K[X] consisting of the polynomials that vanish at
every point of V . Let d be the dimension of V with 0 < d < n and define s = n− d.

Definition 2 Let B(X) be the family of the subsets Y ⊆ X such that P ∩K[Y ] is the trivial
ideal and Y is maximal w.r.t. inclusion. The family B(X) is the collection of the bases of a
rank d matroid on X, denoted by Mcoord(V ) and that we call the coordinate matroid of V .

Theorem 1 Let Y be a subset of X with cardinal d. Then, the set Y is a basis ofMcoord(V )
if and only if there exists a regular chain C = C1, . . . , Cs with P as saturated ideal in K[X]
and X − Y as set of algebraic variables.

We consider the variable order R = X1 < · · · < Xn. Let C = C1, . . . , Cs be a regular
chain for R and with P as saturated ideal in K[X]. Let B1 and B2 be two distinct bases of
M∗

coord(V ), the dual of Mcoord(V ). Then, we write B1 <lex B2 if the largest element (w.r.t.
R) of (B1 −B2)∪ (B2 − B1) belongs to B2.
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Theorem 2 The set of the algebraic variables of C is the maximum basis of M∗
coord(V ) for

the ordering <lex.

Let Jac(C) be the Jacobian matrix of C, our input regular chain. Let L be the field
extension defined by P, that is the total ring of fractions of K[X]/P. The columns of Jac(C)
are indexed by the variables of X.

Theorem 3 The linear matroid over X defined by Jac(C), regarded as a matrix with coef-
ficients in L, is equal to M∗

coord(V ).

Corollary 1 Using a greedy algorithm, taking Jac(C) as input, one can compute the maxi-
mum basis of M∗

coord(V ) for the ordering <lex.

The algorithm underlying the previous corollary involves linear algebra over the function
field L. In practice, we specialize the non-algebraic variables of C before applying this
algorithm, so as to reduce to linear algebra over finite extensions of K.

4 Main result and algorithm

Assume that K is a perfect field and let C = C1, . . . , Cs be a regular chain in K[X1, . . . , Xn]
for some ordering R on the variables X1, . . . , Xn. Let d be such that deg Ci ≤ d holds for
all i. Suppose that the saturated ideal of C1, . . . , Cs is prime and that the characteristic of
K is greater than dn. Let finally R = X1 < · · · < Xn be a second ordering on the variables.

Theorem 4 A regular chain C for R, such that C and C have the same saturated ideal, can
be computed by a probabilistic algorithm of complexity polynomial in the input size, output
size, and degree of the underlying variety. Suppose that non-algebraic variables of C at a
random point y in a box Γn−s. Then the probability of failure is at most

2n(3dn + n2)d2n

|Γ|
.

We give a sketch of the algorithm

1. Specialize the non-algebraic variables of C at a random point y.

2. Compute Jac(C) and specialize it at y.

3. Compute the elements v1, . . . , vp, w1, . . . , wp ∈ X such that Bi+1 = Bi + vi−wi defines
a sequence of bases of Mcoord(V ), with vi 6∈ Bi and wi ∈ Bi, starting at B0 the set of
non-algebraic variables of C and ending at Bℓ, the set of non-algebraic variables of C.

4. For i = 1, . . . , ℓ repeat:

(a) in dimension zero, change the regular chain from the variable ordering given by
Bi to the variable ordering given by Bi by putting wi as least variable,
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(b) lift vi,

(c) specialize wi.

5. Lift all the non-algebraic variables that are still specialized.

We illustrate the algorithm with our driving example introduced in Section 1.

π2 = X
2
2

π1 = X
2
1

σ = X1X2

X2 = σX1

π1

X
2
1 = π1

σ
2 = π1π2

Change of order

Positive dimension

Step 1.

π2 = 1
π1 = 1
σ = 1

variables π2, π1, σ
with X1 ← 1, X2 ← 1

σ = 1
π1 = 1
π2 = 1

variables σ, π1, π2

with X1 ← 1, X2 ← 1

σ = X2

π1 = 1
π2 = X

2
2

variables σ, π1, π2, X2

with X1 ← 1

Change of order

Dimension zero

Lift X2

Step 2.

σ = X2

π1 = 1
X

2
2 = 1

Specialization π2 ← 1

variables σ, π1, X2

with X1 ← 1, π2 ← 1

X2 = σ

σ
2 = 1

π1 = 1

variables X2, σ, π1

with X1 ← 1, π2 ← 1

X2 = σ
X1

σ
2 = X

2
1

π1 = X
2
1

variables X2, σ, π1, X1

with π2 ← 1

Change of order

Dimension zero

Lift X1

Step 3.

X2 = σ
X1

σ
2 = 1

X
2
1 = 1

variables X2, σ, X1

with π1 ← 1, π2 ← 1

X2 = σX1

X
2
1 = 1

σ
2 = 1

variables X2, X1, σ
with π1 ← 1, π2 ← 1

X2 = σX1

π1

X
2
1 = π1

σ
2 = π1π2

variables X2, X1, σ, π1, π2

Change of order

Dimension zero

Lift π1, π2

Specialization π1 ← 1
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5 Change of ordering with RegularChains in Maple

Now, we solve our driving example with the Maple implementation of our algorithm, based
on the RegularChains library. The changes of variable ordering in dimension zero are
performed by the Triangularize command which implements the Triade algorithm of
[11] and which is not a procedure specialized for this purpose. This is, therefore, a place for
improvement in our current implementation.

> R := PolynomialRing([P1,P2,S,X2,X1]);

R := polynomial_ring

> F := [P1-X1^2, P2-X2^2, S-X1*X2];

2 2

F := [P1 - X1 , P2 - X2 , S - X1 X2]

> rc := Chain(ListTools[Reverse](F),Empty(R),R);

rc := regular_chain

> R2 := PolynomialRing([X1,X2,S,P2,P1]);

R2 := polynomial_ring

> rc2 :=ChangeOfOrdering(rc, R, R2);

rc2 := regular_chain

> Equations(rc2, R2);

S X2 2 2

[X1 - ----, -P2 + X2 , S - P2 P1]

P2

Finally, we solve the implicitization problem in Example 2. We observe that the solution pro-
vided by our implementation is different and has larger coefficients than the solution reported
in Example 2 and computed by the Triangularize command. Indeed, our current implementa-
tion computes strongly normalized regular chains. However, we plan to integrate the techniques
described in [6, 7] in order to produce regular chains with smaller coefficients.

> R := PolynomialRing([x,y,z,s,t]);

R := polynomial_ring

> F := [x-t^3, y-s^2-2, z-s*t];

3 2

F := [x - t , y - s - 2, z - s t]

> rc := Chain(ListTools[Reverse](F),Empty(R),R);

rc := regular_chain
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> R2 := PolynomialRing([t,s,z,y,x]);

R2 := polynomial_ring

> rc2 :=ChangeOfOrdering(rc, R, R2);

rc2 := regular_chain

> Equations(rc2, R2);

4

z

[t - ------------------------------------------------------------,

2

245980980 (1/61495245 x - 1/61495245 x y + 1/245980980 y x)

3

z

s - -----------------------------------,

245490 (-1/122745 x + 1/245490 x y)

2 3 2 2 2 2 6

-x y + 6 x y - 12 x y + 8 x + z ]

6 Conclusion

As mentioned above, there are many available solutions for performing our task of change of
order. The main contribution of this article is to present an algorithm driven by straightfor-
ward geometric considerations, where most of the work is reduced to a few central problems:
lifting techniques for regular chains, and change of order in dimension zero. Hence, on the
practical side, as remarked in the previous section, some work is required to improve on these
specific tasks.
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