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Ordinary Differential Polynomials

• K ordinary differential field of characteristic zero with derivation δ : K 7−→ K.

• Y = {y1, . . . , yn} differential indeterminates.

• δ∞Y = {δmy | y ∈ Y, m ∈ N} set of the derivatives.

• K{Y } = K[δ∞Y ] endowed with δ : K{Y } 7−→ K{Y }: differential ring of
differential polynomials.

• An ideal I ⊂ K{Y } is differential if for all f ∈ I we have δf ∈ I.

• For F ⊂ K{Y }, we denote by (F ), [F ] and {F} the ideal, differential ideal
and radical differential ideal generated by F .
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Ranking

• Fix ≤ a ranking: a total order on derivatives such that for all u, v ∈ δ∞Y we
have

u < δu and u < v ⇒ δu < δv.

• For f ∈ K{Y } \K, let uf = δkyi be the derivative of highest rank occurring in
f . Then

f = ifud
f + tf with d = deg(f, uf ) and if = lc(f, uf ).

lvf := yi, ldf := uf , rkf := ud
f , sf := ∂f

∂uf
= iδf .

• The ranks ud1
1 and ud2

2 are compared as follows:

ud1
1 ≤ ud2

2 ⇐⇒ [u1 < u2] or [u1 = u2 and d1 ≤ d2].
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Reduction

• f ∈ K{Y } is algebraically reduced w.r.t. g ∈ K{Y } \K if

deg(f, ug) < deg(g, ug).

• f ∈ K{Y } is partially reduced w.r.t. g ∈ K{Y } \K if

(∀k > 0) deg(f, δkug) = 0.

• f ∈ K{Y } is (fully) reduced w.r.t. g ∈ K{Y } \K if algebraically and partially
reduced w.r.t. g.

• A ⊂ K{Y } is autoreduced if A ∩ K = ∅ and all f ∈ A is reduced w.r.t all
g ∈ A \ {f}.

• Proposition. Every autoreduced set A is finite.

• For autoreduced sets A, B ⊂ K{Y } we write rkA ≤ rkB whenever

[rkB ⊆ rkA] or [min(rkA \ rkB) < min(rkB \ rkA)].
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Regular Ideals and Decompositions

• Let A,H ⊂ K{Y }. Then, the saturated ideal of A w.r.t. H defined by

[A] : H∞ := {f ∈ K{Y } | (∃m ∈ N) hmf ∈ [A]}

is K{Y } or a differential ideal containing [A].

• Define IA = {if | f ∈ A}, SA = {sf | f ∈ A} and HA = IA ∪ SA.

• [A] : H∞ is called regular if: A is autoreduced, we have HA ⊆ H and every
h ∈ H is partially reduced w.r.t. all a ∈ A.

• Theorem. (Rosenfeld, 1959) Assume [A] : H∞ is regular. Then

f ∈ [A] : H∞ ⇐⇒ part-rem(f, A) ∈ (A) : H∞.

• Theorem. (Boulier, Lazard, Ollivier & Petitot, 1995) If [A] : H∞ is regular,
then it is also radical.

• For F0,H0 ⊂ K{Y }, a regular decomposition of {F0} : H∞
0 is a finite set T of

pairs (A,H) with [A] : H∞ is regular and {F0} : H∞
0 =

⋂
(A,H)∈T

[A] : H∞.
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The Rosenfeld-Gröbner Algorithm

Input: F0,H0 ⊂ K{Y } \K.

Output: a regular decomposition of {F0} : H∞
0 .

T := ∅; U := {(F0,H0)}
while U 6= ∅ do

Take and remove any (F,H) ∈ U

Let C ⊆ F be autoreduced with least rank
R := full-rem(F \ C, C) \ {0}
K := full-rem(H, C) ∪ HC

if R ∩ K = ∅ and 0 6∈ K then
if R = ∅ then T := T ∪ {(C,K)}

else U := U ∪ {(C ∪ R,K)}
for h ∈ HC repeat U := U ∪ {(F∪{h},H)}

return T
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Order Bound for the RG algorithm: case n = 2

• Let F ⊂ K{y, z}. Let my(F ) and mz(F ) the maximum order of a derivative in
F w.r.t y and z. Define M(F ) = my(F ) + mz(F ).

• Proposition. For all (F,H) in RG(F0, ∅), we have M(F ) ≤ M(F0).

PROOF B

• For (F,H) ∈ U , consider C,H, K as above. We have |C| ≤ 2.

• First, look at |C| = 1, say ldC = {y(dy)}. We have:

my(C ∪ R) = dy,mz(C ∪ R) = mz(F ) + (my(F )− dy).

• Second, consider ldC = {y(dy), z(dz)}. We have:

M(C∪R) = dy + dz ≤ M(F ).

• Finally, observe: G ⊆ F∪HC ⇒ M(G) ≤ M(F ).

C
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A Bound for the Orders in the RG Algorithm

• For F ⊂ K{Y }, we define mi(F ) the maximum order of yi ∈ Y in F . Then

M(F ) =
n∑

i=1

mi(F ).

• We shall establish a modified RG Algorithm such that each intermediate system
(F,H) ∈ U satisfies

M(F ∪H) ≤ (n− 1)!M(F0 ∪H0)

• We checked this formula for n = 2.

• The techniques used for n = 2 are hard to generalize to n > 2:

4 Difficulty 1: leading differential indeterminates may become non-leading.

4 Difficulty 2: orders of non-leading ones may increase.
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Algebraic Computations of Differential Remainders

• Solution 1: use weak d-triangular sets:

- C ⊂ K{Y } \K is a weak d-triangular set if ldC is autoreduced, that is, in the
ordinary case

(∀f1, f2 ∈ C) f1 6= f2 ⇒ lvf1 6= lvf2.

• Let C be weak d-triangular subset of F . Define R := part-rem(F \ C, C). If
yi 6∈ lvC we may have mi(R) > mi(F ) unless the ranking is orderly.

• Solution 2: we construct an algebraic triangular set B (i.e. leaders are pairwise
distinct) such that

- part-rem(F \ C, C) = alg-rem(F, B),

- B satisfies a bound on the orders of derivatives occurring in it,

- B contains a subset B0 which can be seen as the partial autoreduction of C.
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The Differentiate&Autoreduce Algorithm Informally

Input: a weak d-triangular set C = C1, . . . , Ck with ld C = y
(d1)
1 , . . . , y

(dk)
k and

non-negative integers m1, . . . ,mn such that mi(C) ≤ mi for all 1 ≤ i ≤ n.

Output: a triangular set B which can be seen as the algebraic autoreduction of the
differential prolongation of C, i.e. the set

C̃ = {δjCi | 1 ≤ i ≤ k, 0 ≤ j ≤ mi − di}.

• In particular, we have rk B = rk C̃, unless the process shows [C] : H∞
C = (1).

4 Difficulty 3: Making this autoreduction completely algebraic needs some care.

• Consider C = {y1, y2 + y′1} with m1 = 1, m2 = 2, and the elimination raking
y1 < y′1 < y′′1 < · · · < y2 < y′2 < y′′2 < · · · .

- Applying the above formula for C̃ gives {y1, y
′
1, y2 + y′1, y

′
2 + y′′1 , y′′2 + y′′′1 }.

- If polynomials are reduced-and-added to B in the order of increasing rank

{y1} → {y1, y
′
1} → {y1, y

′
1, y2} → {y1, y

′
1, y2, y

′
2} → {y1, y

′
1, y2, y2, y

′′
2}.
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The Algorithm Differentiate&Autoreduce

Input: C = C1, . . . , Ck with ld C = y
(d1)
1 , . . . , y

(dk)
k and m1, . . . ,mn ∈ N

such that mi(C) ≤ mi for all 1 ≤ i ≤ n.

Output: B = {Bj
i | 1 6 i 6 k, 0 6 j 6 mi − di} with rkBj

i = rk C
(j)
i or

{1}, if [C] : H∞
C = (1) is detected.

D := C; B := ∅
while D 6= ∅ do

let f ∈ D of the least rank; let y
(d)
i = ld f

f̄ := alg-rem(f, δB \ {f})
if rk f̄ 6= rk f then return {1}
D := D \ {f}
if d < mi then D := D ∪ {δf̄}
B := B ∪ {f̄}

return B
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Specifications of the Differentiate&Autoreduce Algorithm

• Proposition. The above algorithm satisfies the specifications below:

Input: C = C1, . . . , Ck with ld C = y
(d1)
1 , . . . , y

(dk)
k and m1, . . . ,mn ∈ N such

that mi(C) ≤ mi for all 1 ≤ i ≤ n.

Output: B = {Bj
i | 1 6 i 6 k, 0 6 j 6 mi − di} with

(i) rkBj
i = rk C

(j)
i ,

(ii) B ⊂ [B0] ⊂ [C] ⊂ [B] : H∞
B , where B0 = {B0

i | 1 6 i 6 k},

(iii) HB ⊂ H∞
C + [C], HC ⊂ (H∞

B + [B]) : H∞
B ,

(iv) Bj
i are partially reduced w.r.t. C \ {Ci},

(v) mi(B) 6

 di if i = 1, . . . , k

mi +
∑k

j=1(mj − dj) if i = k + 1, . . . , n.

or {1}, if [C] : H∞
C = (1) is detected.
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Proving the Differentiate&Autoreduce Algorithm

• Lemma. Let C ⊂ K{Y } be a weak d-triangular set Let f, g ∈ K{Y } with
lv f 6∈ lv C and f →C g. Then, we have

• rk g < rk f ⇒ if ∈ [C] : H∞
C ,

• rk g = rk f ⇒ (∃ h ∈ HC
∞) h · if − ig ∈ [C] and h · sf − sg ∈ [C].

• Lemma. Let H and K be two sets of differential polynomials, and let I be a
differential ideal. If K ⊂ (H∞ + I) : H∞, then I : H∞ = I : (H ∪K)∞.

• The above lemmas also holds in the PDE case and the purely algebraic case.
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Triangular Sets and Characteristic Sets

• C ⊂ K{Y } \K is a triangular set if the elements of ldC are pairwise different.

• The triangular set C is a weak d-triangular set if all f ∈ C the leader ldf is
reduced w.r.t. C \ {f}.

• The weak d-triangular set C is a d-triangular set if it is partially auto-reduced.

• An autoreduced subset of the lowest rank in X ⊂ K{Y } is called a
(Kolchin) characteristic set of X .

• Proposition. Evey X ⊂ K{Y } admits a characteristic set.

• Proposition. Let I be a proper ideal of K{Y } and A ⊆ I autoreduced. Then,

A characteristic set of X ⇐⇒ (∀f ∈ I) full-rem(f, A) = 0.

• A differential ideal I ⊂ K{Y } is characterizable if there exists a Kolchin
characteristic set A of I such that I = [A] : HA

∞.
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Characteristic Sets and Regular Chains

• Let C be a triangular set. For all u ∈ ldC define C≤u = {f ∈ C | rkf ≤ u},
C<u = {f ∈ C | rkf < u} and C≤u = C<u ∪ {Cu}. Recall: ODE case.

• C is a regular chain if for all u ∈ ldC the initial of Cu is non-zero and regular
modulo (C<u) : I∞C<u

.

• The regular chain C is separable if for all u ∈ ldC the separant of Cu is
non-zero and regular modulo (C≤u) : I∞C≤u

.

• The regular chain C is differential if it is a d-triangular set and separable.

• Theorem. (Boulier & Lemaire, 2000) Define A = Autoreduce(C).

(i) If C is a differential regular chain, then A is a characteristic set of [C] : H∞
C .

(ii) If C is a characteristic set of [C] : H∞
C , then C is a differential regular chain.
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Recall: the Rosenfeld-Gröbner Algorithm

Input: F0,H0 ⊂ K{Y } \K.

Output: a regular decomposition of {F0} : H∞
0 .

T := ∅; U := {(F0,H0)}
while U 6= ∅ do

Take and remove any (F,H) ∈ U

Let C ⊆ F be autoreduced with lowest rank
R := full-rem(F \ C, C) \ {0}
K := full-rem(H, C) ∪ HC

if R ∩ K = ∅ and 0 6∈ K then
if R = ∅ then T := T ∪ {(C,K)}

else U := U ∪ {(C ∪ R,K)}
for h ∈ HC repeat U := U ∪ {(F ∪ {h},H)}

return T
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The Modified Rosenfeld-Gröbner Algorithm

• Instead of handling pairs (F,H) with F,H ⊂ K{Y } \K
– representing {F} : H∞

– to be processed by reducing F,H w.r.t. a characteristic set C of F ,

• the MRGA handles (F, C,H) with F, C,H ⊂ K{Y } \K and HC ⊆ H ,

– representing {F ∪ C} : H∞, with C d-triangular,

– to be processed by
(1) pushing one f ∈ F into C or exchanging one f ∈ F with one C ∈ C

with lvf = lvC,
(2) reducing F,H algebraically w.r.t. a partial prolongation B of C.

4 Trap: Replacing in RGA characteristic set with weak d-triangular set

– in each branch . . . → (Fi,j ,Hi,j) → (Fi,j+1,Hi,j+1) → . . . would
ensure that we have lvCi,j ⊆ lvCi,j+1

– but would not guarantee termination of the algorithm!!!
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Input: F0,H0 ⊂ K{Y } \K.
Output: a regular decomposition of {F0} : H∞

0 .

T := ∅; U := {(F0, ∅,H0)}
while U 6= ∅ do

Take and remove any (F, C,H) ∈ U

let f ∈ F with least rank; let v = lvf

if v ∈ lvC then D := {Cv} else D := ∅
G := F ∪ D \ {f}
C̄ := C ∪ {f} \D

B := Differentiate&Autoreduce (C̄, {mi(G ∪ C̄ ∪ H), 1 ≤ i ≤ n})
if B 6= {1} then

R := alg-rem(G, B) \ {0}
K := alg-rem(H, B) ∪ HB

if R ∩ K = ∅ and 0 6∈ K then
if R = ∅ then T := T ∪ {(B0,K)} else U := U ∪ {(R, B0,K)}

for h ∈ {if , sf} \K repeat U := U ∪ {(F ∪ {h}, C,H)}
return T
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The Modified Rosenfeld-Gröbner Algorithm and its Bound

• For F ⊂ K{Y } recall M(F ) =
∑

y∈Y my(F ). For Z ⊂ Y with |Z| = k < n

MZ(F ) := (n− k)
∑
y∈Z

my(F ) +
∑

y∈Y \Z

my(F ).

• The while-loop has the following invariants

• (I1) {F0} : H∞
0 =

⋂
(F,C,H)∈U{F ∪ C} : H∞ ∩

⋂
(A,H)∈T [A] : H∞

• For all (F, C,H) ∈ U ,

- (I2) C is d-triangular and HC ⊂ H , (I3) F 6= ∅ is reduced w.r.t. C
- (I4) Let l = | lv C|. Then, if l < n,

Mlv C(F ∪ C ∪H) ≤ (n− 1) . . . (n− l) ·M(F0 ∪H0),

otherwise

M(F ∪ C ∪H) ≤ (n− 1)! ·M(F0 ∪H0).
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Comments on the Previous Results

4 Bad news: The following idea would certainly not lead to an efficient
algorithm:

1. Prolongate the input system (F0,H0) up to the bound,

2. Emulate the MRGA by some efficient algorithm for algebraic triangular
decompositions.

4 Remark: In practice, the regular ideals output by RGA are decomposed into
differential regular chains using Gröbner bases (Boulier et al., 1995) or regular
chains (Boulier et Lemaire, 2000). Our bound also holds for these differential
regular chains.

4 Question: But, may be the idea of prolongation + algebraic emulation is still
promising for a simpler problem, such as ranking conversions.
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Ranking Conversions via Algebraic Changes of Order

Given: C characteristic set of prime ideal I for ≤ and a target ranking ≤′.

Wanted: C′ characteristic set of I for ≤′.

Idea:

• Consider D the canonical characteristic set of I for ≤′.

• Assume we know a sufficient differential prolongation of C

– containing a prime algebraic sub-ideal Ī in I with D ⊂ Ī,

– and such that this prolongation is affordable.

• Compute an algebraic characteristic set of Ī w.r.t. ≤′.

• Extract from it a differential characteristic set of I for ≤′.
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A Sharper Bound

• Proposition. The orders of derivatives occurring in the canonical characteristic
set of I w.r.t. ≤′ do not exceed

M1 = |C| ·max
C∈C

ordC

PROOF B

• This was proved by (Golubitsky, Kondratieva and Ovchinnikov, 2005) if ≤ is
an orderly ranking.

• If ≤ is not an orderly ranking, we apply RGA to (C,HC) for an orderly
ranking.

• The number of elements in a characteristic set of a prime (ordinary)
differential ideal I does not depend on the ranking.

C
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Computing the Target Characteristic Set

• Assume that ld≤ C = {y(d1)
1 , . . . , y

(dk)
k }. Define mi = M1 for 1 ≤ i ≤ k.

• Consider Q := (A) : H∞
A where

A = Differentiate&Autoreduce(C, (mi, 1 ≤ i ≤ k))

Consider Z := (δ∞Y \ δ∞ldC) ∪ ldA.

• Proposition. We have Q = I ∩ K[Z]. Therefore, Q is a prime (algebraic) ideal
of which A is an algebraic characteristic set for ≤.

• Proposition. Let B be an algebraic characteristic set of Q for ≤′. For all y ∈ Y ,
let Ey ∈ B with lvEy = y and Ey has minimum rank with this property. Let
C′ = Autoreduce(Ey, y ∈ Y ). Then, C′ is a characteristic set of I for ≤′.
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Comments on the Previous Results

4 Remark 1: Ranking conversions can be done by algebraic transformations.

4 Remark 2: The bound M1 can be improved

MC := min(M1,M2) = min
(
|C| ·max

C∈C
ordC,

(n− 1)!
(n− |C| − 1)!

·M(C)
)

.

4 Remark 3: We have a preliminary implementation

• making use of the PALGIE algorithm (Boulier, Lemaire & MMM, 2001) for
the algebraic changes of order

• offering performances comparable to RGA on Hubert’s test suite.

• We plan to use the modular algorithm for change of order by (Dahan, Jin,
MMM & Schost, 2006)

• and compare with the PODI algorithm (Boulier, Lemaire & MMM, 2001).

4 Remark 4: A generalization to the PDE is in progress.
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