
Decomposition and QE algorithms over the reals and
over the integers

Marc Moreno Maza

Ontario Research Center for Computer Algebra
Departments of Computer Science and Mathematics

University of Western Ontario, Canada

Special Session in honor of Professor James Davenport
SYNASC 2023, LORIA, France, September 11-13

Acknowledgements

� Many thanks to the organizers of this workshop for their invitation.
� This talk is based on research projects with some of my former PhD students:

Alexander Brandt (Dalhousie University), Changbo Chen (CIGIT Chinese
Academy of Sciences), Xiaohui Chen (HUAWEI), Ruijuan Jing (Jiangsu
University), Franccois Lemaire (Université de Lille), Wei Pan (NVIDIA, Delaram
Talaashrafi (NVIDIA), Linxiao Wang (HUAWEI), Rong Xiao (Amazon), Ning
Xie (HUAWEI), Yuzhen Xie (Scotiabank),

� As well as collabrators: James H. Davenport (University of Bath), Matthew
England (Coventry University), John May (Maplesoft), Bican Xia (Peking
University).

� This talk is also based on collaborations with Maplesoft, MIT/CSAIL, Intel, IBM
Canada, Lawrence Livermore National Laboratory with funding support from
Maplesoft, IBM Canada, and NSERC of Canada.

https://www.csd.uwo.ca/~abrandt5/
http://www.orcca.on.ca/~cchen/
http://www.orcca.on.ca/~cchen/
https://www.linkedin.com/in/xiaohui-chen-76113371/?originalSubdomain=ca
https://www.researchgate.net/profile/Ruijuan-Jing
https://www.researchgate.net/profile/Ruijuan-Jing
https://www.fil.univ-lille1.fr/~lemairef/homepage/index.php
https://www.linkedin.com/in/wei-pan-96417726/
https://dtalaashrafi.github.io/
https://dtalaashrafi.github.io/
https://www.csd.uwo.ca/~lwang739/
https://www.linkedin.com/in/ning-nxie/?originalSubdomain=ca
https://www.linkedin.com/in/ning-nxie/?originalSubdomain=ca
https://www.linkedin.com/in/yuzhen-xie-509b7b41/?originalSubdomain=ca
https://people.bath.ac.uk/masjhd/
https://www.coventry.ac.uk/life-on-campus/staff-directory/engineering-environment-and-computing/dr-matthew-england/
https://www.coventry.ac.uk/life-on-campus/staff-directory/engineering-environment-and-computing/dr-matthew-england/
https://cs.uwaterloo.ca/~jpmay/
https://www.math.pku.edu.cn/teachers/xiabc/html/index_en.html
https://www.math.pku.edu.cn/teachers/xiabc/html/index_en.html

Tentative Plan

1 Decomposition and QE algorithms over the reals

2 Decomposition and QE algorithms over the integers

What does solving mean here?

• Solving over C: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0) and inequations ℎ ̸= 0:

computing all its solutions symbolically, or only the generic ones
providing tools to extract information (dimension, degree, etc.) about those
solutions and,
performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0, inequations ℎ ̸= 0 and inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

doing the same as above, or
finding sample solutions, or
performing cylindrical algebraic decomposition (CAD) or quantifier elimination
(QE).

• Solving over Z: focusing on linear inequality systems, can mean:
counting the number of solutions, or
computing all or part of the solutions, or
performing quantifier elimination (QE) (Presburger Arithmetic).

What does solving mean here?

• Solving over C: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0) and inequations ℎ ̸= 0:

computing all its solutions symbolically, or only the generic ones
providing tools to extract information (dimension, degree, etc.) about those
solutions and,
performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0, inequations ℎ ̸= 0 and inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

doing the same as above, or
finding sample solutions, or
performing cylindrical algebraic decomposition (CAD) or quantifier elimination
(QE).

• Solving over Z: focusing on linear inequality systems, can mean:
counting the number of solutions, or
computing all or part of the solutions, or
performing quantifier elimination (QE) (Presburger Arithmetic).

What does solving mean here?

• Solving over C: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0) and inequations ℎ ̸= 0:

computing all its solutions symbolically, or only the generic ones
providing tools to extract information (dimension, degree, etc.) about those
solutions and,
performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0, inequations ℎ ̸= 0 and inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

doing the same as above, or
finding sample solutions, or
performing cylindrical algebraic decomposition (CAD) or quantifier elimination
(QE).

• Solving over Z: focusing on linear inequality systems, can mean:
counting the number of solutions, or
computing all or part of the solutions, or
performing quantifier elimination (QE) (Presburger Arithmetic).

What does solving mean here?

• Solving over C: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0) and inequations ℎ ̸= 0:

computing all its solutions symbolically, or only the generic ones
providing tools to extract information (dimension, degree, etc.) about those
solutions and,
performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0, inequations ℎ ̸= 0 and inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

doing the same as above, or
finding sample solutions, or
performing cylindrical algebraic decomposition (CAD) or quantifier elimination
(QE).

• Solving over Z: focusing on linear inequality systems, can mean:
counting the number of solutions, or
computing all or part of the solutions, or
performing quantifier elimination (QE) (Presburger Arithmetic).

What does solving mean here?

• Solving over C: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0) and inequations ℎ ̸= 0:

computing all its solutions symbolically, or only the generic ones
providing tools to extract information (dimension, degree, etc.) about those
solutions and,
performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0, inequations ℎ ̸= 0 and inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

doing the same as above, or
finding sample solutions, or
performing cylindrical algebraic decomposition (CAD) or quantifier elimination
(QE).

• Solving over Z: focusing on linear inequality systems, can mean:
counting the number of solutions, or
computing all or part of the solutions, or
performing quantifier elimination (QE) (Presburger Arithmetic).

What does solving mean here?

• Solving over C: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0) and inequations ℎ ̸= 0:

computing all its solutions symbolically, or only the generic ones
providing tools to extract information (dimension, degree, etc.) about those
solutions and,
performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0, inequations ℎ ̸= 0 and inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

doing the same as above, or
finding sample solutions, or
performing cylindrical algebraic decomposition (CAD) or quantifier elimination
(QE).

• Solving over Z: focusing on linear inequality systems, can mean:
counting the number of solutions, or
computing all or part of the solutions, or
performing quantifier elimination (QE) (Presburger Arithmetic).

What does solving mean here?

• Solving over C: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0) and inequations ℎ ̸= 0:

computing all its solutions symbolically, or only the generic ones
providing tools to extract information (dimension, degree, etc.) about those
solutions and,
performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0, inequations ℎ ̸= 0 and inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

doing the same as above, or
finding sample solutions, or
performing cylindrical algebraic decomposition (CAD) or quantifier elimination
(QE).

• Solving over Z: focusing on linear inequality systems, can mean:
counting the number of solutions, or
computing all or part of the solutions, or
performing quantifier elimination (QE) (Presburger Arithmetic).

What does solving mean here?

• Solving over C: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0) and inequations ℎ ̸= 0:

computing all its solutions symbolically, or only the generic ones
providing tools to extract information (dimension, degree, etc.) about those
solutions and,
performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0, inequations ℎ ̸= 0 and inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

doing the same as above, or
finding sample solutions, or
performing cylindrical algebraic decomposition (CAD) or quantifier elimination
(QE).

• Solving over Z: focusing on linear inequality systems, can mean:
counting the number of solutions, or
computing all or part of the solutions, or
performing quantifier elimination (QE) (Presburger Arithmetic).

What does solving mean here?

• Solving over C: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0) and inequations ℎ ̸= 0:

computing all its solutions symbolically, or only the generic ones
providing tools to extract information (dimension, degree, etc.) about those
solutions and,
performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0, inequations ℎ ̸= 0 and inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

doing the same as above, or
finding sample solutions, or
performing cylindrical algebraic decomposition (CAD) or quantifier elimination
(QE).

• Solving over Z: focusing on linear inequality systems, can mean:
counting the number of solutions, or
computing all or part of the solutions, or
performing quantifier elimination (QE) (Presburger Arithmetic).

What does solving mean here?

• Solving over C: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0) and inequations ℎ ̸= 0:

computing all its solutions symbolically, or only the generic ones
providing tools to extract information (dimension, degree, etc.) about those
solutions and,
performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0, inequations ℎ ̸= 0 and inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

doing the same as above, or
finding sample solutions, or
performing cylindrical algebraic decomposition (CAD) or quantifier elimination
(QE).

• Solving over Z: focusing on linear inequality systems, can mean:
counting the number of solutions, or
computing all or part of the solutions, or
performing quantifier elimination (QE) (Presburger Arithmetic).

What does solving mean here?

• Solving over C: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0) and inequations ℎ ̸= 0:

computing all its solutions symbolically, or only the generic ones
providing tools to extract information (dimension, degree, etc.) about those
solutions and,
performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0, inequations ℎ ̸= 0 and inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

doing the same as above, or
finding sample solutions, or
performing cylindrical algebraic decomposition (CAD) or quantifier elimination
(QE).

• Solving over Z: focusing on linear inequality systems, can mean:
counting the number of solutions, or
computing all or part of the solutions, or
performing quantifier elimination (QE) (Presburger Arithmetic).

What does solving mean here?

• Solving over C: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0) and inequations ℎ ̸= 0:

computing all its solutions symbolically, or only the generic ones
providing tools to extract information (dimension, degree, etc.) about those
solutions and,
performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0, inequations ℎ ̸= 0 and inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

doing the same as above, or
finding sample solutions, or
performing cylindrical algebraic decomposition (CAD) or quantifier elimination
(QE).

• Solving over Z: focusing on linear inequality systems, can mean:
counting the number of solutions, or
computing all or part of the solutions, or
performing quantifier elimination (QE) (Presburger Arithmetic).

Outline

1. Over the reals

1.1 RealTriangularize

1.2 Incremental CAD

1.3 QE based on regular chains

2. Over the integers

2.1 A first motivating example: dependence analysis

2.2 A second motivating example: the delinearization of C programs

2.3 Polyhedral sets and integer hulls

2.4 A first tool: decomposing polyhedral sets into simpler ones

2.5 A second tool: fast computation of integer hulls

3. Conclusions

Outline

1. Over the reals

1.1 RealTriangularize

1.2 Incremental CAD

1.3 QE based on regular chains

2. Over the integers

2.1 A first motivating example: dependence analysis

2.2 A second motivating example: the delinearization of C programs

2.3 Polyhedral sets and integer hulls

2.4 A first tool: decomposing polyhedral sets into simpler ones

2.5 A second tool: fast computation of integer hulls

3. Conclusions

Solving for the real solutions of polynomial systems

Classical tools as of 2010

� Cylindrical algebraic decomposition of polynomial systems:
SemiAlgebraicSetTools:-CylindricalAlgebraicDecompose (James)

� Real root classification of parametric polynomial systems:
ParametricSystemTools:-RealRootClassification (Bican)

� Decomposing polynomial systems over the algebraic closure of the base field:
RegularChains:-Triangularize (ORCCA)

New tools in the RegularChains library 2011

� Triangular decomposition of semi-algebraic systems: RealTriangularize
� Sampling all connected components of a semi-algebraic system: SamplePoints
� Set-theoretical operations on semi-algebraic sets:

SemiAlgebraicSetTools:-Difference

Solving for the real solutions of polynomial systems

Classical tools as of 2010

� Cylindrical algebraic decomposition of polynomial systems:
SemiAlgebraicSetTools:-CylindricalAlgebraicDecompose (James)

� Real root classification of parametric polynomial systems:
ParametricSystemTools:-RealRootClassification (Bican)

� Decomposing polynomial systems over the algebraic closure of the base field:
RegularChains:-Triangularize (ORCCA)

New tools in the RegularChains library 2011

� Triangular decomposition of semi-algebraic systems: RealTriangularize
� Sampling all connected components of a semi-algebraic system: SamplePoints
� Set-theoretical operations on semi-algebraic sets:

SemiAlgebraicSetTools:-Difference

Regular semi-algebraic system

Notation

� Let 𝑇 ⊂ Q[𝑥1 < . . . < 𝑥𝑛] be a regular chain with y := {mvar(𝑡) | 𝑡 ∈ 𝑇} and
u := x ∖ y = 𝑢1, . . . , 𝑢𝑑.

� Let 𝑃 be a finite set of polynomials, s.t. every 𝑓 ∈ 𝑃 is regular modulo sat(𝑇).
� Let 𝒬 be a quantifier-free formula of Q[u].

Definition
We say that 𝑅 := [𝒬, 𝑇, 𝑃>] is a regular semi-algebraic system if:

(𝑖) 𝒬 defines a non-empty open semi-algebraic set 𝑆 in R𝑑,
(𝑖𝑖) the regular system [𝑇, 𝑃] specializes well at every point 𝑢 of 𝑆
(𝑖𝑖𝑖) at each point 𝑢 of 𝑆, the specialized system [𝑇 (𝑢), 𝑃 (𝑢)>] has at least one real

solution.
𝑍R(𝑅) = {(𝑢, 𝑦) | 𝒬(𝑢), 𝑡(𝑢, 𝑦) = 0, 𝑝(𝑢, 𝑦) > 0,∀(𝑡, 𝑝) ∈ 𝑇 × 𝑃}.

Regular semi-algebraic system

Notation

� Let 𝑇 ⊂ Q[𝑥1 < . . . < 𝑥𝑛] be a regular chain with y := {mvar(𝑡) | 𝑡 ∈ 𝑇} and
u := x ∖ y = 𝑢1, . . . , 𝑢𝑑.

� Let 𝑃 be a finite set of polynomials, s.t. every 𝑓 ∈ 𝑃 is regular modulo sat(𝑇).
� Let 𝒬 be a quantifier-free formula of Q[u].

Definition
We say that 𝑅 := [𝒬, 𝑇, 𝑃>] is a regular semi-algebraic system if:

(𝑖) 𝒬 defines a non-empty open semi-algebraic set 𝑆 in R𝑑,
(𝑖𝑖) the regular system [𝑇, 𝑃] specializes well at every point 𝑢 of 𝑆
(𝑖𝑖𝑖) at each point 𝑢 of 𝑆, the specialized system [𝑇 (𝑢), 𝑃 (𝑢)>] has at least one real

solution.
𝑍R(𝑅) = {(𝑢, 𝑦) | 𝒬(𝑢), 𝑡(𝑢, 𝑦) = 0, 𝑝(𝑢, 𝑦) > 0,∀(𝑡, 𝑝) ∈ 𝑇 × 𝑃}.

Example
The system [𝒬, 𝑇, 𝑃>], where

𝒬 := 𝑎 > 0, 𝑇 :=

{︂
𝑦2 − 𝑎 = 0
𝑥 = 0

, 𝑃> := {𝑦 > 0}

is a regular semi-algebraic system.

RealTriangularize applied to the Eve surface (1/2)

RealTriangularize applied to the Eve surface (2/2)

Outline

1. Over the reals

1.1 RealTriangularize

1.2 Incremental CAD

1.3 QE based on regular chains

2. Over the integers

2.1 A first motivating example: dependence analysis

2.2 A second motivating example: the delinearization of C programs

2.3 Polyhedral sets and integer hulls

2.4 A first tool: decomposing polyhedral sets into simpler ones

2.5 A second tool: fast computation of integer hulls

3. Conclusions

� A CAD of {𝑦2 + 𝑥, 𝑦2 + 𝑦} is computed incrementally: refining a CAD tree of
𝑦2 + 𝑥 with 𝑦2 + 𝑦.

� Experimental results in [5] (ASCM 2012) suggest that this approach
outperforms the projection-and-lifting scheme of [7] (ISSAC 2009).

Outline

1. Over the reals

1.1 RealTriangularize

1.2 Incremental CAD

1.3 QE based on regular chains

2. Over the integers

2.1 A first motivating example: dependence analysis

2.2 A second motivating example: the delinearization of C programs

2.3 Polyhedral sets and integer hulls

2.4 A first tool: decomposing polyhedral sets into simpler ones

2.5 A second tool: fast computation of integer hulls

3. Conclusions

� QE based on regular chains and incremental CAD [6] (presented by James for
us at ISSAC 2014) is illustrated above.

� This QE problem instance is related to a verification and synthesis of switched
and hybrid dynamical systems (Sturm-Tiwari, ISSAC 2011).

Outline

1. Over the reals

1.1 RealTriangularize

1.2 Incremental CAD

1.3 QE based on regular chains

2. Over the integers

2.1 A first motivating example: dependence analysis

2.2 A second motivating example: the delinearization of C programs

2.3 Polyhedral sets and integer hulls

2.4 A first tool: decomposing polyhedral sets into simpler ones

2.5 A second tool: fast computation of integer hulls

3. Conclusions

Outline

1. Over the reals

1.1 RealTriangularize

1.2 Incremental CAD

1.3 QE based on regular chains

2. Over the integers

2.1 A first motivating example: dependence analysis

2.2 A second motivating example: the delinearization of C programs

2.3 Polyhedral sets and integer hulls

2.4 A first tool: decomposing polyhedral sets into simpler ones

2.5 A second tool: fast computation of integer hulls

3. Conclusions

Dependence analysis

Cholesky’s LU decomposition:

1: for(𝑖 = 1; 𝑖 <= 𝑛; 𝑖++){
𝑥 = 𝑎[𝑖][𝑖];
for(𝑘 = 1; 𝑘 < 𝑖; 𝑘 ++)

2: 𝑥 = 𝑥− 𝑎[𝑖][𝑘] * 𝑎[𝑖][𝑘];
3: 𝑝[𝑖] = 1.0/sqrt(𝑥);

for(𝑗 = 𝑖+ 1; 𝑗 <= 𝑛; 𝑗 ++){
4: 𝑥 = 𝑎[𝑖][𝑗];

for(𝑘 = 1; 𝑘 < 𝑖; 𝑘 ++)

5: 𝑥 = 𝑥− 𝑎[𝑗][𝑘] * 𝑎[𝑖][𝑘];
6: 𝑎[𝑗][𝑖] = 𝑥 * 𝑝[𝑖];

}
}

system 1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ≤ 𝑖 ≤ 𝑛

𝑖+ 1 ≤ 𝑗 ≤ 𝑛

1 ≤ 𝑘 ≤ 𝑖− 1

1 ≤ 𝑖′ ≤ 𝑛

𝑖′ + 1 ≤ 𝑗′ ≤ 𝑛

𝑗 = 𝑗′, 𝑘 = 𝑖′

𝑖 < 𝑖′

system 2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ≤ 𝑖 ≤ 𝑛

𝑖+ 1 ≤ 𝑗 ≤ 𝑛

1 ≤ 𝑘 ≤ 𝑖− 1

1 ≤ 𝑖′ ≤ 𝑛

𝑖′ + 1 ≤ 𝑗′ ≤ 𝑛

𝑗 = 𝑗′, 𝑘 = 𝑖′

𝑖 = 𝑖′, 𝑗 < 𝑗′

system 3:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ≤ 𝑖 ≤ 𝑛

𝑖+ 1 ≤ 𝑗 ≤ 𝑛

1 ≤ 𝑘 ≤ 𝑖− 1

1 ≤ 𝑖′ ≤ 𝑛

𝑖′ + 1 ≤ 𝑗′ ≤ 𝑛

𝑗 = 𝑗′, 𝑘 = 𝑖′

𝑖 = 𝑖′, 𝑗 = 𝑗′

Dependence analysis

Cholesky’s LU decomposition:

1: for(𝑖 = 1; 𝑖 <= 𝑛; 𝑖++){
𝑥 = 𝑎[𝑖][𝑖];
for(𝑘 = 1; 𝑘 < 𝑖; 𝑘 ++)

2: 𝑥 = 𝑥− 𝑎[𝑖][𝑘] * 𝑎[𝑖][𝑘];
3: 𝑝[𝑖] = 1.0/sqrt(𝑥);

for(𝑗 = 𝑖+ 1; 𝑗 <= 𝑛; 𝑗 ++){
4: 𝑥 = 𝑎[𝑖][𝑗];

for(𝑘 = 1; 𝑘 < 𝑖; 𝑘 ++)

5: 𝑥 = 𝑥− 𝑎[𝑗][𝑘] * 𝑎[𝑖][𝑘];
6: 𝑎[𝑗][𝑖] = 𝑥 * 𝑝[𝑖];

}
}

system 1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ≤ 𝑖 ≤ 𝑛

𝑖+ 1 ≤ 𝑗 ≤ 𝑛

1 ≤ 𝑘 ≤ 𝑖− 1

1 ≤ 𝑖′ ≤ 𝑛

𝑖′ + 1 ≤ 𝑗′ ≤ 𝑛

𝑗 = 𝑗′, 𝑘 = 𝑖′

𝑖 < 𝑖′

system 2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ≤ 𝑖 ≤ 𝑛

𝑖+ 1 ≤ 𝑗 ≤ 𝑛

1 ≤ 𝑘 ≤ 𝑖− 1

1 ≤ 𝑖′ ≤ 𝑛

𝑖′ + 1 ≤ 𝑗′ ≤ 𝑛

𝑗 = 𝑗′, 𝑘 = 𝑖′

𝑖 = 𝑖′, 𝑗 < 𝑗′

system 3:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ≤ 𝑖 ≤ 𝑛

𝑖+ 1 ≤ 𝑗 ≤ 𝑛

1 ≤ 𝑘 ≤ 𝑖− 1

1 ≤ 𝑖′ ≤ 𝑛

𝑖′ + 1 ≤ 𝑗′ ≤ 𝑛

𝑗 = 𝑗′, 𝑘 = 𝑖′

𝑖 = 𝑖′, 𝑗 = 𝑗′

Outline

1. Over the reals

1.1 RealTriangularize

1.2 Incremental CAD

1.3 QE based on regular chains

2. Over the integers

2.1 A first motivating example: dependence analysis

2.2 A second motivating example: the delinearization of C programs

2.3 Polyhedral sets and integer hulls

2.4 A first tool: decomposing polyhedral sets into simpler ones

2.5 A second tool: fast computation of integer hulls

3. Conclusions

Delinearization

Linearized multi-dimensional array

for (int i = 0; i < n; i ++)
for (int j = i + 1; j < n; j ++)

A[i * n + j] =
A[n * n - n + j - 1];

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ≤ 𝑖1 < 𝑛

𝑖1 + 1 ≤ 𝑗1 < 𝑛
0 ≤ 𝑖2 < 𝑛

𝑖2 + 1 ≤ 𝑗2 < 𝑛
𝑖1 * 𝑛+ 𝑗1 = 𝑛2 − 𝑛+ 𝑗2 − 1

(1)

Delinearized multi-dimensional array

for (int i = 0; i < n; i ++)
for (int j = i + 1; j < n; j ++)

A[i][j] = A[n - 1][j - 1];

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 ≤ 𝑖1 < 𝑛
𝑖1 + 1 ≤ 𝑗1 < 𝑛

0 ≤ 𝑖2 < 𝑛
𝑖2 + 1 ≤ 𝑗2 < 𝑛

𝑖1 = 𝑛− 1
𝑗1 = 𝑗2 − 1

(2)

Problem definition
Input:
(i1 · · · ; · · · ; 𝑖1++)
. . . (𝑖𝑑 · · · ; · · · ; 𝑖𝑑++)
𝐴[𝑅(𝑖1, . . . , 𝑖𝑑,𝑚1, . . . ,𝑚𝛿)]← · · · . . .

� 𝑖1, . . . , 𝑖𝑑 take non-negative integer values
such that

𝐿

⎛⎜⎝ 𝑖1
...
𝑖𝑑

⎞⎟⎠ ≤

⎛⎜⎝ 𝑟1
...
𝑟𝑑

⎞⎟⎠ ,

� L is a lower-triangular full-rank matrix over
Z (known at compile time) defining the
iteration domain

� 𝑚1, . . . ,𝑚𝛿, 𝑟1, . . . , 𝑟𝑑: data parameters
(known only at execution time)

� 𝑅(𝑖1, . . . , 𝑖𝑑,𝑚1, . . . ,𝑚𝛿) is a polynomial,
the coefficients of which are known at
compile time.

Output:
(𝑖1 · · · ; · · · ; 𝑖1++)
. . . (𝑖𝑑 · · · ; · · · ; 𝑖𝑑++)

∼
𝐴[𝑓1] · · · [𝑓𝛿]← · · · . . .

� 𝑓1, . . . , 𝑓𝛿 are affine forms in 𝑖1, . . . , 𝑖𝑑 the
coefficients of which are integers
to-be-determined,

�
∼
𝐴 is an 𝑀1 × · · · ×𝑀𝛿-array,

� 𝑀1, . . . ,𝑀𝛿 are affine forms in 𝑚1, . . . ,𝑚𝛿

the coefficients of which are integers TBD,

such that:
𝑅 = 𝑓1𝑀2 · · ·𝑀𝛿 + · · · + 𝑓𝛿−1𝑀2 + 𝑓𝛿

holds and for each (𝑖1, . . . , 𝑖𝑑) in the iteration
domain we have:

0 ≤ 𝑓1 < 𝑀1, . . . , 0 ≤ 𝑓𝛿 < 𝑀𝛿.

Problem definition
Input:
(i1 · · · ; · · · ; 𝑖1++)
. . . (𝑖𝑑 · · · ; · · · ; 𝑖𝑑++)
𝐴[𝑅(𝑖1, . . . , 𝑖𝑑,𝑚1, . . . ,𝑚𝛿)]← · · · . . .

� 𝑖1, . . . , 𝑖𝑑 take non-negative integer values
such that

𝐿

⎛⎜⎝ 𝑖1
...
𝑖𝑑

⎞⎟⎠ ≤

⎛⎜⎝ 𝑟1
...
𝑟𝑑

⎞⎟⎠ ,

� L is a lower-triangular full-rank matrix over
Z (known at compile time) defining the
iteration domain

� 𝑚1, . . . ,𝑚𝛿, 𝑟1, . . . , 𝑟𝑑: data parameters
(known only at execution time)

� 𝑅(𝑖1, . . . , 𝑖𝑑,𝑚1, . . . ,𝑚𝛿) is a polynomial,
the coefficients of which are known at
compile time.

Output:
(𝑖1 · · · ; · · · ; 𝑖1++)
. . . (𝑖𝑑 · · · ; · · · ; 𝑖𝑑++)

∼
𝐴[𝑓1] · · · [𝑓𝛿]← · · · . . .

� 𝑓1, . . . , 𝑓𝛿 are affine forms in 𝑖1, . . . , 𝑖𝑑 the
coefficients of which are integers
to-be-determined,

�
∼
𝐴 is an 𝑀1 × · · · ×𝑀𝛿-array,

� 𝑀1, . . . ,𝑀𝛿 are affine forms in 𝑚1, . . . ,𝑚𝛿

the coefficients of which are integers TBD,

such that:
𝑅 = 𝑓1𝑀2 · · ·𝑀𝛿 + · · · + 𝑓𝛿−1𝑀2 + 𝑓𝛿

holds and for each (𝑖1, . . . , 𝑖𝑑) in the iteration
domain we have:

0 ≤ 𝑓1 < 𝑀1, . . . , 0 ≤ 𝑓𝛿 < 𝑀𝛿.

Two problems to solve

Polynomial system solving
Find 𝑓1, . . . , 𝑓𝛿 so that

𝑅 = 𝑓1𝑀2 · · ·𝑀𝛿 + · · ·+ 𝑓𝛿−1𝑀2 + 𝑓𝛿
holds.
� This part can be done off-line.

Quantifier elimination
∀(𝑖1, . . . , 𝑖𝑑) in the iteration domain, we have:

0 ≤ 𝑓1 < 𝑀1, . . . , 0 ≤ 𝑓𝛿 < 𝑀𝛿

� At run-time, all the parameters are known, we can solve this problem in the
integer domain.

� But we would rather do it off-line (thus parametrically).

Integer QE problem

For each 𝑓𝑘 and 𝑀𝑘, we need to ensure max 𝑓𝑘 < 𝑀𝑘

maximize 𝑓𝑘
subject to 𝑖1, . . . , 𝑖𝑑 ∈ Z

∀(𝑖1, . . . , 𝑖𝑑) ∈ D

� At compile time, 𝑓𝑘 and 𝑀𝑘 cannot be determined numerically because of the
parameters.

� Thus, the above problem becomes a parametric integer linear programming
problem (PILP) which is very similar to a parametric integer hull problem.

� This has motivated what follows.

Outline

1. Over the reals

1.1 RealTriangularize

1.2 Incremental CAD

1.3 QE based on regular chains

2. Over the integers

2.1 A first motivating example: dependence analysis

2.2 A second motivating example: the delinearization of C programs

2.3 Polyhedral sets and integer hulls

2.4 A first tool: decomposing polyhedral sets into simpler ones

2.5 A second tool: fast computation of integer hulls

3. Conclusions

A for-loop nest and its associated parametric polyhedral set

for(i = 0; i ≤ n; i ++)
for(j = i; j ≤ n; j ++)
A[i][j]...

{︂
0 ≤ 𝑖 ≤ 𝑛
𝑖 ≤ 𝑗 ≤ 𝑛

� Loop counters can only be
integers

� This leads to the problem of
finding the integer points of a
polyhedral set, called the
iteration space

� Often this space is parametric
(e.g. the variable 𝑛) 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

𝑖

𝑗

Figure: Iteration space when 𝑛 = 10

Integer hull: simple non-parametric example

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ≤ 𝑥
0 ≤ 𝑦

3𝑥+ 2 𝑦 ≤ 12
2𝑥+ 3 𝑦 ≤ 12
−𝑥+ 𝑦 ≤ 1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ≤ 𝑥
0 ≤ 𝑦
𝑦 ≤ 2

𝑥+ 𝑦 ≤ 4
−𝑥+ 𝑦 ≤ 1 1 2 3 4

1

2

3

𝑥

𝑦

Figure

skip slide

Outline

1. Over the reals

1.1 RealTriangularize

1.2 Incremental CAD

1.3 QE based on regular chains

2. Over the integers

2.1 A first motivating example: dependence analysis

2.2 A second motivating example: the delinearization of C programs

2.3 Polyhedral sets and integer hulls

2.4 A first tool: decomposing polyhedral sets into simpler ones

2.5 A second tool: fast computation of integer hulls

3. Conclusions

Decomposing the integer points of a polyhedron

Example

Input: 𝐾1 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3𝑥1 − 2𝑥2 + 𝑥3 ≤ 7

−2𝑥1 + 2𝑥2 − 𝑥3 ≤ 12

−4𝑥1 + 𝑥2 + 3𝑥3 ≤ 15

−𝑥2 ≤ −25

, assume 𝑥1 > 𝑥2 > 𝑥3.

Output: 𝐾1
1 ,𝐾

2
1 ,𝐾

3
1 ,𝐾

4
1 ,𝐾

5
1 given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3𝑥1 − 2𝑥2 + 𝑥3 ≤ 7

−2𝑥1 + 2𝑥2 − 𝑥3 ≤ 12

−4𝑥1 + 𝑥2 + 3𝑥3 ≤ 15

2𝑥2 − 𝑥3 ≤ 48

−5𝑥2 + 13𝑥3 ≤ 67

−𝑥2 ≤ −25

2 ≤ 𝑥3 ≤ 17

,

⎧⎪⎨⎪⎩
𝑥1 = 15

𝑥2 = 27

𝑥3 = 16

,

⎧⎪⎨⎪⎩
𝑥1 = 18

𝑥2 = 33

𝑥3 = 18

,

⎧⎪⎨⎪⎩
𝑥1 = 14

𝑥2 = 25

𝑥3 = 15

,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥1 = 19

𝑥2 = 50 + 𝑡

𝑥3 = 50 + 2𝑡

−25 ≤𝑡 ≤ −16.

Decomposing the integer points of a polyhedron

Output: 𝐾1
1 ,𝐾

2
1 ,𝐾

3
1 ,𝐾

4
1 ,𝐾

5
1 given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3𝑥1 − 2𝑥2 + 𝑥3 ≤ 7

−2𝑥1 + 2𝑥2 − 𝑥3 ≤ 12

−4𝑥1 + 𝑥2 + 3𝑥3 ≤ 15

2𝑥2 − 𝑥3 ≤ 48

−5𝑥2 + 13𝑥3 ≤ 67

−𝑥2 ≤ −25

2 ≤ 𝑥3 ≤ 17

,

⎧⎪⎨⎪⎩
𝑥1 = 15

𝑥2 = 27

𝑥3 = 16

,

⎧⎪⎨⎪⎩
𝑥1 = 18

𝑥2 = 33

𝑥3 = 18

,

⎧⎪⎨⎪⎩
𝑥1 = 14

𝑥2 = 25

𝑥3 = 15

,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥1 = 19

𝑥2 = 50 + 𝑡

𝑥3 = 50 + 2𝑡

−25 ≤𝑡 ≤ −16.

� An integer point solves 𝐾1 iff it solves either 𝐾1
1 , 𝐾

2
1 , 𝐾

3
1 , 𝐾

4
1 or 𝐾5

1 .
� Each of 𝐾1

1 ,𝐾
2
1 ,𝐾

3
1 ,𝐾

4
1 ,𝐾

5
1 has at least one integer point.

� For each 𝐾𝑖
1, each integer point in any (standard) projection of 𝐾𝑖

1 can be lifted
to an integer point in the polyhedron.

Outline

1. Over the reals

1.1 RealTriangularize

1.2 Incremental CAD

1.3 QE based on regular chains

2. Over the integers

2.1 A first motivating example: dependence analysis

2.2 A second motivating example: the delinearization of C programs

2.3 Polyhedral sets and integer hulls

2.4 A first tool: decomposing polyhedral sets into simpler ones

2.5 A second tool: fast computation of integer hulls

3. Conclusions

Example (0/3)

Input
Let’s look at a simple example first.
Vertices: (−44/5, 408/25), (349/27, 206/27), (85/57, 109/57)

⎧⎨⎩ 2𝑥+ 5𝑦 ≤ 64
7𝑥+ 5𝑦 ≥ 20
3𝑥− 6𝑦 ≤ −7

𝑥

𝑦

Example (1/3)

Normalization
Replace the facets that could not have integer point
Vertices: (−44/5, 408/25),(349/27, 206/27),(85/57, 109/57),
(113/9, 70/9),(25/19, 41/19)

3𝑥− 6𝑦 ≤ −7⎧⎨⎩ 2𝑥+ 5𝑦 ≤ 64
7𝑥+ 5𝑦 ≥ 20
3𝑥− 6𝑦 ≤ −9

𝑥

𝑦

Example (2/3)

Partition
Vertices: (−44/5, 408/25), (113/9, 70/9), (25/19, 41/19)
Find the triangles with vertices: [(−8, 16), (−44/5, 408/25), (−5, 11)],
[(3, 3), (25/19, 41/19), (0, 4)], [(12, 8), (113/9, 70/9), (11, 7)]

⎧⎨⎩ 5𝑦 ≤ −2𝑥+ 64
5𝑦 ≥ −7𝑥+ 20
2𝑦 ≥ 𝑥+ 3

𝑥

𝑦

Example (3/3)

Merging
Vertices: (−8, 16), (−7, 14), (−5, 11), (0, 4), (1, 3), (3, 3), (11, 7), (12, 8)

⎧⎨⎩ 5𝑦 ≤ −2𝑥+ 64
5𝑦 ≥ −7𝑥+ 20
2𝑦 ≥ 𝑥+ 3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑦 ≥ −2𝑥
2𝑦 ≥ 3𝑥+ 7
𝑦 ≥ −𝑥+ 4
𝑦 ≥ 3
𝑦 ≥ 𝑥− 4

𝑥

𝑦

Main steps of our algorithm

Our algorithm has 3 main steps:

� Normalization: construct a new polyhedral set 𝑄 from 𝑃 as follows. Consider
in turn each facet 𝐹 of 𝑃 :

1 if the hyperplane 𝐻 supporting 𝐹 contains an integer point, then 𝐻 is a
hyperplane supporting a facet of 𝑄,

2 otherwise we slide 𝐻 towards the center of 𝑃 along the normal vector of 𝐹 ,
stopping as soon as we hit a hyperplane 𝐻 ′ containing an integer point, then
making 𝐻 ′ a hyperplane supporting a facet of 𝑄.

Clearly 𝑄𝐼 = 𝑃𝐼 .
� Partitioning: make each part of the partition a polyhedron 𝑅 which:

1 either has integer points as vertices so that 𝑅𝐼 = 𝑅,
2 or has a small volume so that any algorithm (including exhaustive search) can be

applied to compute 𝑅𝐼 .

� Merging: Once the integer hull of each part of the partition is computed and
given by the list of its vertices, an algorithm for computing the convex hull of a
set points, such as QuickHull, can be applied to deduce 𝑃𝐼 .

skip slide

The general algorithm on a 3D example

Normalization
The integer hull of the normalized polyhedral set should be the same as that of
the input⎧⎪⎨⎪⎩

−98877𝑥1 − 189663𝑥2 − 1798𝑥3 ≤ 705915
−10109𝑥1 − 5958𝑥2 − 14601𝑥3 ≤ 31333
−5405𝑥1 + 4965𝑥2 + 3870𝑥3 ≤ 4303504

729𝑥1 − 117𝑥2 + 350𝑥3 ≤ 4561
677𝑥1 + 465𝑥2 − 540𝑥3 ≤ 3489

⎧⎪⎨⎪⎩
−98877𝑥1 − 189663𝑥2 − 1798𝑥3 ≤ 705915
−10109𝑥1 − 5958𝑥2 − 14601𝑥3 ≤ 31333

−1081𝑥1 + 993𝑥2 + 774𝑥3 ≤ 860700
729𝑥1 − 117𝑥2 + 350𝑥3 ≤ 4561
677𝑥1 + 465𝑥2 − 540𝑥3 ≤ 3489

The general algorithm: building the partition

Partition
For each face 𝑓 of 𝑃 :
� let ℱ be the set of all facets that intersect at 𝑓
� if there exist integer points on 𝑓 (which implies that the closest integer points

on f to each of its vertices do exist as well), then for each vertex 𝑣 of 𝑓 , a
“corner” polyhedral is built as the convex hull of:

𝑣,
the closest integer point to 𝑣 on 𝑓 ,
all the closest integer points to 𝑣 on 𝐹 , for 𝐹 ∈ ℱ .

� if there is no integer point on 𝑓 , a single “corner” polyhedral set is built for 𝑓 as
the convex hull of:

the vertex set of 𝑓 ,
all the closest integer points to 𝑣 on 𝐹 , for 𝐹 ∈ ℱ .

The general algorithm on a 3D example

Partition

The general algorithm on a 3D example
Merging
The integer hull has 139 vertices

“Closest integer points” on a facet to each of its vertices

Projection and recursive call
In Q𝑑, for a facet 𝐹 of dimension 𝑑− 1 < 𝑑, and its vertex set 𝑉 :
1 make a projection on a full-dimensional polyhedron 𝐺 using Hermite normal form

�⃗�𝑡𝑈 = [0𝐻] (where 𝑈 = [𝑈𝐿𝑈𝑅] and �⃗�𝑡x = 𝑠 is the hyperplane supporting 𝐹)
2 we obtain a parametrization 𝑅𝐹 of 𝐹 of the form:

𝑅𝐹 :

{︂
Q𝑑−1 → Q𝑑

z ↦−→ x = v + 𝑈𝐿z.
(3)

3 thus 𝑅𝐹 (𝐺) = 𝐹 . Moreover, we have
𝑅𝐹 (𝐺𝐼) = 𝐹𝐼 .

4 q recursive call to our integer hull algorithm computes the vertices 𝑉 ′
𝐼 of the

integer hull of 𝐺
5 we deduce the vertices 𝑉𝐼 of 𝐹𝐼 by 𝑅𝐹 (𝑉

′
𝐼) = 𝑉𝐼

6 finally, we find in 𝑉𝐼 the “closest integer points” to each 𝑣 of 𝑉 .

Closest integer points on a face to one of its vertices

Projection and recursive call

𝑅𝐹 :

⎧⎨⎩ 𝑥1 = 993𝑥′
1 + 573𝑥′

2 − 67995300
𝑥2 = 1081𝑥′

1 + 623𝑥′
2 − 74020200

𝑥3 = 𝑥′
2

The PolyhedralSets:-IntegerHull command in Maple

The PolyhedralSets:-IntegerHull command in Maple

The PolyhedralSets:-IntegerHull command in Maple

Benchmarks 2D
E&C represents “enumeration and convex hull”, which in Maple is done by
ZPolyhedralSets:-EnumerateIntegerPoints and ConvexHull. Normaliz is an open
source tool for computations in affine monoids, vector configurations, lattice polytopes,
and rational cones.

Volume 27.95 111.79 11179.32
Algorithm IntegerHull E&C IntegerHull E&C IntegerHull E&C
Maple (ms) 172 410 244 890 159 58083
C/C++ (ms) 0.284 0.768 0.339 1.676 0.286 6.883
Normaliz (ms) 835.730 462.116 1559.401

Table: Integer hulls of triangles

Volume 58.21 5820.95 23283.82
Algorithm IntegerHull E&C IntegerHull E&C IntegerHull E&C
Maple (ms) 303 752 275 31357 304 123159
C/C++ (ms) 0.451 0.565 0.478 0.657 0.396 0.682
Normaliz (ms) 2.837 1216.238 740.559

Table: Integer hulls of hexagons

Benchmarks 3D

Volume 447.48 6991.89 55935.2
Algorithm IntegerHull E&C IntegerHull E&C IntegerHull E&C
Maple (ms) 977 7289 1223 74804 1378 531904
C/C++ (ms) 4.488 0.826 4.615 0.923 4.624 1.527
Normaliz (ms) 851.495 956.666 793.192

Table: Integer hulls of tetrahedrons (4 vertices, 4 facets and 6 edges)

Volume 412.58 7050.81 60417.63
Algorithm IntegerHull E&C IntegerHull E&C IntegerHull E&C
Maple (ms) 1476 5711 1573 60233 1728 512101
C/C++ (ms) 11.049 21.235 16.001 145.068 23.822 2082.559
Normaliz (ms) 7862.109 N/A N/A

Table: Integer hulls of triangular bipyramids (5 vertices, 6 facets and 9 edges)

Outline

1. Over the reals

1.1 RealTriangularize

1.2 Incremental CAD

1.3 QE based on regular chains

2. Over the integers

2.1 A first motivating example: dependence analysis

2.2 A second motivating example: the delinearization of C programs

2.3 Polyhedral sets and integer hulls

2.4 A first tool: decomposing polyhedral sets into simpler ones

2.5 A second tool: fast computation of integer hulls

3. Conclusions

Conclusions and remarks

Over the reals:

� The notion of regular semi-algebraic system is a natural generalization of that of
a regular chain for isolating real solutions.

� The incremental flavor of RealTriangularize is experimentally more effective
than its elimination approach.

� RealTriangularize has inspired follow-up works (CAD and QE based on
regular chains and proceeding incrementally).

� The implementation of RealTriangularize relies on CAD but this could be
relaxed. (The complexity analysis uses Renagar’s work.)

� Can the notion of a regular semi-algebraic system be weakened so as to reduce
the cost of the decomposition while remaining useful?

Over the integers:

� The IntegerPointDecomposition is also inspired by the theory of regular
chains.

� It often produces more information than needed and this has a cost.
� Our IntegerHull solves that issue and is currently adapted to support

parameters and thus QE problems.

Thank You!

References

[1] R. J. Bradford, C. Chen, J. H. Davenport, M. England, M.
Moreno Maza, and D. J. Wilson. “Truth Table Invariant Cylindrical Algebraic Decomposition by Regular Chains”. In:
Computer Algebra in Scientific Computing - 16th International Workshop, CASC 2014, Warsaw, Poland, September 8-12, 2014. Proceedings.
Ed. by V. P. Gerdt, W. Koepf, W. M. Seiler, and E. V. Vorozhtsov. Vol. 8660. Lecture Notes in Computer
Science. Springer, 2014, pp. 44–58. doi: 10.1007/978-3-319-10515-4_4. url:
https://doi.org/10.1007/978-3-319-10515-4%5C_4.

[2] C. Chen, J. H. Davenport, J. P. May, M. Moreno Maza, B. Xia, and R. Xiao. “Triangular decomposition of
semi-algebraic systems”. In: J. Symb. Comput. 49 (2013), pp. 3–26.

[3] C. Chen, J. H. Davenport, M. Moreno Maza, B. Xia, and R. Xiao. “Computing with semi-algebraic sets:
Relaxation techniques and effective boundaries”. In: J. Symb. Comput. 52 (2013), pp. 72–96. doi:
10.1016/j.jsc.2012.05.013. url: https://doi.org/10.1016/j.jsc.2012.05.013.

[4] C. Chen and M. Moreno Maza. “Algorithms for computing triangular decomposition of polynomial systems”. In:
J. Symb. Comput. 47.6 (2012), pp. 610–642.

[5] C. Chen and M. Moreno Maza. “An Incremental Algorithm for Computing Cylindrical Algebraic Decompositions”. In:
Computer Mathematics, 9th Asian Symposium (ASCM 2009), Fukuoka, Japan, December 2009, 10th Asian Symposium (ASCM 2012), Beijing, China, October 2012, Contributed Papers and Invited Talks.
Ed. by R. Feng, W. Lee, and Y. Sato. Springer, 2012, pp. 199–221. doi: 10.1007/978-3-662-43799-5_17. url:
https://doi.org/10.1007/978-3-662-43799-5%5C_17.

[6] C. Chen and M. Moreno Maza. “Quantifier elimination by cylindrical algebraic decomposition based on regular
chains”. In: J. Symb. Comput. 75 (2016), pp. 74–93.

[7] C. Chen, M. Moreno Maza, B. Xia, and L. Yang. “Computing cylindrical algebraic decomposition via triangular
decomposition”. In:
Symbolic and Algebraic Computation, International Symposium, ISSAC 2009, Seoul, Republic of Korea, July 29-31, 2009, Proceedings.
Ed. by J. R. Johnson, H. Park, and E. L. Kaltofen. ACM, 2009, pp. 95–102. doi: 10.1145/1576702.1576718. url:
https://doi.org/10.1145/1576702.1576718.

[8] S. Covanov, D. Mohajerani, M. Moreno Maza, and L. Wang. “Big Prime Field FFT on Multi-core Processors”. In:
International Symposium on Symbolic and Algebraic Computation (ISSAC ’19), Beijing, China, July 15-18, 2019.
2019, pp. 106–113.

[9] R. Jing and M. Moreno Maza. “Computing the Integer Points of a Polyhedron, I: Algorithm”. In:
Computer Algebra in Scientific Computing - 19th International Workshop, CASC 2017, Beijing, China, September 18-22, 2017, Proceedings.
Ed. by V. P. Gerdt, W. Koepf, W. M. Seiler, and E. V. Vorozhtsov. Vol. 10490. Lecture Notes in Computer
Science. Springer, 2017, pp. 225–241. doi: 10.1007/978-3-319-66320-3_17. url:
https://doi.org/10.1007/978-3-319-66320-3%5C_17.

https://doi.org/10.1007/978-3-319-10515-4_4
https://doi.org/10.1007/978-3-319-10515-4%5C_4
https://doi.org/10.1016/j.jsc.2012.05.013
https://doi.org/10.1016/j.jsc.2012.05.013
https://doi.org/10.1007/978-3-662-43799-5_17
https://doi.org/10.1007/978-3-662-43799-5%5C_17
https://doi.org/10.1145/1576702.1576718
https://doi.org/10.1145/1576702.1576718
https://doi.org/10.1007/978-3-319-66320-3_17
https://doi.org/10.1007/978-3-319-66320-3%5C_17

[10] R. Jing and M. Moreno Maza. “Computing the Integer Points of a Polyhedron, II: Complexity Estimates”. In:
Computer Algebra in Scientific Computing - 19th International Workshop, CASC 2017, Beijing, China, September 18-22, 2017, Proceedings.
Ed. by V. P. Gerdt, W. Koepf, W. M. Seiler, and E. V. Vorozhtsov. Vol. 10490. Lecture Notes in Computer
Science. Springer, 2017, pp. 242–256. doi: 10.1007/978-3-319-66320-3_18. url:
https://doi.org/10.1007/978-3-319-66320-3%5C_18.

[11] R. Jing, M. Moreno Maza, and D. Talaashrafi. “Complexity Estimates for Fourier-Motzkin Elimination”. In:
Computer Algebra in Scientific Computing - 22nd International Workshop, CASC 2020, Linz, Austria, September 14-18, 2020, Proceedings.
Ed. by F. Boulier, M. England, T. M. Sadykov, and E. V. Vorozhtsov. Vol. 12291. Lecture Notes in Computer
Science. Springer, 2020, pp. 282–306. doi: 10.1007/978-3-030-60026-6_16. url:
https://doi.org/10.1007/978-3-030-60026-6%5C_16.

[12] F. Lemaire, M. Moreno Maza, and Y. Xie. “The RegularChains library in MAPLE”. In: ACM SIGSAM Bulletin
39.3 (2005), pp. 96–97.

[13] M. Moreno Maza and L. Wang. “Computing the Integer Hull of Convex Polyhedral Sets”. In:
Computer Algebra in Scientific Computing - 24th International Workshop, CASC 2022, Gebze, Turkey, August 22-26, 2022, Proceedings.
Ed. by F. Boulier, M. England, T. M. Sadykov, and E. V. Vorozhtsov. Vol. 13366. Lecture Notes in Computer
Science. Springer, 2022, pp. 246–267. doi: 10.1007/978-3-031-14788-3_14. url:
https://doi.org/10.1007/978-3-031-14788-3%5C_14.

[14] M. Moreno Maza and L. Wang. “On the Pseudo-Periodicity of the Integer Hull of Parametric Convex Polygons”.
In:
Computer Algebra in Scientific Computing - 23rd International Workshop, CASC 2021, Sochi, Russia, September 13-17, 2021, Proceedings.
Ed. by F. Boulier, M. England, T. M. Sadykov, and E. V. Vorozhtsov. Vol. 12865. Lecture Notes in Computer
Science. Springer, 2021, pp. 252–271. doi: 10.1007/978-3-030-85165-1_15. url:
https://doi.org/10.1007/978-3-030-85165-1%5C_15.

[15] D. Talaashrafi, J. Doerfert, and M. Moreno Maza. “A Pipeline Pattern Detection Technique in Polly”. In:
Workshop Proceedings of the 51st International Conference on Parallel Processing, ICPP Workshops 2022, Bordeaux, France, 29 August 2022 - 1 September 2022.
ACM, 2022, 18:1–18:10. doi: 10.1145/3547276.3548445. url: https://doi.org/10.1145/3547276.3548445.

[16] D. Talaashrafi, M. Moreno Maza, and J. Doerfert. “Towards Automatic OpenMP-Aware Utilization of Fast GPU
Memory”. In:
OpenMP in a Modern World: From Multi-device Support to Meta Programming - 18th International Workshop on OpenMP, IWOMP 2022, Chattanooga, TN, USA, September 27-30, 2022, Proceedings.
Ed. by M. Klemm, B. R. de Supinski, J. Klinkenberg, and B. Neth. Vol. 13527. Lecture Notes in Computer
Science. Springer, 2022, pp. 67–80. doi: 10.1007/978-3-031-15922-0_5. url:
https://doi.org/10.1007/978-3-031-15922-0%5C_5.

https://doi.org/10.1007/978-3-319-66320-3_18
https://doi.org/10.1007/978-3-319-66320-3%5C_18
https://doi.org/10.1007/978-3-030-60026-6_16
https://doi.org/10.1007/978-3-030-60026-6%5C_16
https://doi.org/10.1007/978-3-031-14788-3_14
https://doi.org/10.1007/978-3-031-14788-3%5C_14
https://doi.org/10.1007/978-3-030-85165-1_15
https://doi.org/10.1007/978-3-030-85165-1%5C_15
https://doi.org/10.1145/3547276.3548445
https://doi.org/10.1145/3547276.3548445
https://doi.org/10.1007/978-3-031-15922-0_5
https://doi.org/10.1007/978-3-031-15922-0%5C_5

	Over the reals
	RealTriangularize
	Incremental CAD
	QE based on regular chains

	Over the integers
	A first motivating example: dependence analysis
	A second motivating example: the delinearization of C programs
	Polyhedral sets and integer hulls
	A first tool: decomposing polyhedral sets into simpler ones
	A second tool: fast computation of integer hulls

	Conclusions

