FAST FOURIER TRANSFORMS OVER PRIME FIELDS OF LARGE
CHARACTERISTIC AND THEIR IMPLEMENTATION ON
GRAPHICS PROCESSING UNITS
(Thesis format: Monograph)

Davood Mohajerani

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

(© Davood Mohajerani 2016

THE UNIVERSITY OF WESTERN ONTARIO
School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Examiners:

Supervisor:

Dr. Marc Moreno Maza Dr. Dan Christensen

Dr. Mark Daley

The thesis by

Davood Mohajerani

entitled:

Fast Fourier Transforms over Prime Fields of Large Characteristic and their

Implementation on Graphics Processing Units

is accepted in partial fulfillment of the
requirements for the degree of

Master of Science

Date Chair of the Thesis Examination Board

ii

Abstract

Prime field arithmetic plays a central role in computer algebra and supports computa-
tion in Galois fields which are essential to coding theory and cryptography algorithms.
The prime fields that are used in computer algebra systems, in particular in the imple-
mentation of modular methods, are often of small characteristic, that is, based on prime
numbers that fit on a machine word. Increasing precision beyond the machine word size

can be done via the Chinese Remainder Theorem or Hensel’s Lemma.

In this thesis, we consider prime fields of large characteristic, typically fitting on n ma-
chine words, where n is a power of 2. When the characteristic of these fields is restricted to
a subclass of the generalized Fermat numbers, we show that arithmetic operations in such
fields offer attractive performance both in terms of algebraic complexity and parallelism.
In particular, these operations can be vectorized, leading to efficient implementation of

fast Fourier transforms on graphics processing units.

Keywords: Fast Fourier transforms, finite fields of large characteristic, graphics pro-

cessing units

1ii

Acknowlegements

First and foremost, I would like to offer my sincerest gratitude to my supervisor Professor

Marc Moreno Maza, I am very thankful for his great advice and support.

It is my honor to have Professor John Barron, Professor Dan Christensen, and Professor

Mark Daley as the examiners. I am grateful for their insightful comments and questions.

I would like to thank the members of Ontario Research Center for Computer Algebra
and the Computer Science Department of the University of Western Ontario. Specially,
[am thankful to my colleagues Dr. Ning Xie, Dr. Masoud Ataei, and Egor Chesakov for

proofreading chapters of my thesis.

Finally, I am very thankful to my family and friends for their endless support.

iv

Contents

List of Algorithms viii
List of Figures X
List of Tables xii
1 Introduction 1

2 Background
2.1 GPGPU computing
2.1.1 CUDA programming model

2.1.2 CUDA memory model 11
2.1.3 Examples of programs in CUDA 13
2.1.4 Performance of GPU programs 16
2.1.5 Profiling CUDA applications 19
2.1.6 A note on psuedo-code. 20
2.2 Fast Fourier Transforms 21

3 Arithmetic Computations Modulo Sparse Radix Generalized Fermat

Numbers 24
3.1 Representation of Z/pZo 25
3.2 Finding primitive roots of unity in Z/pZ 27
3.3 Addition and subtraction in Z/pZ 28
3.4 Multiplication by a power of rin Z/pZ 29
3.5 Multiplication in Z/pZ 29

4 Big Prime Field Arithmetic on GPUs 31
4.1 Preliminaries 31
4.1.1 Parallelism for arithmetic in Z/pZ 32

4.1.2 Representing data in Z/pZ 32

4.1.3 Location of data, 33

4.1.4 Transposing input data 35
4.2 Implementing big prime field arithmetic on GPUs 38
4.2.1 Host entry point for arithmetic kernels 38
4.2.2 Implementation notes 41
4.2.3 Addition and subtraction in Z/pZ 42
4.2.4 Multiplication by a power of v in Z/pZ 45
4.2.5 Multiplication in Z/pZ 46
4.3 Profiling resultso 5%)
Stride Permutation on GPUs 60
5.1 Stride permutation 60
5.1.1 GPU kernels for stride permutation 62
5.1.2 Host entry point for permutation kernels 67
5.2 Profiling results 68
Big Prime Field FFT on GPUs 70
6.1 Cooley-Tukey FFT 70
6.2 Multiplication by twiddle factors 71
6.3 Implementation of the base-case DFT-K 73
6.3.1 Expanding DFT-K based on six-step FFT 73
6.3.2 Implementation of DFT-2 73
6.3.3 Computing DFT-16 based on DFT-2 75
6.4 Host entry point for computing DFT 86
6.4.1 FET-K? 86
6.4.2 FFT-general basedon K 87
6.5 Profiling results oo 89

Experimental Results: Big Prime Field FFT vs Small Prime Field FFT 90
7.1 Background 90
7.2 Comparing FF'T over small and big prime fields 92

7.2.1 Benchmark 1: Comparison when computations produce the same
amount of output data 0oL 93

7.2.2 Benchmark 2: Comparison when computations process the same

amount of input data 93
7.3 Benchmark results 93
7.3.1 Performance analysis. L. 94

vi

7.4 Concluding remarks oo 97

Bibliography 99
Appendix A Table of 32-bit Fourier primes 102
Appendix B Hardware specification 103
B.1 GeforceGTX760M (Kepler) 103
Appendix C Source code 105
C.1 Kernel for computing reverse mixed-radix conversion 105

Curriculum Vitae 108

vii

List of Algorithms

2.1
3.1
3.2
3.3
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
5.1
5.2
5.3
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Radix K Fast Fourier Transformin R 23
Primitive N-th root w € Z/pZ s.t. N2k =¢ ... 27
Computing © +y € Z/pZ for x,y € Z/pZ 28
Computing zy € Z/pZ for x,y € Z/pZ 29
DeviceAddition(X, ¥,k,T)o 43
DeviceSubtraction(X, ¥,k,T)o 44
DeviceRotation(X,k) 45
DeviceMultPowR(%, s, k,x) L 46
DeviceMultFinalResult(1,1, &, k,T) v o i 48
DevicelntermediateProductl([a,b],k :=8,r:=2%3 +23%) 49
KernelSequentialPlainMult(X, Y, U, N, k,r) 51
DeviceSequentialMult(X, ¥,k,x) 52
KernelParallelPlainMult(X, Y, U, L, H,C,N,k, 1)o oo, 54
DeviceParallelMult(X, ¥,k,r) 5h)
KernelBasePermutationSingleBlock(X, Y, K, N, k,s,r) 65
KernelBasePermutationMultipleBlocks(X, Y, K, N, k,s,r) 66
HostGeneralStridePermutation (X,Y,K,N,k,s,r,;b) 68
KernelTwiddleMultiplication(X, 2, N,K,k,s,r) 72
DeviceDFT2(X, 1, 3, N, K,T) o v v v v e e e e e e 74
DeviceDFT16Stepl (X, N, K,T) . . . v v v ot o i e e e e 76
DeviceDFT16Step2(X, N, K, T) o« o v v v v ot e e e e e 78
DeviceDFT16Step3(X, N, K,T) &« © o v v v v ot e e e e 79
DeviceDFT16Stepd(X, N, K, T) o o v v v v v o e e e e 80
DeviceDFT16Step5(X, N, K, T) o o v v v v v o e e e e e e e 81
DeviceDFT16Step6(X, N, ., T) o o v v v vt oo e e e 83
DeviceDFT16Step7(X, N, K, T) .« o v v v v ot o e e 84
DeviceDFT16Step8(X, N, K, T) .« o v v v v o e e e e 85

viii

6.11 KernelBaseDFT16AlISteps(X, N, k, r)
6.12 HostDFTK2(X, 4, N,K,k,s,r,b) . .
6.13 HostDFTGeneral(X, @, N,K, k, s, 1, b)

X

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2

6.1

7.1
7.2

Example of a 2D thread block with 2 rows and 6 columns.
Example of a 2D grid with 2 rows and 4 columns.
Host and device in the CUDA programming model.
CUDA memory hierarchy for CC 2.0 and higher.
A CUDA example for computing point-wise addition of two vectors.
A CUDA example for transposing matrices by using shared memory.
Four independent instructions.

Anexample of ILP.

The non-transposed input matrix Mo.
Indexes of digits in the non-transposed matrix Mp.
Threads inside a warp reading from the non-transposed input.
The transposed input matrix My.o
Indexes of digits in the transposed matrix My.
Threads inside a warp reading from the transposed input.
Diagram of running-time for N =2,o o000 0oL
Diagram of instruction overhead for N =27,
Diagram of memory overhead for N =27,
Diagram of IPC for N =217

Diagram of memory load efficiency for N =27,

Diagram of memory store efficiency for NV =

Profiling results for stride permutation LE‘] for K =256 and J =4096.

Profiling results for stride permutation L?I for K =16 and J =2,
Running-time for computing DFTy with N = K*and K =16.

Speed-up diagram of Benchmark 1 for K =16.
Speed-up diagram of Benchmark 2 for K =16.

10
10
11
14
15
18
19

B.1 Hardware specification for NVIDIA GeforceGTX760M. 103
B.2 The bandwidth test from CUDA SDK (samples/1 Utilites/bandwidthTest). 104

X1

List of Tables

2.1 The maximum number of warps per streaming multiprocessor. 11
2.2 The number of 32-bit registers per streaming multiprocessor. 12
2.3 A short list of performance metrics of nvprof. 20
3.1 SRGFNSs of practical interest. 0L 25
7.1 Running time of computing Benchmark 1 for N = K? with K =16. 95
7.2 Running time of computing Benchmark 1 for N = K3 with K =16. 95
7.3 Running time of computing Benchmark 1 for N = K4 with K =16. 95
7.4 Running time of computing Benchmark 1 for N = K° with K =16. 95
7.5 Running time of computing Benchmark 2 for N = K¢ with K =16.. 95
A.1 Table of 32-bit Fourier primes. 102

xii

Chapter 1
Introduction

Prime field arithmetic plays a central role in computer algebra and supports computation
in Galois fields which are essential to coding theory and cryptography algorithms. In
computer algebra, the so-called modular methods are the main application of prime field

arithmetic. Let us give a simple example of such methods.

Consider a square matrix A of order n with coefficients in the ring Z of integers. It is well-
known that det(A), the determinant of A, can be computed in at most 2n? arithmetic
operations in the field Q of rational numbers, by means of Gaussian elimination. However
the cost of each of those operations is not the same and, in fact, depends on the bit size of
the rational numbers involved. It can be proved that, if B is the maximum absolute value
of a coefficient in A then computing the determinant of A directly (that is, over Z) can be
done within O(n® (logn + logB)?) machine-word operations, see the landmark book [24].
If a modular method is used, based on the Chinese Remainder Theorem (CRT), one can

reduce the cost to O(n*log?(nB) (log’n + log® B)) machine-word operations.
Let us explain how this works. Let d be the determinant of A and let us choose a prime
number p € Z such that the absolute value | d | of d satisfies

21d|<p.

Let r be the determinant of A regarded as a matrix over Z/pZ and let us represent the

elements of Z/pZ within the symmetric range [—2-* - - - 2-1]. Hence we have

p p p p
— L ~and —=<d<= 1.1
2<7“<2an 2< <2 ()

leading to
—p<d—-r<p (1.2)

Observe that det(A) is a polynomial expression in the coefficients of A. For instance with
n = 2 we have
det(A) = Q711092 — A12 A21. (13)

Denoting by Z? the residue class in Z/pZ of any x € Z, we have
z+y = 7+y and TY = TP, (1.4)

for all z,y € Z. 1t follows for n = 2, and using standard notations, that we have

det(A) = a? az” — az” aar’. (1.5)

More generally, we have
det(A)” = det(A mod p), (1.6)

that is, d = r mod p. This with Relation (1.2) leads to
d=r. (1.7)

In summary, the determinant of A as a matrix over Z is equal to the determinant of
A regarded as a matrix over Z/pZ provided that 2 | d |< p holds. Therefore, the
computation of the determinant of A as a matrix over Z can be done modulo p, which
provides a way of controlling expression swell in the intermediate computations. See the
introduction of Chapter 5 in [23] for a discussion of this phenomenon of expression swell

in the intermediate computations.

But if d is what we want to compute, the condition 2 | d |< p is not that helpful for
choosing p. However, Hadamard’s inequality tells us that, if B is the maximum absolute

value of an entry of A, then we have
|d| < n"?B" (1.8)

One can then choose a prime number p satisfying 2n"™/? B™ < p. Of course, such prime
may be very large and thus the expected benefit of controlling expression swell may be

limited.

An alternative approach is to consider pairwise different prime numbers py, ..., p. such

that their product exceeds 2n"/? B", and each of them fits on a machine-word. Then,

computing the determinants of A regarded as a matrix over Z/pZ, ..., Z/p.Z leads to
values r1,...,r., respectively. Finally, applying the CRT yields d.

The advantage of this alternative approach is that for a prime number p fitting on the
machine-word of computer, arithmetic operations modulo p can be implemented effi-

ciently using hardware integer operations.

However, using machine-word size, thus small, prime numbers has also serious incon-
veniences in certain modular methods, in particular for solving systems of non-linear
equations. Indeed, in such circumstances, the so-called unlucky primes are to be avoided,

see for instance [1, 9].

For an example of a modular method incurring unlucky primes, let us consider the simple
problem of computing a Greatest Common Divisor (GCD) of two univariate polynomials
with integer coefficients. Let f = f, 2" +---+ fo and g = g™ + - - - + go be polynomials
in z, with respective degrees n and m, and with coefficients in a unique factorization

domain (UFD) R. The following matrix is called the Sylvester matriz of f and g.

Jo 9o
fn—i fO
: ' : Gm—i - - Qo
: L Om :
fn fn—i 9m—i
In 9m

Its determinant is an element of R called the resultant of f and g. This determinant is
usually denoted by res(f, g) and enjoys the following property: a GCD h of f and ¢ has
degree zero (that is, h is simply an element of R) if and only the res(f, g) # 0 holds. In
other words, f and g have a non-trivial GCD (that is, a GCD of positive degree) if and
only the res(f, g) = 0 holds.

Assume now that R is the ring Z of the integer numbers and that res(f,g) # 0 holds.
Suppose that this latter fact is not known and that one is computing a GCD of f and g by
means of a modular method based on the CRT. More precisely, we are computing GCDs

of f and ¢ modulo sufficiently many prime numbers pq, ..., p., obtaining polynomials

hi,..., he in Z/p1Zx],...,Z/p.Z[x]. If none of the prime numbers py,...,p. divides
res(f/h,g/h), nor the leading coefficients of f,, and g,,, then combining hq,..., h. by
CRT yields a GCD of f and g (which, under the assumption res(f, g) # 0 turns out to be
a constant). However, if one of the prime numbers p1, ..., p., say p;, divides res(f/h, g/h)
(even if it does not divide f,, nor g,,) then h; has a positive degree. It follows that h; is
not a modular image of a GCD of f and g in Z[z]. Therefore, this prime p; should not

be used in our CRT scheme and for this reason is called unlucky.

Note that as the coefficients of f and g grow, so will res(f, g). As a consequence, small
primes are likely to be unlucky for input data with large coefficients. While there are
tricks to overcome the noise introduced by unlucky primes, this become a serious com-
putational bottleneck, as raised in [2], in an application of polynomial system solving
to Hilbert’s 16-th Problem. To summarize, certain modular methods, when applied to
challenging problems, require the use of prime numbers that do not necessarily fit on a

machine-word. This observation motivates the work presented in this thesis.

In this thesis, we consider prime fields of large characteristic, typically fitting on k& ma-
chine words, where k is a power of 2. For those modular methods in polynomial system
solving that require such big prime numbers, one of the most fundamental operations
is the Discrete Fourier transform (DFT) of a polynomial. Here again, we refer to the
landmark book [24].

Consider a prime field Z/pZ and N, a power of 2, dividing p — 1. Then, the finite field
Z/pZ admits a N-th primitive root of unity; let us denote by w such an element of
Z/pZ. Let f € Z/pZ|x] be a polynomial of degree at most N — 1. Then, computing
the DFT of f at w produces the values of f at the successively powers of w, that is,
f(W°), f(wh),... f(wN™1). Using an asymptotically fast algorithm, namely a fast Fourier

transform (FFT), this calculation amounts to:

1. N log(N) additions in Z/pZ,
2. (N/2) log(N) multiplications by a power of w in Z/pZ.

If the bit-size of p is k machine words, then

1. each addition in Z/pZ costs O(k) machine-word operations,

2. each multiplication by a power of w costs O(k?) machine-word operations.
Therefore, multiplication by a power of w becomes a bottleneck as k grows.

To overcome this difficulty, we consider the following trick proposed by Martin Fiirer

in [12, 13]. We assume that N = K¢ holds for some “small” K, say K = 256 and an
integer ¢ > 2. Further, we define n = w™//, with J = K¢ ! and assume that mul-
tiplying an arbitrary element of Z/pZ by ', for any i = 0,..., K — 1, can be done
within O(k) machine-word operations. Consequently, every arithmetic operation (addi-
tion, multiplication) involved in a DFT of size K, using 1 as a primitive root, amounts to
O(k) machine-word operations. Therefore, such DFT of size K can be performed within
O(K log(K) k) machine-word operations. As we shall see in Chapter 3, this latter result

holds whenever p is a so called generalized Fermat number.

Considering now a DFT of size N at w. Using the factorization formula of Cooley and
Tukey,
DFT;x = (DFT,; ® Ix)Dyx(I; @ DFTg)L7", (1.10)

see Section 2.2, the DFT of f at w is essentially performed by:

1. K¢! DFT’s of size K (that is, DFT’s on polynomials of degree at most K — 1),
2. N multiplications by a power of w (coming from the diagonal matrix D) and
3. K DFT’s of size K¢ L.

Unrolling Formula (2.4) so as to replace DFT; by DF Tk and the other linear operators
involved (the diagonal matrix D and the permutation matrix L) one can deduce that a
DFT of size N = K* reduces to:

1. e K¢~! DFT’s of size K, and
2. (e — 1) N multiplication by a power of w.

Recall that the assumption on the cost of a multiplication by 7%, for 0 < i < K, makes the
cost for one DFT of size K to O(K log,(K) k) machine-word operations. Hence, all the
DFT’s of size K together amount to O(e N log, (K)k) machine-word operations, that is,
O(N logy(N) k) machine-word operations. Meanwhile, the total cost of the multiplication
by a power of w is O(e N k?) machine-word operations, that is, O(N log, (N) k?) machine-
word operations. Indeed, multiplying an arbitrary element of Z/pZ by an arbitrary
power of w requires a long multiplication at a the cost O(k?) machine-word operations.

Therefore, under our assumption, a DFT of size N at w amounts to
O(N logy(N)k + N logg(N)k?) (1.11)

machine-word operations. When using generalized Fermat primes, we have K = 2k.

Hence, the second term in the big-oh notation, dominates the first one.

Without our assumption, as discussed earlier, the same DFT would run within O(N log,(N) k?)
machine-word operations. Therefore, using generalized Fermat primes brings a speedup

factor of log(K') w.r.t. the direct approach using arbitrary prime numbers.

At this point, it is natural to ask what would be the cost of a comparable compu-
tation using small primes and the CRT. To be precise, let us consider the following
problem. Let py,...,pr pairwise different prime numbers of machine-word size and let
m be their product. Assume that N divides each of p; — 1,...,pr — 1 such that the
each of fields Z/piZ, . .., 7 /p.Z admits a N-th primitive roots of unity, wy,...,wy, Then
w = (w1, ...,w) is an N-th primitive root of Z/mZ. Indeed, the ring Z/p1Z&®- - -QZ/p.Z
is a direct product of fields. Let f € Z/mZ|z| be a polynomial of degree N — 1. One can
compute the DFT of f at w in three steps:

1. Compute the images f1,..., fr of fin Z/pZ]x|,...,Z]piZ[z].
2. Compute the DFT of f; at w; in Z/p;Z[z], fori =1,... k,
3. Combine the results using CRT so as to obtain a DFT of f at w.

The first and the third above steps will run within O(k x N x k?) machine-word operations

meanwhile the the second one amount to O(k x N log(N)) machine-word operations.

These estimates seem to suggest that the big prime field approach is slower than the
small prime fields approach by a factor of k/log(K). However, we should keep in mind
that £ and K are small constants meanwhile N is the only quantity which is arbitrary
large. Thus, the factor k/log(K) does not mean much, at least theoretically. Moreover,
the big prime field FFT approach and the above second step in the small prime field
FFT approach have similar memory access patterns and costs. Indeed, they use the
same 6-step FFT algorithm. Hence, the above first and third steps are overheads to the

small prime field FFT approach in terms of memory access costs.

Therefore, it is hard to compare the computational efficiency of the two approaches by
using theoretical arguments only. In other words, experimentation is needed and this is
what this thesis is about.

The contributions of this thesis are as follows:

1. We present algorithms for arithmetic operations in the “big” prime field Z/pZ,
where p is a generalized Fermat number of the form p = r¥ + 1 where r fits a
machine-word and k is a power of 2.

2. We report on an a GPU (Graphics Processing Units) implementation of those

algorithms as well as a GPU implementation of an FF'T over such big prime field.

3. Our experimental results show that
(a) computing an FFT of size N, over a big prime field for p fitting on k& 64-bit
machine-words, and
(b) computing 2k FFTs of size N, over a small prime field (that is, where the prime
fits a 32-bit half-machine-word) followed by a combination (i.e. CRT-like) of
those FFTs
are two competitive approaches in terms of running time. Since the former approach
has the benefits mentioned above (in the area of polynomial system solving), we

view this experimental observation as a promising result.

The reasons for a GPU implementation are as follows. First, the model of computations
and the hardware performance provide interesting opportunities to implement big prime
field arithmetic, in particular in terms of vectorization of the program code. Secondly,
highly optimized FF'Ts over small prime fields have been implemented on GPUs by Wei

Pan [17, 18] and we use them in our experimental comparison.
This thesis is organized as follows:

e Chapter 2 gathers background materials on GPU programming and FFTs.

e Chapter 3 presents algorithms for performing additions and multiplications in the
big prime field Z/pZ.

e Chapter 4 contains our GPU implementation of the algorithms of Chapter 3.

e Chapter 5 discusses how to efficient implement on GPUs the permutations that are
required by FFT algorithms.

e Chapter 6 explains how to take advantage of Coolye-Tukey factorization formula
in the context of the trick of Martin Fiirer for computing FFTs over the big prime
field Z/pZ. A GPU implementation of those ideas follows.

e Chapter 7 reports on the experimental comparison “big vs small” that was men-

tioned above.

Chapter 3 is based on a preliminary work by Svyatoslav Covanov, a former student
of Professor Marc Moreno Maza. A first GPU implementation of the algorithms in
Chapters 3 together with a GPU implementation of FFTs over the big prime field Z/pZ
was attempted by Dr. Liangyu Chen! (a former visiting scholar working with Professor

Marc Moreno Maza) but yielded unsatisfactory experimental results.

'http://faculty.ecnu.edu.cn/s/187/t/1487/main. jspy

http://faculty.ecnu.edu.cn/s/187/t/1487/main.jspy

Chapter 2
Background

In this chapter, we review the basic principles of GPGPU computing and fast Fourier
transforms. First, in Section 2.1, we explain GPGPU computing, and specifically, how
we can develop parallel programs in the NVIDIA CUDA programming model. Then, in

Section 2.2, we explain fast Fourier transform and its related definitions.

2.1 GPGPU computing

Parallel programming has always been considered as a difficult task. Among many avail-
able platforms, general purpose graphics processing unit (GPGPU) computing has proven
to be a cost-effective solution for scientific computing. GPUs are parallel processors that
can handle huge amounts of data. This makes GPUs the suitable type of platform for
data parallel algorithms. Data-parallelism refers to a type of computation in which the
work can be distributed to lots of smaller tasks, with little or no dependency between
them. In less than a decade, GPGPU computing has evolved from a cutting edge tech-
nology to one of the mainstream solutions for high-end computing, specifically NVIDIA
corporation has played a huge role in developing and promoting the CUDA program-
ming model (see [19] for more details). In this section, we explain preliminary definitions
and keywords that will be frequently used in relation to the CUDA programming model.

Definitions and examples of this chapter are based on [7] and [8].

2.1.1 CUDA programming model

Compute Unified Device Architecture, or CUDA, is a programming model and language
extension that is developed and supported by NVIDIA corporation. The CUDA platform

GPGPU computing 9

provides language extensions in C/C++ and a number of other languages. The main
purpose of the CUDA platform is to provide a simplified interface for writing scalable

parallel programs that can be easily recompiled on GPU cards of different architectures.

Thread. A thread is the smallest computational unit in the CUDA programming model.
At the time of execution, every thread will be assigned to one scalar processor. Also,
each thread belongs to a thread block. Finally, each thread has a unique index inside
its respective thread block, which depending on dimensions of the thread block can be

accessed via

1. threadldx.x,
2. threadldx.y (only if the thread belongs to a 2D or 3D thread block),
3. threadldx.z (only if the thread belongs to a 3D thread block).

Thread block. A group of threads together form a thread block. Each thread block
belongs to a grid. Finally, each thread block has a unique index inside its respective grid,

which depending on the dimensions of the grid can be accessed via

1. blockldx.x,
2. blockldx.y (only if the thread block block belongs to a 2D or 3D grid),
3. and blockldx.z (only if the thread block belongs to a 3D grid).

Figure 2.1 illustrates an example of a two dimensional thread block with 2 rows and 6

columns.

Thread Block

= = Threadldx.x=5
Threadldx.x=0 | Threadldx.x=1 | Threadldx.x=2 | Threadldx.x=3| Threadldx.x=4
Threadldx.y=0 | Threadldx.y=0 | Threadldx.y=0 Threadldx.y=0| Threadldx.y=0 | Threadldx.y=0

Threadldx.x=0 |Threadldx.x=1 | Threadldx.x=2 Threadldx.x=3| Threadldx.x=4 | Threadldx.x=5
Threadldx.y=1 | Threadldx.y=1 | Threadldx.y=1 Threadldx.y=1| Threadldx.y=1 | Threadldx.y=1

Figure 2.1: Example of a 2D thread block with 2 rows and 6 columns.

Grid. A group of independent thread blocks together form a grid. CUDA-capable GPUs
can support 2D or 3D grids (depending on their architecture). Figure 2.2 illustrates an

GPGPU computing 10

example of a two dimensional block with 2 rows and 4 columns.

Grid

Figure 2.2: Example of a 2D grid with 2 rows and 4 columns.

Kernel. At the time of execution, all threads in all thread blocks will run the same

function. which is known as Kernel.

Device. In the CUDA programming model, device refers to the GPU that executes

kernels on threads.

Host. In the CUDA programming model, host refers to the CPU that initializes kernels.

Figure 2.3 shows the relationship between the host and the device.

Host Driver Device
(CPU) (GPU)

Figure 2.3: Host and device in the CUDA programming model.

Compute capability (CC). Every CUDA device is built on a core architecture with
some specific capabilities. Each device is numbered by a Compute capability (CC), which
is of the form A.B. This numbering makes it easier to distinguish architectures from each
other. In this presentation, A as the major part, specifies the architecture series, and B,
as the minor part, relates to the special improvements to each architecture. For example,
devices of compute capability 3.0, 3.1, and 3.2 have the same architecture core, however,

they have different hardware optimizations.
Warp. Every 32 threads inside a thread block form a warp.

Streaming multiprocessor. Streaming multiprocessors (SMs) are building blocks of

GPUs. Each streaming multiprocessor has a number of scalar processors, registers, warp

GPGPU computing 11

schedulers, and cache. At the time of execution, the device driver will assign each thread
block to one streaming multiprocessor. After being scheduled by the warp scheduler,

each thread of the thread block will run the kernel on one processing core.

Warp scheduler. At the time of execution, each streaming multiprocessor partitions
threads into warps. In the next step, warps will be scheduled by a warp scheduler for
execution on scalar processors. Table 2.1 shows the maximum number of warps that can

reside on streaming multiprocessors of different compute capabilities.

Compute capability 1.0/1.1 | 1.2/1.3 | 2.x | 3.x and higher
The maximum number of threads per SM 768 1024 | 1536 2048
The maximum number of warps 24 32 48 64

Table 2.1: The maximum number of warps per streaming multiprocessor.

2.1.2 CUDA memory model

The CUDA platform has multiple levels of memory. As a programmer, it is critical to
use different types of GPU memory properly. In other words, each level of GPU memory
should be used for a specific type of application. Figure 2.4 shows levels of GPU memory
for devices of compute capability 2.0 and higher.

SM-0 SM-1 SM-(n-1)

—{ shared
memory

|| shared
memory

|| shared
memory

Registers
Registers
Registers

— L1 — L1 | L1

L2

Global Memory

Figure 2.4: CUDA memory hierarchy for CC 2.0 and higher.

On-chip memory. This type of memory is located on the streaming multiprocessor.
Registers, shared memory, and L1 cache are examples of on-chip memory. All other

levels of GPU memory are considered as off-chip memory.

GPGPU computing 12

Registers. Registers are fastest type of memory on GPUs. Accessing to a register has
almost no cost, because it is placed on the streaming multiprocessor. Each streaming
multiprocessor has a limited number of registers. Table 2.2 shows the number of available

registers on one streaming multiprocessor for CUDA-capable NVIDIA GPUs.

Compute capability lx | 2x|3x |4x | Hx | 6x
The number of 32-bit registers/SM | 124 | 63 | 255 | 255 | 255 | 255

Table 2.2: The number of 32-bit registers per streaming multiprocessor.

Global memory. This type of memory is available to all threads in all thread blocks.
Global memory is the slowest type of GPU memory.

Coalesced accesses to global memory. Inside a warp, consecutive threads can have
access to consecutive words in global memory in a coalesced way. For doing so, the GPU

driver translates multiple read or write memory calls into a single memory call. For

current CUDA-enabled GPUs,

L1 Cache. This type of on-chip GPU memory is accessible by all threads inside a warp.
GPUs have comparably less amount of L1 cache per multiprocessor than CPUs have.
Depending on the GPU architecture (CC), the programmer can enable or disable the L1

caching.

L2 Cache. This type of off-chip GPU memory is available on devices of compute capa-
bility 2.0 and higher. If L1 cache is enabled, all read requests to global memory will first
go through the L1 cache, and then through the L2 cache. However, if the L1 cache is
disabled, all read transactions will go directly through the L2 cache.

Local memory. Each thread can have a private off-chip memory, known as local mem-
ory. Local memory is allocated on global memory, therefore, accesses to local memory
will be slow. However, accesses to local memory will be coalesced if adjacent threads
of the same warp will have access to the same index of an array. Devices of compute
capability 1.x have 16 KB of local memory. Finally, devices of other compute capabilities

have 512 KB of local memory.

Shared memory. This type of memory is available to all threads inside the thread
block. It can be used

1. for communicating between threads inside the thread block, and
2. as a low cost memory (similar to registers) for storing temporary variables of each
thread.

GPGPU computing 13

On the positive side, accesses to shared memory have almost no cost, because, compared
to registers, it only takes a few more cycles. On the negative side, shared memory accesses

can go through bank conflicts, meaning that all accesses will be serialized.

Constant memory. This type of read-only memory is accessible to all threads of a grid
and can be used for storing constant data. In order to use constant memory efficiently,
all accesses should be to the same memory address at the same time. Otherwise, memory
requests will be serialized. Currently, the total amount of constant memory for GPUs of

all compute capabilities is equal to 64 KB.

Texture memory. This is another type of read-only memory and similar to constant
memory, can be used for storing constant data. However, unlike constant memory, scat-

tered to constant memory will not be serialized.

2.1.3 Examples of programs in CUDA

In this section, we present two simple examples of programming in the CUDA-C/C++.

Simple vector addition in CUDA. Figure 2.5 presents a pseudo-code for computing

vector addition on GPUs in the following way:

1. First, the program allocates host memory for host_a,host_b as input array, and
for host_c as the output array. (L16:L18)

2. The program reads input data from files into host_a and host_b, respectively
(L21:1.22).

3. In next step, the program allocates device memory for device_a,device b,device_c
(L25:1.27).

4. Then, the program copies input vectors from host memory to device memory.

5. The program sets dimensions of the thread block and grid block, respectively (L34
and L37).

6. At this point, the program invokes the CUDA kernel simpleVectorAddition (1.40).

7. Now, inside the kernel, each thread computes its index with respect to its thread
block index and size of the thread block, and then, it computes the result of addition
for two elements of the same relative index from each input array (L4:L5).

8. After completing the computation by the device, the program copies back the result
of computation into the output array, host_c (L.44).

Naive matrix transposition in CUDA. In this example, we explain how we can

transpose a 16 x 16 matrix by using shared memory of GPUs. For an input array of

GPGPU computing

14

(
{

}

{

© 00 N O O P W N =

[
© 00 N O O b W N = O

20
21
22
23
24
25
26
27

28

29
30
31
32
33
34
35
36
37

38

39 }

_global__ void simpleVectorAddition

int* device _a, int* device b, int* device _c, int n)

/* computing the thread index */

int tid = blockIdx.x*blockDim.x + threadIdx.x;

if (tid < n) { device_c([tid] = device_b[tid] + device_al[tid];}

int main (int argc, char**xargv)

/* pointers to host memory */

int *host_a, *host_b, *xhost_c;

/* pointers to device memory */

int *device_a, *device_b, *device_c;

/* size of input vector */

int n = 1024%1024;

/* allocating arrays on the host memory x/

host_a = (int*)malloc(sizeof (int)*n) ;
host b = (int*)malloc(sizeof (int)*n);
host_c = (int*)malloc(sizeof (int)*n);

/* reading input vectors from files a.dat and b.dat,
respectively.*/

host_a = readInputFromFile("a");

host_b readInputFromFile("b");

/* allocating arrays on the device memory x*/

cudaMalloc ((void**)&device a, n*sizeof (int));

cudaMalloc ((void*%*)&device_b, n*sizeof (int));

cudaMalloc ((void**)&device c, n*xsizeof (int));

/* copy data from the host to the device memory x*/

cudaMemcpy (device_a, a, sizeof(int)*n, cudaMemcpyHostToDevice)

cudaMemcpy (device_b, b, sizeof (int)*n, cudaMemcpyHostToDevice)

//setting up dimensions of a thread block

dim3 blockDim = (512,1,1);

//setting up dimensions of the grid

dim3 gridDim = (n/blockDim.x,1,1);

//invoking the kernel from host

simpleVectorAddition <<< gridDim, blockDim >>>

(device_a, device_b, device_c,n);

//copy back the results from device memory to host memory

cudaMemcpy (host_c, device_c, sizeof (int)x*n,
cudaMemcpyDeviceToHost) ;

return O;

Figure 2.5: A CUDA example for computing point-wise addition of two vectors.

GPGPU computing 15

1 #define BLOCK_SIZE 512

2 // tranposing an array of matrices,

3 // each of size 16x16

4 __global__ void matrix_transposition_16

5 (int* device_x, int* device_y, int n)

6 { /* computing the thread index */

7 int tid = blockIdx.x*blockDim.x + threadIdx.x;

8 __shared__ int sharedMem [BLOCK_SIZE];

9 int total=0;

10 if (tid < n) { sharedMem[threadIdx.x] = device_x[tid];}
11 __syncthreads () ;

12 if (tid<n){

13 i = threadIdx/16;

14 j threadIdx % 16;

15 offsetOut= i + 16j;

16 device_y[tid]=sharedMem[offsetOutl; //y(j,i):=x(i,])
17}

18 }

Figure 2.6: A CUDA example for transposing matrices by using shared memory.

size n, our example computes transposition for n/256 matrices. We assume that the
kernel configuration is similar to that of the previous example. This kernel computes the

transposition in the following way.

1. Each thread computes its index with respect to its thread block index and size of
the thread block (L7).

2. In the next step, a shared array of size BLOCK_SIZE is allocated for all threads of
the thread block (L8).

3. Then, each thread reads its corresponding value from the input vector into its
respective shared memory address (L10).

4. The barrier syncthreads() synchronizes all threads of the thread block (L11).

5. At this step, each thread computes the row number and the column number of its
corresponding value in the input vector, namely, (i,7) (L13 and L14).

6. In the next step, each thread computes the offset for its corresponding memory
address in output vector, namely, (j,7) (L15).

7. Finally, each thread writes its corresponding value to the output vector (L.16).

Notice that this kernel does not result in an efficient transposition, because it will have

shared memory bank conflicts. It is only mentioned as an illustrative example.

GPGPU computing 16

2.1.4 Performance of GPU programs

Bandwidth. Bandwidth refers to the rate of transferring data between two memory
addresses (that might be in different levels). Theoretical bandwidth is the maximum
value for the GPU memory bandwidth which can be calculated by By = f x w x 2 with

1. f as the clock frequency of the GPU memory, and

2. w as the width of memory interface (in terms of number of bytes).

For example, for a GPU memory with the clock rate of 1 GHZ and the memory interface
of 384 bits wide, we have

4
BT:1><109><3Z><2:96GB/S.

Practical bandwidth. Practical (effective) bandwidth is the bandwidth that can be
achieved on a GPU in practice. Practical bandwidth can be computed by

By — (d”;dw) (2.1)

where
1. d, is the amount of data that is being read from the memory,

2. d,, is the amount of data that is written to the memory, and

3. t is the elapsed time for reading from the memory and writing to the memory.

For example, if the program spends 4 milliseconds for copying a vector of N = 2% long

integers (each of size of 8 machine-words) to another vector, then effective bandwidth is

((229 x 8 x 8) x 2)
(4 x 10-3)

By = — 33.5 GB/s.

Value of practical bandwidth is always less than the value of theoretical bandwidth. Also,
enabling some error correction features (like Error-Correcting-Code in NVIDIA cards)

can further reduce the effective bandwidth.

Occupancy. Occupancy refers to the ratio of the total number of running warps to
the maximum number of warps that can be concurrently executed on each streaming

multiprocessor. Following factors can affect the percentage of achieved occupancy:

1. the amount of shared memory per each streaming multiprocessor,
2. the number of registers per each thread,

3. the occurrence of register spilling, and finally,

GPGPU computing 17

4. the size of a thread block (which we would prefer to be a multiple of 32).

Data latency. This term refers to the time spent between requesting the data by a warp
and when the data is ready to be processed by the warp. During this time, the warp
scheduler executes another warp, therefore, the requesting warp should be waiting. We

try to hide the data latency by increasing the occupancy percentage.

Register spilling. As long as there are enough registers left to be allocated, single
variables and constant values will always be stored in registers. However, an array inside
a thread will not always be stored in registers. In fact, the compiler makes the decision to
store an array in registers of the streaming multiprocessor only if the following conditions

are met:

- the compiler should be able to determine the indexes of the array, and

- there should be enough number of registers to allocate to the array.

Otherwise, the array will be stored in local memory, which will result in register spilling.
As we explained before, accesses to local memory is costly, therefore, register spilling
will have a negative impact on the memory bandwidth. Also, even if the register spilling
does not happen, allocating too many registers to each thread will lower the number of

concurrent warps, and consequently, will lower the overall occupancy of the application.

Shared memory bank conflicts. Shared memory is divided into partitions of the
same size, namely, shared memory banks. The default size of a shared memory bank is
32 bits, however, for devices of compute capability 2.0 and higher, size of shared memory
banks can be configured to 64 bits. Inside a warp, multiple accesses to the same address
of shared memory will result in shared memory bank conflicts. As a result, conflicted

accesses will be serialized, and therefore, will lower the bandwidth.

Arithmetic bound kernels. Arithmetic bound kernels spend most of the computation
time for issuing arithmetic instructions. In other words, performance is limited by the
high number of arithmetic instructions that should be issued at each clock cycle. For
an arithmetic bound kernel, we would prefer to lower warp divergence and therefore,
avoid using if-else statements as much as possible. Also, we can balance the computation
among arithmetic units of each streaming multiprocessor. For example, we can compute
part of the integer arithmetic to the floating point arithmetic units and Special Function

Units (SFUs).

Memory bound kernels. A kernel is memory bound if it spends most of the time for

issuing memory requests. As a result, performance will be limited by memory overheads.

GPGPU computing 18

An effective solution for increasing performance of memory bound kernels is to make sure
the data latency is minimized and more warps will be concurrently executed. In other
words, occupancy should be increased to hide the latency. Also, we must ensure that

accesses to global memory are minimized by

1. storing data in a data structure that facilitates coalesced accesses, and

2. (if possible) reusing the same data for more computations.

As a final note, for a memory bound GPU kernel, the practical bandwidth is usually
close to the peak of the theoretical bandwidth.

Arithmetic intensity. Arithmetic intensity is defined as the ratio of the number of
arithmetic instructions to the total amount of processed data. More importantly, this
term does not have a unique definition. For example, we can define the total amount of

processed data

1. as the total number of memory instructions, or

2. as the amount of data in terms of bytes.

Instruction level parallelism (ILP). This term refers to the parallelization of in-
dependent instructions at the level of hardware. For example, assume that a;,b;,c;
(0 <i < 4) are pointers to non-overlapping addresses in the memory. Then, as shown in
Figure 2.7, we can concurrently compute 4 additions a; := b; + ¢; by using 4 threads.

tid 0 1 2 3

Instruction | ag = by + ¢y | a1 =by +¢1 | ay =by+co | a3 = b3 + 3

Figure 2.7: Four independent instructions.

On the other hand, as shown in Figure 2.8, one thread can be used for computing all four
additions. However, in practice, it is very difficult to exploit the ILP, mostly because the
programmer does not have direct control over it. In fact, it is the compiler that makes the
decision for using ILP. Depending on the architecture of the device, 2 or 4 instructions

might be parallelized in this way.

GPGPU computing 19

tid 0

ag — bo + ¢
Instruction | a; = by + ¢;

a2:b2+02

a3:63+03

Figure 2.8: An example of ILP.

2.1.5 Profiling CUDA applications

Profiler. A profiler is software that is used for inspecting the performance of an ap-
plication. As part of the software development kit (CUDA-SDK), NVIDIA corporation
provides nvprof as the official command-line profiler for CUDA applications. In next
step, we explain a number of the most important metrics that can be measured by this
profiler. Moreover, Table 2.3 shows a list of the nvprof metrics that will be used for

measuring the performance of our implementation.

Instruction per cycle (IPC). This metric measures the total number of instructions

that are issued on each streaming multiprocessor at each clock cycle.

Achieved occupancy. This metric represents the ratio of the total number of run-
ning warps to the maximum possible number of the warps that can be executed on the

multiprocessor.
Instruction replay overhead. This metric represents the following ratio:

N(issued) - N(requested)

N(requested)

where:

1. N(issueay is the total number of issued instructions, and

2. N(requested) is the total number of requested instructions.

There are similar "replay overhead” metrics for some other instructions, for example,
global memory replay overhead and shared memory replay overhead measure overheads

of global memory and shared memory instructions, respectively.

Global memory load and store throughput. This metric measures the throughput
for all global memory load and store transactions, including accesses to the L1 cache and
to the L2 cache.

GPGPU computing 20

DRAM read and write throughput. This metric measures the memory throughput

for memory read transactions between the device memory and the L2 cache.

Metric name description

achieved_occupancy | Percentage of occupancy for all SMs

ipc Instruction per cycle

gst_throughput Global memory store throughput

gld_throughput Global memory load throughput

gst_efficiency Global memory store efficiency

dram_utilization | Device memory utilization (a value between 0 and 10)

Table 2.3: A short list of performance metrics of nvprof.

2.1.6 A note on psuedo-code.

We present our algorithms in pseudo-codes similar to the CUDA programming model.

Host functions. Name of this type of function begins with the keyword Host. Host
functions can only be called from the host (CPU). Moreover, this type of function are

used for

1. initializing the input data, and
2. invoking GPU kernels.

Kernel functions. The name of this type of function begins with the keyword Kernel.
Kernel functions will be loaded on each streaming multiprocessor, then, all threads will
execute the same code. Kernel functions can only be called from host functions. Fi-
nally, this type of function never returns any values, instead, they only depend on global

memory for communicating to the host.

Device functions. The name of this type of function begins with the keyword Device.
Device functions can only be called from kernel functions. However, device functions can

return values to their invoker kernel.
Size of a machine-word. We assume that a machine-word (register) is 64-bits wide.
Fortran style arrays. In this thesis, we present arrays in the following way:

refers to vector of digits, each of size of of a machine-word,

[i] refers to i-th digit of #, and

LT TR 1

1.
2.
3. X[i : j] refers to i-th, ..., j-th digits of 7.

Fast Fourier Transforms 21

2.2 Fast Fourier Transforms

In this section, we review the Discrete Fourier Transform over a finite field, and its related

concepts.

Primitive and principal roots of unity. Let R be a commutative ring with units. Let
N > 1 be an integer. An element w € R is a primitive N-th root of unity if for 1 < k < N
we have w®* =1 <= k= N. The element w € R is a principal N-th root of unity if
wVh =1and for all 1 < k < N we have

N-1)
> oWt =0 (2.3)
j=0

N/2 — _1, then w is a principal N-th root of unity.

In particular, if N is a power of 2 and w
The two notions coincide in fields of characteristic 0. For integral domains every primitive
root of unity is also a principal root of unity. For non-integral domains, a principal N-th
root of unity is also a primitive N-th root of unity unless the characteristic of the ring

R is a divisor of N.

The discrete Fourier transform (DFT). Let w € R be a principal N-th root of unity.
The N-point DFT at w is the linear function, mapping the vector @ = (ag, ...,anx_1)7 to
b= (bo,...,bn_1)T by b= Qd, where Q = (w*)o<jr<y—1. If N is invertible in R, then
the N-point DFT at w has an inverse which is 1/N times the N-point DFT at w™!.

The fast Fourier transform. Let w € R be a principal N-th root of unity. Assume that
N can be factorized to JK with J, K > 1. Recall Cooley-Tukey factorization formula [6]

DFT;x = (DFT,; ® Ix)Dyx(I; @ DFTg)L7", (2.4)

where, for two matrices A, B over R with respective formats m x n and ¢ x s, we denote

by A® B an mgq X ns matrix over R called the tensor product of A by B and defined by
A ® B = [ClkgB]k! Wlth A = [akg]k%g (25)

In the above formula, DFT ;x, DFT; and DFTg are respectively the N-point DFT at
w, the J-point DFT at w’ and the K-point DFT at w’. The stride permutation matriz

LJK permutes an input vector x of length JK as follows

x[iJ + j] = x[jJ + 1], (2.6)

Fast Fourier Transforms 22

forall 0 < j < J,0 <i< K. If x is viewed as an K x J matrix, then L} performs a
transposition of this matrix. The diagonal twiddle matriz Dk is defined as

J—1 . .

Dyx = @ diag(1,w’, ... /KD, (2.7)

j=0
Formula (2.4) implies various divide-and-conquer algorithms for computing DFTs effi-
ciently, often refered as fast Fourier transforms (FFTs). See the seminal papers [20]
and [11] by the authors of the SPTIRAL abd FFTW projects, respectively. This formula

also implies that, if K divides J, then all involved multiplications are by powers of w’.

In the factorization of the matrix DFT ;x, viewing the size K as a base case and assuming
that J is a power of K, Formula (2.4) translates into Algorithm 2.1. In this algorithm, as
in the sequel of this section, w € R be a principal N-th root of unity and (aga...an_1)

is a vector whose coefficients are in R.

Fast Fourier Transforms

23

Algorithm 2.1 Radix K Fast Fourier Transform in R

prOCEdUre FFTradix K((Oéo(lél...aN_l), w, N=J- K)

for 0 <j < Jdo > Data transposition

for 0< k< K do
VIk] = oy
end for
end for

for 0 <j<Jdo > Base case FFTs

C[j] = FFTbase—case(’YUL ij K)
end for

for 0 <k < K do > Twiddle factor multiplication

for 0 <j<Jdo
S[K][j] == clj][k] * w'*
end for

end for

for 0 <k < K do > Recursive calls

5[l€] — FFTlraudix K(é[k]a wKu J)
end for

for 0 <k < K do > Data transposition

for 0<j < Jdo
a[j K + k] := 6[k][J]
end for
end for
return (qpaq...an_1)

end procedure

The recursive formulation of Algorithm 2.1 is not appropriate for generating code tar-

geting many-core GPU-like architectures for which, formulating algorithms iteratively

facilates the division of the work into kernel calls and thread-blocks.

To this end, we shall unroll Formula (2.4). This will be done in Chapter 6.

Chapter 3

Arithmetic Computations Modulo
Sparse Radix (ceneralized Fermat

Numbers

The n-th Fermat number, denoted by F,, is given by F, = 22" 4+ 1. This sequence
plays an important role in number theory and, as mentioned in the introduction, in the

development of asymptotically fast algorithms for integer multiplication [21, 13].

Arithmetic operations modulo a Fermat number are simpler than modulo an arbitrary
positive integer. In particular 2 is a 2""!-th primitive root of unity modulo F},. Unfor-
tunately, Fj is the largest Fermat number which is known to be prime. Hence, when
computations require the coefficient ring be a field, Fermat numbers are no longer inter-
esting. This motivates the introduction of other family of Fermat-like numbers, see, for

instance, Chapter 2 in the text book Guide to elliptic curve cryptography [14].

Numbers of the form a®" + b*" where @ > 1, b > 0 and n > 0 are called generalized
Fermat numbers. An odd prime p is a generalized Fermat number if and only if p is
congruent to 1 modulo 4. The case b = 1 is of particular interest and, by analogy with
the ordinary Fermat numbers, it is common to denote the generalized Fermat number
a*" +1 by F,(a). So 3 is Fy(2). We call a the radiz of F},(a). Note that, Landau’s fourth

problem asks if there are infinitely many generalized Fermat primes F),(a) with n > 0.

In the finite ring Z/F,,(a)Z, the element a is a 2"T'-th primitive root of unity. However,
when using binary representation for integers on a computer, arithmetic operations in

7] F,,(a)Z may not be as easy to perform as in Z/F,Z. This motivates the following.

24

Representation of Z/pZ 25

Definition 1 We call sparse radix generalized Fermat number, any integer of the form
F,.(r) where r is either 2* + 2% or 2% — 2" for some integers w > u > 0. In the former

case, we denote F,(r) by Ef(w,u) and in the latter by F, (w,u).

Table 3.1 lists a few sparse radix generalized Fermat numbers (SRGFNs, for short) that
are prime. For each p among those numbers, we give the largest power of 2 dividing
p — 1, that is, the maximum length N of a vector to which a radix-K FFT algorithm
(like Algorithm 2.1) where K is an appropriate power of 2.

p | max{2°s.t. 2° | p— 1} |
(263 + 253)2 +1 2106
(264 _ 250)4 + 1 2200
(263 + 234)8 +1 2272
(262 + 236)16 +1 2576
(262 + 256)32 +1 21792
()
(

263 _ 240 64 + 1 22500
264 . 228)128 +1 23584

Table 3.1: SRGFNs of practical interest.

Notation 1 In the sequel of this section, we consider p = F,(r), a fived SRGFN. We
denote by 2¢ the largest power of 2 dividing p—1 and we define k = 2", so thatp = r* 41
holds.

As we shall see in the sequel of this section, for any positive integer N which is a power
of 2 such that N divides p — 1, one can find an N-th primitive root of unity w € Z/pZ
such that multiplying an element a € Z/pZ by w'™/?%) for 0 < i < 2k can be done
in linear time w.r.t. the bit size of a. Combining this observation with an appropriate
factorization of the DFT transform on N points over Z/pZ, we obtain an efficient FF'T
algorithm over Z/pZ.

3.1 Representation of Z/pZ

We represent each element x € Z/pZ as a vector ¥ = (Tg_1, Tp_2, - .., To) of length k and

with non-negative integer coefficients such that we have
r = opart oot 24+ 420 mod p. (3.1)

This representation is made unique by imposing the following constraints

1. either z,_; =rand x_o=--- =2, =0,

Representation of Z/pZ 26

2200 0<z; <rforalli=0, ..., (k—1).

We also map to a univariate integer polynomial f, € Z[T] defined by f, = SF) a;t!
such that = f.(r) mod p.

Now, given a non-negative integer z < p, we explain how the representation ¥ can be
computed. The case x = 7" is trivially handled, hence we assume z < r*. For a non-
negative integer z such that z < 2 holds for some positive integer i < n = log,(k), we
denote by vec(z,i) the unique sequence of 2° non-negative integers (zi_y,...,2) such
that we have 0 < z; < r and z = Zoi_ 2 "1 4+ 4 2. The sequence vec(z, 1) is obtained

as follows:

1. if i = 1, we have vec(z,1) = (g, s),

2. if ¢ > 1, then vec(z,) is the concatenation of vec(g,i — 1) followed by vec(s,i — 1),

where g and s are the quotient and the remainder in the Euclidean division of z by P2

Clearly, vec(z,n) = Z holds.

We observe that the sparse binary representation of r facilitates the Euclidean division
of an non-negative integer z by r, when performed on a computer. Referring to the
notations in Definition 1, let us assume that r is 2% + 2%, for some integers w > u > 0.
(The case 2% — 2" would be handled in a similar way.) Let zugn and 2oy be the quotient

and the remainder in the Euclidean division of z by 2*. Then, we have
2 = 2% Zhigh + Zlow = T Zhigh T Zlow — 2" Zhigh- (3.2)

Let s = 2igw + —2%2nigh and ¢ = 2zpign. Three cases arise:

(S1) if 0 < s < r, then ¢ and s are the quotient and remainder of z by r,

(S2) if r < s, then we perform the Euclidean division of s by r and deduce the desired
quotient and remainder,

(S3) if s < 0, then (g, s) is replaced by (¢ + 1, s+ r) and we go back to Step (S1).

Since the binary representations of 72 can still be regarded as sparse, a similar procedure
can be done for the Euclidean division of an non-negative integer z by r2. For higher
powers of r, we believe that Montgomery algorithm is the way go, though this remains

to be explored.

Finding primitive roots of unity in Z/pZ 27

3.2 Finding primitive roots of unity in Z/pZ

Notation 2 Let N a power of 2, say 2¢, dividing p — 1 and let g € Z/pZ be a N-th

primitive root of unity.

Recall that such an N-th primitive root of unity can be obtained by a simple probabilistic
procedure. Write p = gN + 1. Pick a random « € Z/pZ and let w = af. Little Fermat
theorem implies that either w’/? = 1 or w™/? = —1 holds. In the latter case, w is an N-th
primitive root of unity. In the former, another random « € Z/pZ should be considered.
In our various software implementation of finite field arithmetic [16, 3, 15], this procedure
finds an N-th primitive root of unity after a few tries and has never been a performance
bottleneck.

In the following, we consider the problem of finding an N-th primitive root of unity w
such that w’/?* = r holds. The intention is to speed up the portion of FFT computation

that requires to multiply elements of Z/pZ by powers of w.

Proposition 1 In Z/pZ, the element r is a 2k-th primitive root of unity. Moreover, the
following algorithm computes an N-th primitive root of unity w € Z/pZ such that we
have wN/?¢ = r in 7./ pZ.

Algorithm 3.1 Primitive N-th root w € Z/pZ s.t. wV/?F = ¢
procedure PRIMITIVEROOTASROOTOF(N, 1, k, g)

7:=1

while 5 # r do
fi=ap
J=7+1

end while

wi=g¢’

return (w)

end procedure

N/2k

Proof Since g is a 2k-th root of unity, it is equal to r* (modulo p) for some

0 <19 < 2k where 7 is odd. Let 5 be an non-negative integer. Observe that we have

gjze/% _ (gigqu)zé/% _ gi2@/2k; — o, (3.3)

Addition and subtraction in Z/pZ 28

where ¢ and i are quotient and the remainder of j in the Euclidean division by 2k. By
definition of g, the powers ¢2/2* for 0 < i < 2k, are pairwise different. It follows
from Formula (3.3) that the elements r* are pairwise different as well, for 0 < i < 2k.
Therefore, one of those latter elements is r itself. Hence, we have j; with 0 < j; < 2k

such that ¢/'V/?* = y. Then, w = ¢7* is as desired and Algorithm 3.1 computes it. O

3.3 Addition and subtraction in Z/pZ

Let x,y € Z/pZ represented by Z, 7/, see Section 3.1 for this latter notation. Algorithm 3.2

computes the representation = + y of the element (z + y) mod p.

Algorithm 3.2 Computing = +y € Z/pZ for x,y € Z/pZ
procedure BIGPRIMEFIELDADDITION(Z, ¥/, 1, k)

1: compute z; = x; +y; in Z, for i =0,...,k — 1,
2: let ¢g =0 and 2, =0,
3: fori=0,...,k—1, compute the quotient ¢; and the remainder s; in the Euclidean

division of z; by r, then replace (2,11, 2;) by (zit1 + @, $i),

4: if z = 0 then return (zx_1, ..., 20),

5:if zp =1 and 2z, = --- = 2o = 0, then let z;_; = r and return (z;_1, ..., 20),

6: let ¢y be the smallest index, 0 < iy < k—1, such that z;, # 0, then let z;, = 2, —1,
let zo ="+ =z,-1 =r — 1 and return (zx_1,..., 20).

end procedure

Proof At Step (1), Z and ¢, regarded as vectors over Z, are added component-wise.
At Steps (2) and (3), the carry, if any, is propagated. At Step (4), there is no carry
beyond the leading digit zx_1, hence (2x_1, ..., z0) represents = +y. Step (5) handles the
special case where x +1y = p — 1 holds. Step (6) is the overflow case which is handled by
subtracting 1 mod p to (zx_1, ..., 20), finally producing w—ﬂz O

A similar procedure computes the vector x — y representin