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ABSTRACT
We present lifting techniques for triangular decompositions
of zero-dimensional varieties, that extend the range of the
previous methods. We discuss complexity aspects, and re-
port on a preliminary implementation. Our theoretical re-
sults are comforted by these experiments.

Categories and Subject Descriptors: I.I.2 [Computing
Methodologies]: Symbolic and Algebraic Manipulation – Al-
gebraic Algorithms

General Terms: Algorithms, experimentation, theory.

Keywords: Polynomial systems, triangular sets, Hensel
lifting.

1. INTRODUCTION
Modular methods for computing polynomial GCDs and

solving linear algebra problems have been well-developed for
several decades, see [12] and the references therein. Without
these methods, the range of problems accessible to symbolic
computations would be dramatically limited. Such methods,
in particular Hensel lifting, also apply to solving polynomial
systems. Standard applications are the resolution of systems
over Q after specialization at a prime, and over the rational
function field k(Y1, . . . , Ym) after specialization at a point
(y1, . . . , ym). These methods have already been put to use
for Gröbner bases [26, 1] and primitive element representa-
tions, starting from [13], and refined notably in [14].
Triangular decompositions are well-suited to many prac-

tical problems: see some examples in [3, 11, 24]. In ad-
dition, these techniques are commonly used in differential
algebra [4, 15]. Triangular decompositions of polynomial
systems can be obtained by various algorithms [16, 18, 21]
but none of them uses modular computations, restricting
their practical efficiency. Our goal in this paper is to discuss
such techniques, extending the preliminary results of [24].
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Let us introduce the notation used below. If k is a per-
fect field (e.g., Q or a finite field), a triangular set is a fam-
ily T1(X1), T2(X1,X2), . . . , Tn(X1, . . . ,Xn) in k[X1, . . . ,Xn]
which forms a reduced Gröbner basis for the lexicographic
order Xn > · · · > X1 and generates a radical ideal (so Ti

is monic in Xi). The notation T
1, . . . , T s denotes a family

of s triangular sets, with T i = T i
1 , . . . , T

i
n. Then, any 0-

dimensional variety V can be represented by such a family,

such that I(V ) = ∩i≤s〈T i〉 holds, and where 〈T i〉 and 〈T i′〉
are coprime ideals for i �= i′; we call it a triangular decompo-
sition of V . This decomposition is not unique: the different
possibilities are obtained by suitably recombining the trian-
gular sets describing the irreducible components of V .
In this paper, we consider 0-dimensional varieties defined

over Q. Let thus F = F1, . . . , Fn be a polynomial system in
Z[X1, . . . ,Xn]. Since we have in mind to apply Hensel lifting
techniques, we will only consider the simple roots of F , that
is, those where the Jacobian determinant J of F does not
vanish. We write Z(F ) for this set of points; by the Jacobian
criterion [10, Ch. 16], Z(F ) is finite, even though the whole
zero-set of F , written V (F ), may have higher dimension.
Let us assume that we have at hand an oracle that, for any

prime p, outputs a triangular decomposition of Z(F mod p).
Then for a prime p, a rough sketch of an Hensel lifting al-
gorithm could be: (1) Compute a triangular decomposition
t1, . . . , ts of Z(F mod p), and (2) Lift these triangular sets
over Q. However, without more precautions, this algorithm
may fail to produce a correct answer. Indeed, extra factor-
izations or recombinations can occur modulo p. Thus, we
have no guarantee that there exist triangular sets T 1, . . . , T s

defined over Q, that describe Z(F ), and with t1, . . . , ts as
modular images. Furthermore, if we assume no control over
the modular resolution process, there is little hope of ob-
taining a quantification of primes p of “bad” reduction.
Consider for instance the variety V ⊂ C 2 defined by the

polynomials 326X1−10X6
2+51X

5
2+17X

4
2+306X

2
2+102X2+

34 andX7
2+6X

4
2+2X

3
2+12. For the orderX2 > X1, the only

possible description of V by triangular sets with rational co-
efficients corresponds to its irreducible decomposition, that
is, T 1 : (X1−1, X3

2+6 ) and T
2 : (X2

1+2, X
2
2+X1 ). Now,

the following triangular sets describe the zeros of (F mod 7),
which are not the reduction modulo 7 of T 1 and T 2;

t1
���� X

2
2 + 6X2X

2
1 + 2X2 +X1

X3
1 + 6X

2
1 + 5X1 + 2

and t2
���� X2 + 6
X1 + 6

,
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A lifting algorithm should discard t1 and t2, and replace
them by the better choice t′1 : (X1 + 6, X

3
2 + 6 ) and t

′2 :
(X2

1 + 2, X
2
2 +X1 ), which are the reduction of T

1 and T 2

modulo 7. In [24], this difficulty was bypassed by restricting
to equiprojectable varieties, i.e. varieties defined by a single
triangular set, where no such ambiguity occurs. However, as
this example shows, this assumption discards simple cases.
Our main concern is to lift this limitation, thus extending
these techniques to handle triangular decompositions.
Our answer consists in using a canonical decomposition of

a 0-dimensional variety V , its equiprojectable decomposition,
described as follows. Consider the map π : V ⊂ A n (k) →
A n−1 (k) that forgets the last coordinate. To x in V , we as-
sociate N(x) = #π−1(π(x)), that is, the number of points
lying in the same π-fiber as x. Then, we split V into the
disjoint union V1 ∪ · · · ∪ Vd, where for all i = 1, . . . , d, Vi

equals N−1(i), i.e., the set of points x ∈ V where N(x) = i.
This splitting process is applied recursively to all V1, . . . , Vd,
taking into account the fibers of the successive projections
A n (k)→ A i (k), for i = n− 1, . . . , 1. In the end, we obtain a
family of pairwise disjoint, equiprojectable varieties, whose
reunion equals V , which form the equiprojectable decompo-
sition of V . As requested, each of them is representable by
a triangular set with coefficients in the definition field of V .
Looking back at the example, both Z(F ) and Z(F mod 7)

are described on the leftmost picture below (forgetting the
actual coordinates of the points). Representing Z(F ) by

T 1 and T 2, as well as Z(F mod 7) by t′1 and t′2 amounts
to grouping the points as on the central picture; this is
the equiprojectable decomposition. The rightmost picture
shows the description of Z(F mod 7) by t1 and t2.
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The above algorithm sketch is thus improved by applying
lifting only after computing the equiprojectable decomposi-
tion of the modular output. Theorem 1 shows how to control
the primes of bad reductions for the equiprojectable decom-
position, thus overcoming the limitation that we pointed out
previously. In what follows, the height of x ∈ Z is defined as
ht x = log |x|; the height of f ∈ Z[X1, . . . ,Xn] is the maxi-
mum of the heights of its coefficients; that of p/q ∈ Q, with
gcd(p, q) = 1, is max(ht p,ht q).

Theorem 1. Let F1, . . . , Fn have degree ≤ d and height
≤ h. Let T 1, . . . , T s be the triangular description of the
equiprojectable decomposition of Z(F ). There exists A ∈
N − {0}, with htA ≤ a(n, d, h), and, for n ≥ 2,
a(n, d, h) = 2n2d2n+1(3h+ 7 log(n+ 1) + 5n log d+ 10),

and with the following property. If a prime p does not divide
A, then p cancels none of the denominators of the coeffi-
cients of T 1, . . . , T s, and these triangular sets reduced mod
p define the equiprojectable decomposition of Z(F mod p).

Thus, the set of bad primes is finite and we have an explicit
control on its size. Since we have to avoid some “discrim-
inant locus”, it is natural, and probably unavoidable, that
the bound should involve the square of the Bézout number.
A second question is the coefficient size of the output. In

what follows, we write deg V and htV for the degree and

height of a 0-dimensional variety V defined over Q: the for-
mer denotes its number of points, and the later estimates its
arithmetic complexity; see [17] and references therein for its
definition. Let then T 1, . . . , T s be the triangular sets that
describe the equiprojectable decomposition of Z = Z(F ).
In [9], it is proved that all coefficients in T 1, . . . , T s have

height in O(nO(1)(degZ + htZ)2). However, better esti-
mates are available, through the introduction of an alter-
native representation denoted by N1, . . . , Ns. For i ≤ s,
N i = N i

1, . . . , N
i
n is obtained as follows. Let Di

1 = 1 and
N i

1 = T
i
1 . For 2 ≤ � ≤ n and 1 ≤ i ≤ s, define

Di
� =

Y
1≤j≤�−1

∂T i
j

∂Xj
and N i

� = D
i
�T

i
� mod (T

i
1, . . . , T

i
�−1).

It is proved in [9] that all coefficients in N1, . . . , Ns have

height in O(nO(1)(degZ+htZ)). Since T 1, . . . , T s are easily
recovered from N1, . . . , Ns, our algorithm will compute the
latter, their height bounds being the better.
Theorem 2 below states our main result regarding lifting

techniques for triangular decompositions; in what follows,
we say that an algorithm has a quasi-linear complexity in
terms of some parameters if its complexity is linear in all of
these parameters, up to polylogarithmic factors. We need
the following assumptions:

• For any C ∈ N, let Γ(C) be the sets of primes in [C +
1, . . . , 2C]. We assume the existence of an oracle O1

which, for any C ∈ N, outputs a random prime in
Γ(C), with the uniform distribution.

• We assume the existence of an oracle O2, which, given
a system F and a prime p, outputs the representation
of the equiprojectable decomposition of Z(F mod p)
by means of triangular sets. We give in Section 2 an
algorithm to convert any triangular decomposition of
Z(F mod p) to the equiprojectable one; its complexity
analysis is subject of current research.

• For F as in Theorem 1, we write aF = a(n, d, h), hF =
ndn(h+11 log(n+3)) and bF = 5(hF +1) log(2hF +1).
The input system is given by a straight-line program
of size L, with constants of height at most hL.

• C ∈ N is such that for any ring R, any d ≥ 1 and
monic t ∈ R[X] of degree d, all operations (+,−,×)
in R[X]/t can be computed in Cd log d log log d opera-
tions in R [12, Ch. 8,9]. Then all operations (+,−,×)
modulo a triangular set T in n variables can be done
in quasi-linear complexity in Cn and deg V (T ).

Theorem 2. Let ε > 0. There exists an algorithm which,
given F , satisfying

4aF + 2bF

ε
+ 1 <

1

2
exp (2hF + 1),

computes N1, . . . , Ns defined above. The algorithm uses two
calls to O1 with C = 4aF + 2bF /ε, two calls to O2 with
p in [C + 1, . . . , 2C], and its bit complexity is quasi-linear
in L, hL, d, log h,C

n,degZ, (degZ+htZ), | log ε|. The algo-
rithm is probabilistic, with success probability ≥ 1− ε.

To illustrate these estimates, suppose e.g. that we have
n = 10, d = 4, h = 100, hence potentially 1048576 solutions;
to ensure a success probability of 99%, the primes should
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have only about 20 decimal digits, hence can be generated
without difficulty. Thus, even for such “large” systems, our
results are quite manageable. Besides, computing the poly-
nomials N i instead of T i enables us to benefit from their
improved height bounds.
In the sequel, we use the following notation. For n ∈ N, for

1 ≤ j ≤ i ≤ n and any field k, we denote πi
j : A

i (k)→ A j (k)
the map (x1, . . . , xi) �→ (x1, . . . , xj). The cardinality of a
finite set G is written #G.

2. SPLIT-AND-MERGE ALGORITHM
We start by reviewing the notion of equiprojectable de-

composition of a 0-dimensional variety V , introduced in [8].
Then, in preparation for the modular algorithm of Section 4,
we present an algorithm for computing this decomposition,
given an arbitrary triangular decomposition of V . We call it
Split-and-Merge, after its two phases: the splitting of what
we call critical pairs (which is achieved by GCD compu-
tations) and the merging of what we call solvable families
(which is performed by Chinese remaindering). The com-
plexity analysis of the Split-and-Merge algorithm is work in
progress [6]. From our preliminary study reported in [7], we
believe that suitable improvements of the Split-and-Merge
algorithm can run in quasi-linear time in the degree of V .
Let k be a perfect field and k one of its algebraic closures.

Following [2], we first define the notion of equiprojectability.

Equiprojectable variety. Let V ⊂ A n (k) be a 0-dimen-
sional variety over k. For 1 ≤ i ≤ n, the variety V is equipro-
jectable on πn

i (V ) if all fibers of the restriction π
n
i : V →

πn
i (V ) have the same cardinality. Then, for 1 ≤ i ≤ n, V
is i-equiprojectable if it is equiprojectable on all πn

j (V ), i ≤
j ≤ n. Thus, any 0-dimensional variety is n-equiprojectable.
Finally, V is equiprojectable if it is 1-equiprojectable. It is
the case if and only if its defining ideal is generated by a tri-
angular set T1, . . . , Tn with coefficients in k. In this case, k
being perfect, all fibers of the projection πn

i (V )→ πn
i−1(V )

share the same cardinality, which is the degree of Ti in Xi.
The variety V can be decomposed as the disjoint union

of equiprojectable ones, in possibly several ways. Any such
decomposition amounts to represent V as the disjoint union
of the zeros of some triangular sets. The equiprojectable
decomposition is a canonical way of doing so, defined by
combinatorial means.

Equiprojectable decomposition. Let first W be a 0-
dimensional variety in A i (k), for some 1 ≤ i ≤ n. For x in
A i−1 (k), we define the preimage

µ(x,W ) = (πi
i−1)

−1(x) ∩W ;

for any d ≥ 1, we can then define
A(d,W ) =

n
x ∈W | #µ(πi

i−1(x),W ) = d
o
.

Thus, x is in A(d,W ) if W contains exactly d points x′ such
that πi

i−1(x) = πi
i−1(x

′) holds. Only finitely many of the
A(d,W ) are not empty and the non-empty ones form a par-
tition of W . Let 1 ≤ i ≤ n. Writing W = πn

i (V ), we define

B(i, d, V ) = {x ∈ V | πn
i (x) ∈ A(d,W )} .

Thus, B(i, d, V ) is the preimage of A(d,W ) in V , so these
sets form a partition of V . If V is i-equiprojectable, then
all B(i, d, V ) are (i− 1)-equiprojectable. We then define in-
ductively B(V ) = V , and, for 1 < i ≤ n, B(di, . . . , dn, V ) =

B(i, di, B(di+1, . . . , dn, V )). All B(di, . . . , dn, V ) are (i− 1)-
equiprojectable, only finitely many of them are not empty,
and the non-empty ones form a partition of V .
The equiprojectable decomposition of V is its partition into

the family of all non-empty B(d2, . . . , dn, V ). All these sets
being equiprojectable, they are defined by triangular sets.
Note that we have not proved yet that the B(d2, . . . , dn, V )
are defined over the same field as V . This will come as a
by-product of the algorithms of this section. To do so, we
introduce now the notions of critical pair and solvable pair.

Critical and solvable pairs. Let T �= T ′ be two trian-
gular sets. The least integer � such that T� �= T ′

� is called
the level of the pair T, T ′. If � = 1 we let K� = k, other-
wise we define K� = k[X1, . . . ,X�−1]/〈T1, . . . , T�−1〉. Since
a triangular set generates a radical ideal, the residue class
ring K� is a direct product of fields. Therefore, every pair
of univariate polynomials with coefficients in K� has a GCD
in the sense of [22]. The pair T, T ′ is critical if T� and T

′
�

are not relatively prime in K�[X�]. If T, T
′ is not critical, it

is certified if U,U ′ ∈ K�[X�] such that UT� + U
′T ′

� = 1 are
known. The pair T, T ′ is solvable if it is not critical and if
for all � < j ≤ n we have degXj

Tj = degXj
T ′

j .

Introducing the notion of a certified solvable pair is moti-
vated by efficiency considerations. Indeed, during the split-
ting step, solvable pairs are discovered. Then, during the
merging step, the Bézout coefficients U,U ′ of these solvable
pairs will be needed for Chinese Remaindering.

Solvable families. We extend the notion of solvability from
a pair to a family of triangular sets. A family T of triangular
sets is solvable (resp. certified solvable) at level � if every pair
{T, T ′} of elements of T is solvable (resp. certified solvable)
of level �.
The following proposition shows how to recombine such

families. When this is the case, we say that all T in T divide
S. In what follows, we write V (T) for ∪T∈TV (T ).

Proposition 1. If T is certified solvable at level �, one
can compute a triangular set S such that V (S) = V (T),
using only multiplications in K�[X�].

Proof. First, we assume that T consists of the pair {T, T ′}.
We construct S as follows. We set Si = Ti for 1 ≤ i < �
and S� = T�T

′
� . Let � < i ≤ n. For computing Si, we

see Ti and T
′
i in K�[X�][X�+1, . . . ,Xi]. We apply Chinese

remaindering to the coefficients in Ti and T
′
i of each mono-

mial in X�+1, . . . ,Xi occurring in Ti or T
′
i : since the Bézout

coefficients U,U ′ for T�, T
′
� are known, this can be done us-

ing multiplications in K�[X�] only. It follows from the Chi-
nese Remaindering Theorem that the ideal 〈S〉 is equal to
〈T 〉 ∩ 〈T ′〉; for i > �, the equality degXi

Ti = degXi
T ′

i shows
that S is monic in Xi, as requested.
Assume that T consists of s > 2 triangular sets T 1, . . . , T s.

First, we apply the case s = 2 to T 1, T 2, obtaining a triangu-
lar set T 1,2. Observe that every pair T 1,2, T j , for 3 ≤ j ≤ s,
is solvable but not certified solvable: we obtain the requested
Bézout coefficient by updating the known ones. Let us fix
3 ≤ j ≤ s. Given A1, A2, B1, Bj , C2, Cj ∈ K�[X�] such that
A1T

1
� + A2T

2
� = B1T

1
� + BjT

j
� = C2T

2
� + CjT

j
� = 1 hold

in K�[X�], we let α = B1C2 mod T j
� and β = A1CjT

1
� +

A2BjT
2
� mod T 1

� T
2
� . Then, αT

1,2
� + βT j

� = 1 in K�[X�], as
requested. Proceeding by induction ends the proof. �

Splitting critical pairs. Let now V be a 0-dimensional
variety over k. Proposition 3 below encapsulates the first
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part of the Split-and-Merge algorithm: given any triangu-
lar decomposition T of V , it outputs another one, without
critical pairs. We first describe the basic splitting step.

Proposition 2. Let T be a triangular decomposition of
V which contains critical pairs. Then one can compute a
triangular decomposition Split(T) of V which has cardinality
larger than that of T.

Proof. Let T, T ′ be a critical pair of T of level � and let
G be a GCD of T�, T

′
� in K�[X�]. First, assume that G is

monic, in the sense of [22]; let Q and Q′ be the quotients of
T� and T

′
� by G in K�[X�]. We define the sets

A = T1, . . . , T�−1, G, T�+1, . . . , Tn,

B = T1, . . . , T�−1, Q, T�+1, . . . , Tn,

A′ = T1, . . . , T�−1, G, T
′
�+1, . . . , T

′
n,

B′ = T1, . . . , T�−1, Q
′, T ′

�+1, . . . , T
′
n.

We let Split(T) = {A,B,A′, B′}, excluding the triangular
sets defining the empty set. Since the pair T, T ′ is critical,
V (A) and V (B) are non-empty. Since T� and T

′
� are not

associate in K�[X�], at least Q or Q′ is not constant. Thus,
Split(T) has cardinality at least 3. Since 〈T 〉 and 〈T ′〉 are
radical, if Q �∈ K�, G and Q are coprime in K�[X�], so V (T )
is the disjoint union of V (A) and V (B). The same property
holds for A′ and B′. Thus, the proposition is proved.
Assume now that T�, T

′
� have no monic GCD in K�[X�].

Then, there exist triangular sets C1, . . . , Cs,D1 . . .Ds such
that V (T ) is the disjoint union of V (C1), . . . , V (Cs), V (T ′)
is the disjoint union of V (D1), . . . , V (Ds), at least one pair
Ci,Dj is critical and Ci

�,D
j
� admits a monic GCD in K�[X�].

These triangular sets are obtained by the algorithms of [22]
when computing a GCD of T�, T

′
� inK�[X�]. Then the results

of the monic case prove the existence of Split(T). �

Proposition 3. Let T be a triangular decomposition of
V . One can compute a triangular decomposition T′ of V
with no critical pairs, and where each pair of triangular sets
is certified.

Proof. Write T0 = T, and define a sequence Ti by Ti+1 =
Split(Ti), if Ti contains critical pairs, and Ti+1 = Ti other-
wise. Testing the presence of critical pairs is done by GCD
computations, which yields the Bézout coefficients in case
of coprimality. Let D be the number of irreducible compo-
nents of V . Any family Ti has cardinality at most D, so the
sequence Ti becomes stationary after at most D steps. �

Thus, we can now suppose that we have a triangular de-
composition T of V without critical pairs, and where every
pair is certified, such as the one computed in Proposition 3.
We describe the second part of the Split-and-Merge algo-
rithm: merging solvable families in a suitable order, to ob-
tain the equiprojectable decomposition of V .
For 0 ≤ κ ≤ n, we say that T satisfies property Pκ if for

all T, T ′ ∈ T the pair {T, T} is certified, has level � ≤ κ and
for all κ < i ≤ n satisfies degXi

Ti = degXi
T ′

i . Observe that
if P0(T) holds, then T contains only one triangular set, and
that the input family T satisfies Pn.

The basic merging algorithm. Let 1 ≤ κ ≤ n. We
now define the procedure Mergeκ, which takes as input a
family Tκ of triangular sets which satisfies Pκ, and outputs
several families of triangular sets, whose reunion defines the

same set of points, and all of which satisfy Pκ−1. First, we
partition Tκ using the equivalence relation T ≡ T ′ if and
only if T1, . . . , Tκ−1 = T ′

1, . . . , T
′
κ−1. Assumption Pκ shows

that each equivalence class is certified and solvable of level
κ. We then let S(κ) be the family of triangular sets obtained
by applying Proposition 1 to each equivalence class.

Lemma 1. Let S �= S′ in S(κ). The pair {S, S′} is non-
critical, certified, of level � < κ.

Proof. Let T, T ′ ∈ T, which respectively divide S and S′.
Due to assumption Pκ, there exists 0 ≤ � ≤ κ such that
T1, . . . , T�−1 = T

′
1, . . . , T

′
�−1 and (T1, . . . , T�) and (T

′
1, . . . , T

′
�)

have no common zero. Then, � < κ, since T �≡ T ′. Thus,
T1, . . . , T� = S1, . . . , S� and T

′
1, . . . , T

′
� = S′

1, . . . , S
′
�. Since

{T, T ′} is certified of level � < κ, {S, S′} is also. �

We partition S(κ) some more, into the classes of the equiv-
alence relation S ≡′ S′ if and only if degXκ

Sκ = degXκ
S′

κ.

Let S
(κ)
1 , . . . ,S

(κ)
δ be the equivalence classes, indexed by the

common degree in Xκ; we define Mergeκ(Tκ) as the data of
all these equivalence classes.

Lemma 2. Each family S
(κ)
d satisfies Pκ−1.

Proof. Let S �= S′ in S
(κ)
d , and let T, T ′ be as in the

proof of Lemma 1; we now prove the degree estimate. For
κ < i ≤ n, we have degXi

Ti = degXi
Si and degXi

T ′
i =

degXi
S′

i; assumption Pκ shows that degXi
Si = degXi

S′
i

for κ < i ≤ n. Since degXκ
Sκ = degXκ

S′
κ = d, the lemma

is proved. �

Proposition 4. V (S
(κ)
d ) = B(κ, d, V (Tκ)) for all d.

Proof. We know that V (Tκ) is the union of the V (S
(κ)
d ).

Besides, both families {V (S(κ)
d )} and {B(κ, d, V (T))} form

a partition of V (Tκ). Thus, it suffices to prove that for x

in V (Tκ), x ∈ V (S(κ)
d ) implies that πn

κ(x) ∈ A(d,W ), with

W = πn
κ(V (Tκ)). First, for S in S(κ), write WS = πn

κ(S).
Then Lemma 1 shows that the WS form a partition of W ,
and that their images πκ

κ−1(WS) are pairwise disjoint.

Let now x ∈ V (S
(κ)
d ) and y = πn

κ(x). There exists a

unique S ∈ S(κ) such that x ∈ V (S). The definition of

S
(κ)
d shows that there are exactly d points y′ in WS such

that πκ
κ−1(y) = πκ

κ−1(y
′). On the other hand, for any y ∈

WS′ , with S′ �= S, the above remark shows that πκ
κ−1(y) �=

πκ
κ−1(y

′). Thus, there are exactly d points y′ inW such that
πκ

κ−1(y) = π
κ
κ−1(y

′); this concludes the proof. �

The main merging algorithm. We can now give the
main algorithm. We start from a triangular decomposition
T of V without critical pairs, and where every pair is cer-
tified, so it satisfies Pn. Let us initially define Tn = {T};
note that Tn is a set of families of triangular sets. Then,
for 1 ≤ κ ≤ n, assuming Tκ is defined, we write Tκ−1 =
∪
U(κ)∈Tκ

Mergeκ(U
(κ)). Lemma 2 shows that this process is

well-defined; note that each Tκ is a set of families of trian-
gular sets as well.
Let U be a family of triangular sets in T0. Then U satisfies

P0, so by the remarks make previously, U consists in a single
triangular set. Proposition 4 then shows that the triangular
sets in T0 form the equiprojectable components of V .

111



3. PROOF OF THEOREM 1
In this section, we consider the simple solutions Z(F ) of

a system F = F1, . . . , Fn in Z[X1, . . . ,Xn], that is, those
where the Jacobian determinant J of F does not vanish. We
prove that for all primes p but a finite number, the equipro-
jectable decomposition of Z(F ) reduces modulo p to that of
Z(F mod p). These results require to control the cardinality
of the “specialization” of a variety at p. Such questions are
easy to formulate using primitive elements and associated
representations, which we now define as a preamble.

Primitive element descriptions. Let W ⊂ C � be a 0-
dimensional variety defined over Q. Let ∆ be a linear form
in Z[X1, . . . ,X�]. Its minimal polynomial is the minimal
polynomial µ ∈ Q[T ] of the multiplication endomorphism
by ∆ in Q[W ]; it is the squarefree part of Πx∈W (T −∆(x)).
Then ∆ is a primitive element for W if the map x �→ ∆(x)
is one-to-one on W . In this case, µ has degree degW and
Q[W ] is isomorphic to the residue class ring Q[T ]/µ. Writing
wi ∈ Q[T ] for the image of Xi, we deduce that µ(T ) = 0
and Xi = wi(T ), 1 ≤ i ≤ �, form a parametrization of the
points in W .
We will use quantitative estimates on the size of the co-

efficients in this representation, in terms of the degree and
height of W . The following result is [5, Th. 2]; using the
coefficient χ′ leads to sharp height bound, as is the case for
the polynomials N i defined in the introduction.

Lemma 3. Let h∆ be an upper bound of the height of ∆,
and H∆ = htW + (degW )h∆ + (degW ) log(� + 2) + (� +
1) log degW . There exist χ, v1, . . . , v� in Z[T ], such that
χ, χ′, v1, . . . , v� have height at most H∆, µn equals χ divided
by its leading coefficient, and wi = vi/χ

′ mod χ for all i.

Geometric considerations. Let now Z = Z(F ). For
1 ≤ i ≤ n, let ∆i be a linear form in Z[X1, . . . , Xi] which is
a primitive element for πn

i (Z), let µi ∈ Q[T ] be its minimal
polynomial, and let w1, . . . , wn ∈ Q[T ] be the parametriza-
tion of Z associated to ∆n. Let finally p a prime. We first
introduce assumptions on p (denoted by H1, H2, H3), that
yield the conclusion of Theorem 1 in a series of lemmas; we
then give quantitative estimates for these assumptions.

H1. The prime p divides no coefficients in µn, w1, . . . , wn

and µn remains squarefree modulo p.

Let Fq be a finite extension of Fp such that (µn mod p)
splits in Fq , let Qq be the corresponding unramified exten-
sion of Qp [20] and Zq its ring of integers; then, µn splits
in Qq , and has all its roots in Zq; thus, Z lies in Zn

q . Note
that p divides no coefficient in µ1, . . . , µn: the roots of µi

are the values of ∆i on π
n
i (Z), so they are in Zq, hence the

coefficients of µi are in Zq ∩ Q = Zp. The map Zq → Fq of
reduction modulo p extends to maps a ∈ Zi

q �→ a ∈ Fi
q for

all i. Given A ⊂ Zi
q, A is the set {a | a ∈ A}. The same

notation is used for the reduction of polynomials modulo p.

H2. All polynomials µi are squarefree.

Lemma 4. For i ≤ n, #πn
i (Z) equals #π

n
i (Z).

Proof. The inequality #πn
i (Z) ≤ #πn

i (Z) is obvious. By
assumptionH2, all values taken by ∆i on π

n
i (Z) are distinct,

so #πn
i (Z) ≥ degµi = #π

n
i (Z). �

Lemma 5. For all d2, . . . , dn, B(d2, . . . , dn, Z) equals

B(d2, . . . , dn, Z).

Proof. We prove on � = n+1, . . . , 2 that for all d�, . . . , dn,
B(d�, . . . , dn, Z) equals B(d�, . . . , dn, Z); taking � = 2 gives
the lemma. Since B(X) = X for any variety X, this prop-
erty holds for � = n+1. Assuming it for B(d�+1, . . . , dn, Z),
we prove it forB(d�, . . . , dn, Z). LetB = B(d�+1, . . . , dn, Z),
B� = π

n
� (B) and B�−1 = π

n
�−1(B); Lemma 4 implies that re-

duction modulo p is one-to-one on both B� and B�−1. For
y in B�−1 and z in B�−1, we define

µ(y) = (π�
�−1)

−1(y) ∩ B� and µ(z) = (π�
�−1)

−1(z) ∩B�.

We first prove that µ(y) and µ(y) have the same cardinality
for all y in B�−1. To this effect, observe the equalitiesX

y∈B�−1

#µ(y) = #B�,
X

z∈B�−1

#µ(z) = #B�.

Let now y in B�−1. Since µ(y) ⊂ µ(y), injectivity of the
reduction mod p on B� implies that #µ(y) ≤ #µ(y). Thus,

#B� =
X

y∈B�−1

#µ(y) ≤
X

y∈B�−1

#µ(y).

Injectivity of the reduction mod p on B�−1 implies thatX
y∈B�−1

#µ(y) =
X

z∈B�−1

#µ(z) = #B�.

This sum equals #B�. Thus, all inequalities are equalities,
giving our claim.
For x in B�, write ν(x) = µ(π

�
�−1(x)); define similarly ν(z)

for z in B�. By the previous point, ν(x) and ν(x) have the
same cardinality. Recalling from Section 2 that for d ∈ N,
we have defined A(d,B�) as the set {x ∈ B� | #ν(x) = d},
and A(d,B�) as the set {z ∈ B� | #ν(z) = d}, one can
see A(d,B�) = A(d,B�). To conclude, recall that by def-
inition {x ∈ Z | πn

� (x) ∈ A(d, πn
� (B(d�+1, . . . , dn, Z)))} =

B(d, d�+1, . . . , dn, Z). By the induction assumption, this
equals {x ∈ Z | πn

� (x) ∈ A(d,B�)}, and we have proved that
this equals {x ∈ Z | πn

� (x) ∈ A(d,B�)}. By definition, this
is B(d, d�, . . . , dn, Z), which is what we wanted. �

Lemma 6. Let T 1, . . . , T s be the triangular sets that de-
scribe the equiprojectable decomposition of Z. Then p can-
cels no denominator in the coefficients of T 1, . . . , T s, and
the reduction of these triangular sets modulo p defines the
equiprojectable decomposition of Z.

Proof. For i ≤ s, let Zi = Z(T
i). By Lemma 5, Z1, . . . , Zs

are the equiprojectable components of Z. For i ≤ s, Zi

is described by a triangular set ti with coefficients in Fp .
The coefficients of T i are rational functions of the points
in Zi, given by interpolation formulas [9, §3]. With these
formulas, Lemma 4 shows that all denominators are non-
zero modulo p. The coefficients of ti are obtained using the
same formulas, using the coordinates of the points in Zi.
Thus, ti = T i mod p. �

H3. The Jacobian determinant of F vanishes nowhere on Z.

Lemma 7. The set Z equals Z(F ).

Proof. First, we prove that F vanishes on Z. Indeed, all Fi

belong to the ideal generated by I = (µn,X1−w1, . . . ,Xn−
wn) in Q[T, X1, . . . ,Xn]. Now, I is a Gröbner basis, so any
Fi can be written in terms of I . Since p divides no de-
nominator and no leading term in I , the division equality
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specializes modulo p, and F vanishes on Z, as requested.
Let then Z′ = Z(F ). By Assumption H3, Z ⊂ Z′, so it
suffices to prove that #Z′ ≤ #Z. Let Fr be a finite exten-
sion of Fp that contains the coordinates of all these points
and let Qr be the corresponding unramified extension of Qp .
By Hensel’s lemma, all points in Z′ lift to pairwise distinct
simple roots of F in Qn

r . Thus, #Z
′ ≤ #Z = #Z. �

Quantitative estimates. By Lemmas 6 and 7, assump-
tions H1, H2 and H3 imply Theorem 1. Thus, it suffices to
give quantitative estimates for these assumptions. To this
effect, we let D and H be upper bounds on the degrees and
heights of the varieties πn

i (Z), h∆ be an upper bound of the
height of ∆1, . . . ,∆n, and H∆ = H +Dh∆ +D log(n+2)+
(n+ 1) logD.

Lemma 8. There exists a in N − {0} such that if p does
not divide a, H1 and H2 hold. Moreover a verifies:

hta ≤ n ((2D − 1)H∆ + (2D − 1) log(2D − 1)) .
Proof. Fix i in 1, . . . , n, and let χ, χ′, v1, . . . , vi the poly-
nomials associated to πn

i (Z) and ∆i in Lemma 3; all of
them have integer coefficients of height at most H∆. Let
now ai be the resultant of χ and χ

′; by Hadamard’s bound,
ht ai ≤ (2D − 1)H∆ + (2D − 1) log(2D − 1). Suppose that
p does not divide ai. Then, χ keeps the same degree and
remains squarefree modulo p. Furthermore, p divides no
coefficient in any wj , since all denominators in 1/χ

′ mod χ
divide ai. Thus, assumption H1 holds. Repeating this ar-
gument for all projections πn

i (Z), and taking a = a1 · · · an

gives assumption H2. �

Lemma 9. There exists a′ in N − {0} such that if p does
not divide aa′, H1, H2 and H3 hold, and with hta

′ ≤
2Dn(dH∆ + h+ log d+ (d+ 1)D log(n+ 1)).

Proof. Let χ, v1, . . . , vn be associated to ∆n as in Lemma 3,
let Jh be the homogenization of J w.r.t. a new variable, and
let a′ ∈ Z be the resultant of Jh(χ′, v1, . . . , vn) and χ; then,
a′ �= 0 by the definition of Z. The Jacobian determinant J
has coefficients of height at most n(h+log d+(d+1) log(n+
1)); estimating the height of the determinant of the Sylvester
matrix of Jh(χ′, v1, . . . , vn) and χ yields the bound on hta

′.
Suppose now that p does not divide aa′. Then the degree
of χ does not drop modulo p, and thus no root of χ cancels
Jh(χ′, v1, . . . , vn). In other words, all points described by
χ(T ) = 0 and χ′(T )Xi = vi(T ), 1 ≤ i ≤ n, are simple for F .
This set of points equals Z, giving H3. �

In view of Lemma 9, we prove Theorem 1 with A = aa′.
By [23, Lemma 2.1], all ∆i can be taken of height at most
h∆ = n(log n + 2 logD) ≤ n(log n + 2n log d). Using the
arithmetic Bézout bound of [17], we get after simplifications
that allH∆ are bounded by nd

n(h+3 log(n+1)+2n log d+3).
The previous lemmas then give the upper bounds below,
which finish proving Theorem 1 after a few simplifications.

ht a ≤ 2nd2n(h+ 3 log(n+ 1) + 2n log d+ 7)
ht a′ ≤ 2n2d2n+1(2h+ 4 log(n+ 1) + 3n log d+ 3).

4. PROOF OF THEOREM 2
We now give the details of our lifting algorithm: given a

polynomial system F , it outputs a triangular representation
of its set of simple solutions Z = Z(F ), by means of the
polynomials N1, . . . , Ns defined in the introduction. First

of all, we describe the required subroutines, freely using the
notation of Theorem 2, and that preceding it. We do not
give details of the complexity estimates for lack of space;
they are similar to those of [24].

• EquiprojDecomposition takes as input a polynomial
system F and outputs the equiprojectable decomposi-
tion of Z(F ), encoded by triangular sets. This routine
is called here for systems defined over finite fields. For
the experiments in the next section, we applied the tri-
angularization algorithm of [21], followed by the Split-
and-Merge algorithm of Section 2, modulo a prime.
Studying the complexity of this task is left to the forth-
coming [7]; hence, we consider this subroutine as an
oracle here, which is called O2 in Theorem 2.

• Lift applies the Hensel lifting algorithm of [24], but
this time to a family of triangular sets, defined first
modulo a prime p1, to triangular sets defined modulo
the successive powers p2

κ

1 . From [24], one easily sees
that the κth lifting step has a bit complexity quasi-
linear in (L, hL,C

n,
P

i≤s deg V (T
i), 2κ, log p1), i.e. in

(L, hL,C
n, degZ, 2κ, log p1).

• Convert computes the polynomials N i starting from
the polynomials T i. Only multiplications modulo tri-
angular sets are needed to perform this operation, so
its complexity is negligible before that of Lift.

• RationalReconstruction does the following. Let a =
p/q ∈ Q, and m ∈ N with gcd(q,m) = 1. If htm ≥
2hta + 1, given a mod m, this routine outputs a. If
htm < 2hta + 1, the output may be undefined, or
differ from a. We extend this notation to the recon-
struction of all coefficients of a family of triangular
sets. Using the fast Euclidean algorithm [12, Ch 5,11],
its complexity is negligible before that of Lift.

• We do not consider the cost of prime number gener-
ation. We see them as input here; formally, in Theo-
rem 2, this is handled by calls to oracle O1.

Computing a triangular decomposition by
lifting techniques

Input: The system F , primes p1, p2
Output: The polynomials N1, . . . , Ns.

T 1,0, . . . , T s,0← EquiprojDecomposition(Z(F mod p1))

u1, . . . , us′ ← EquiprojDecomposition(Z(F mod p2))

m1, . . . ,ms′ ← Convert(u1 , . . . , us′)
κ← 1
while not(Stop) do

T 1,κ, . . . , T s,κ ← Lift(T 1,κ−1, . . . , T s,κ−1) mod p2
κ

1

N1,κ, . . . , Ns,κ ← Convert(T 1,κ, . . . , T s,κ)

N1,κ
Q, . . . , N

s,κ
Q ← RationalReconstruction(N1,κ, . . . , Ns,κ)

Stop ←{m1, . . . , ms′} Equals {N1,κ
Q, . . . , N

s,κ
Q } mod p2

κ← κ+ 1
end while

return N1,κ−1
Q

, . . . , Ns,κ−1
Q

We still use the notation and assumption of Theorem 2.
From [9, Th. 1], all coefficients of N1, . . . , Ns have height
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in nO(1)(degZ + htZ), which can explicitly be bounded by
hF . For p1 ≤ exp (2hF + 1), define

d = d(p1) =

�
log2

�
2hF + 1

log p1

��
.

Then, p2
d(p1)

1 has height at least 2hF + 1. In view of the
prerequisites for rational reconstruction, d(p1) bounds the
number of lifting steps. From an intrinsic viewpoint, at the
last lifting step, 2κ is in O(nO(1)(degZ + htZ)).
Suppose that p1 does not divide the integer A of The-

orem 1. Then, Hensel lifting computes approximations
T 1,κ, . . . , T s,κ = T 1, . . . , T s modulo p2

κ

1 . At the κth lifting
step, let N1,κ, . . . , Ns,κ be the output of Convert applied
to T 1,κ, . . . , T s,κ, computed modulo p2

κ

1 ; let N
1,κ
Q , . . . , Ns,κ

Q

be the same polynomials after rational number reconstruc-
tion, if possible. By construction, they have rational co-
efficients of height at most 2κ−1 log p1. Supposing that p2
does not divide the integer A of Theorem 1, failure occurs
only if for some κ in 0, . . . , d − 1, and some j in 1, . . . , s,
Nj,κ
Q and Nj differ, but coincide modulo p2. For this to

happen, p2 must divide some non-zero number of height at
most hF + 2

κ−1 log p1 + 1. Taking all κ into account, this
shows that for any prime p1, there exists a non-zero integer
Bp1 such that htBp1 ≤ (hF + 1)d+ 2

d log p1, and if p2 does
not divide Bp1 , the lifting algorithm succeeds. One checks
that the above bound can be simplified into htBp1 ≤ bF .
Let C ∈ N be such that

C =

�
4aF + 2bF

ε

�
, so that C ≤ 1

2
exp (2hF + 1);

let Γ be the set of pairs of primes in [C + 1, . . . , 2C]2 and
γ be the number of primes in C + 1, . . . , 2C; note that
γ ≥ C/(2 logC) and that #Γ = γ2. The upper bound
on C shows that all primes p less than 2C satisfy the re-
quested inequality log p ≤ 2hF + 1. We can then estimate
how many choices of (p1, p2) in Γ lead to failure. There
are at most aF /logC primes p1 in C + 1, . . . , 2C which di-
vide the integer A of Theorem 1, discriminating at most
γaF /logC pairs (p1, p2). For any other value of p1, there
are at most (aF + bF )/logC choices of p2 which divide A
and Bp1 . This discriminates at most γ(aF +bF )/logC pairs
(p1, p2). Thus the number of choices in Γ leading to failure
is at most γ(2aF + bF )/logC. The lower bound on γ shows
that if (p1, p2) is chosen randomly with uniform probability
in Γ, the probability that it leads to failure is at most

γ(2aF + bF )

#Γ logC
=
γ(2aF + bF )

γ2 logC
=
2aF + bF

γ logC
≤ 4aF + 2bF

C
,

which is at most ε, as requested.
To estimate the complexity of this algorithm, note that

since we double the precision at each lifting step, the cost
of the last lifting step dominates. From the previous dis-
cussion, the number of bit operations cost at the last step
is quasi-linear in (L, hL,C

n,degZ, 2κ, log p1). The previous

estimates show that at this step, 2κ is in O(nO(1)(degZ +
htZ)), whereas log p1 is quasi-linear in | log ε|, log h, d, log n.
Putting all these estimates ends the proof of Theorem 2.

5. EXPERIMENTATION
We realized a firstMaple 9.5 implementation of our mod-

ular algorithm on top of the RegularChains library [19].
Tests on benchmark systems [25] reveal its strong features,

Sys Name n d h h

1 Cyclohexane 3 4 3 4395
2 Fee 1 4 4 2 24464
3 fabfaux 3 3 13 2647
4 geneig 6 3 2 116587
5 eco6 6 3 0 105718
6 Weispfenning-94 3 5 0 7392
7 Issac97 4 2 2 1511
8 dessin-2 10 2 7 358048
9 eco7 7 3 0 387754
10 Methan61 10 2 16 450313
11 Reimer-4 4 5 1 55246
12 Uteshev-Bikker 4 3 3 7813
13 gametwo5 5 4 8 159192
14 chemkin 13 3 11 850088102

Table 1: Features of the polynomial systems

Sys p1 d a Ca

1 4423 7 2 15
2 24499 8 4 70
3 2671 7 5 110
4 116663 10 5 162
5 105761 10 3 40
6 7433 7 3 31
7 1549 6 5 102
8 358079 11 7 711
9 387799 11 4 89
10 450367 11 6 362
11 55313 9 2 19
12 7841 7 5 125
13 159223 10 - -
14 850088191 18 - -

Table 2: Data for the modular algorithm

Sys ∆p Ep Lift Total Mem. Output size
1 1 0.3 2 7 5 243
2 3 1 9 20 6 4157
3 8 0.4 6 22 7 5855
4 5 1 5 18 6 4757
5 12 1.5 6 35 6 2555
6 16 1.5 11 43 7 3282
7 66 0.4 4 133 8 4653
8 47 9 232 427 13 122902
9 1515 9 35 2873 11 9916
10 2292 6 82 4686 25 50476
11 3507 1 9 5569 38 2621
12 4879 2 22 8796 63 12870
13 ∞ - - - - -
14 - - - - fail -

Table 3: Results from our modular algorithm

Sys Triang. Mem. Size gsolve Mem. Size
1 0.4 4 169 0.2 3 239
2 2 6 1680 504 18 34375
3 512 275 6250 1041 34 27624
4 2.5 4 743 - fail -
5 5 5 3134 9 5 2236
6 3000 250 2695 4950 66 34932
7 - fail - 1050 31 31115
8 - fail - - error -
9 1593 18 55592 - fail -
10 ∞ - - - fail -
11 - fail - - fail -
12 - fail - - fail -
13 - fail - ∞ - -
14 - fail - - fail -

Table 4: Results from Triangularize and gsolve

compared with two other Maple solvers, Triangularize,
from the RegularChains library, and gsolve, from the Groe-
bner library. Remark that the triangular decompositions
modulo a prime, that are needed in our algorithm, are per-
formed by Triangularize. This function is a generic code:

114



essentially the same code is used over Zand modulo a prime.
Thus, Triangularize is not optimized for modular compu-
tations.
Our computations are done on a 2799 MHz Pentium 4.

For the time being our implementation handles square sys-
tems that generate radical ideals. We compare our al-
gorithm called TriangularizeModular with gsolve and
Triangularize;
For each benchmark system, Table 1 lists the numbers

n, d, h h and Table 2 lists the prime p1, the a priori and ac-
tual number of lifting steps (d and a) and the maximal height
of the output coefficients (Ca). Table 3 gives the time of one
call to Triangularize modulo p1 (∆p), the equiprojectable
decomposition (Ep), and the lifting (Lift.) in seconds — the
first two steps correspond to the “oracle calls” O2 mentioned
in Theorem 2, which will be studied in [6]. Table 3 gives also
the total time, the total memory usage and output size for
TriangularizeModular, whereas Table 4 gives that data for
Triangularize and gsolve.
The maximum time is set up to 10800 seconds; we set the

probability of success to be at least 90%.
TriangularizeModular solves 12 of the 14 test systems

before the timeout, while Triangularize succeeds with 7
and gsolve with 6. Among most of the problems which
gsolve can solve, TriangularizeModular shows less time
consumed, less memory usage, and smaller output size. No-
ticeably, quite a few of the large systems can be solved
by TriangularizeModular with time extension: system
13 is solved in 18745 seconds. Another interesting sys-
tem is Pinchon-1 (from the FRISCO project), for which
n = 29, d = 16, h = 20, h = 1409536095e + 29, which we
solve in 64109 seconds. Both Triangularize and gsolve

fail these problems due to memory allocation failure. Our
modular method demonstrates its efficiency in reducing the
size of the intermediate computations, whence its ability to
solve difficult problems.
We observed that for every test system, for which Ep

can be computed, the Hensel lifting always succeeds, i.e.
the equiprojectable decomposition over Q can be recon-
structed from Ep. In addition, TriangularizeModular

failed chemkin at the ∆p phase rather than at the lifting
stage. Furthermore, the time consumed in the equipro-
jectable decomposition and the Hensel lifting is rather in-
significant comparing with that in triangular decomposition
modulo a prime. For every tested example the Hensel lift-
ing achieves its final goal in less steps than the theoretical
bound. In addition, the primes derived from our theoretical
bounds are of quite moderate size, even on large examples.

6. CONCLUSIONS
We have presented a modular algorithm for triangular

decompositions of 0-dimensional varieties over Q and have
demonstrated the feasibility of Hensel lifting in computing
triangular decompositions of non-equiprojectable varieties.
Experiments show the capacity of this approach to improve
the practical efficiency of triangular decomposition.
By far, the bottleneck is the modular triangularization

phase. This is quite encouraging, since it is the part for
which we relied on generic, non-optimized code. The next
step is to extend these techniques to specialize variables as
well during the modular phase, following the approach initi-
ated in [13] for primitive element representations, and treat
systems of positive dimension.
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[24] É. Schost. Complexity results for triangular sets. J. Symb.
Comp., 36(3-4):555–594, 2003.

[25] The symbolicdata project, 2000–2002.
http://www.SymbolicData.org.

[26] W. Trinks. On improving approximate results of Buchberger’s
algorithm by Newton’s method. In EUROCAL 85, volume 203
of LNCS, pages 608–611. Springer, 1985.

115


