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Tentative Plan

1 Decomposition and QE algorithms over the reals

2 Decomposition and QE algorithms over the integers



What does solving mean here?

• Solving over C: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0) and inequations ℎ ̸= 0:

computing all its solutions symbolically, or only the generic ones
providing tools to extract information (dimension, degree, etc.) about those
solutions and,
performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate polynomial equations
(say, 𝑓1 = · · · = 𝑓𝑚 = 0, inequations ℎ ̸= 0 and inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

doing the same as above, or
finding sample solutions, or
performing cylindrical algebraic decomposition (CAD) or quantifier elimination
(QE).

• Solving over Z: focusing on linear inequality systems, can mean:
counting the number of solutions, or
computing all or part of the solutions, or
performing quantifier elimination (QE) (Presburger Arithmetic).
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Solving for the real solutions of polynomial systems

Classical tools as of 2010

� Cylindrical algebraic decomposition of polynomial systems:
SemiAlgebraicSetTools:-CylindricalAlgebraicDecompose (James)

� Real root classification of parametric polynomial systems:
ParametricSystemTools:-RealRootClassification (Bican)

� Decomposing polynomial systems over the algebraic closure of the base field:
RegularChains:-Triangularize (ORCCA)

New tools in the RegularChains library 2011

� Triangular decomposition of semi-algebraic systems: RealTriangularize
� Sampling all connected components of a semi-algebraic system: SamplePoints
� Set-theoretical operations on semi-algebraic sets:

SemiAlgebraicSetTools:-Difference
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Regular semi-algebraic system

Notation

� Let 𝑇 ⊂ Q[𝑥1 < . . . < 𝑥𝑛] be a regular chain with y := {mvar(𝑡) | 𝑡 ∈ 𝑇} and
u := x ∖ y = 𝑢1, . . . , 𝑢𝑑.

� Let 𝑃 be a finite set of polynomials, s.t. every 𝑓 ∈ 𝑃 is regular modulo sat(𝑇 ).
� Let 𝒬 be a quantifier-free formula of Q[u].

Definition
We say that 𝑅 := [𝒬, 𝑇, 𝑃>] is a regular semi-algebraic system if:

(𝑖) 𝒬 defines a non-empty open semi-algebraic set 𝑆 in R𝑑,
(𝑖𝑖) the regular system [𝑇, 𝑃 ] specializes well at every point 𝑢 of 𝑆
(𝑖𝑖𝑖) at each point 𝑢 of 𝑆, the specialized system [𝑇 (𝑢), 𝑃 (𝑢)>] has at least one real

solution.
𝑍R(𝑅) = {(𝑢, 𝑦) | 𝒬(𝑢), 𝑡(𝑢, 𝑦) = 0, 𝑝(𝑢, 𝑦) > 0,∀(𝑡, 𝑝) ∈ 𝑇 × 𝑃}.



Regular semi-algebraic system

Notation

� Let 𝑇 ⊂ Q[𝑥1 < . . . < 𝑥𝑛] be a regular chain with y := {mvar(𝑡) | 𝑡 ∈ 𝑇} and
u := x ∖ y = 𝑢1, . . . , 𝑢𝑑.

� Let 𝑃 be a finite set of polynomials, s.t. every 𝑓 ∈ 𝑃 is regular modulo sat(𝑇 ).
� Let 𝒬 be a quantifier-free formula of Q[u].

Definition
We say that 𝑅 := [𝒬, 𝑇, 𝑃>] is a regular semi-algebraic system if:

(𝑖) 𝒬 defines a non-empty open semi-algebraic set 𝑆 in R𝑑,
(𝑖𝑖) the regular system [𝑇, 𝑃 ] specializes well at every point 𝑢 of 𝑆
(𝑖𝑖𝑖) at each point 𝑢 of 𝑆, the specialized system [𝑇 (𝑢), 𝑃 (𝑢)>] has at least one real

solution.
𝑍R(𝑅) = {(𝑢, 𝑦) | 𝒬(𝑢), 𝑡(𝑢, 𝑦) = 0, 𝑝(𝑢, 𝑦) > 0,∀(𝑡, 𝑝) ∈ 𝑇 × 𝑃}.



Example
The system [𝒬, 𝑇, 𝑃>], where

𝒬 := 𝑎 > 0, 𝑇 :=

{︂
𝑦2 − 𝑎 = 0
𝑥 = 0

, 𝑃> := {𝑦 > 0}

is a regular semi-algebraic system.



RealTriangularize applied to the Eve surface (1/2)



RealTriangularize applied to the Eve surface (2/2)
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� A CAD of {𝑦2 + 𝑥, 𝑦2 + 𝑦} is computed incrementally: refining a CAD tree of
𝑦2 + 𝑥 with 𝑦2 + 𝑦.

� Experimental results in [5] (ASCM 2012) suggest that this approach
outperforms the projection-and-lifting scheme of [7] (ISSAC 2009).
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� QE based on regular chains and incremental CAD [6] (presented by James for
us at ISSAC 2014) is illustrated above.

� This QE problem instance is related to a verification and synthesis of switched
and hybrid dynamical systems (Sturm-Tiwari, ISSAC 2011).
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Dependence analysis

Cholesky’s LU decomposition:

1: for(𝑖 = 1; 𝑖 <= 𝑛; 𝑖++){
𝑥 = 𝑎[𝑖][𝑖];
for(𝑘 = 1; 𝑘 < 𝑖; 𝑘 ++)

2: 𝑥 = 𝑥− 𝑎[𝑖][𝑘] * 𝑎[𝑖][𝑘];
3: 𝑝[𝑖] = 1.0/sqrt(𝑥);

for(𝑗 = 𝑖+ 1; 𝑗 <= 𝑛; 𝑗 ++){
4: 𝑥 = 𝑎[𝑖][𝑗];

for(𝑘 = 1; 𝑘 < 𝑖; 𝑘 ++)

5: 𝑥 = 𝑥− 𝑎[𝑗][𝑘] * 𝑎[𝑖][𝑘];
6: 𝑎[𝑗][𝑖] = 𝑥 * 𝑝[𝑖];

}
}

system 1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ≤ 𝑖 ≤ 𝑛

𝑖+ 1 ≤ 𝑗 ≤ 𝑛

1 ≤ 𝑘 ≤ 𝑖− 1

1 ≤ 𝑖′ ≤ 𝑛

𝑖′ + 1 ≤ 𝑗′ ≤ 𝑛

𝑗 = 𝑗′, 𝑘 = 𝑖′

𝑖 < 𝑖′

system 2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ≤ 𝑖 ≤ 𝑛

𝑖+ 1 ≤ 𝑗 ≤ 𝑛

1 ≤ 𝑘 ≤ 𝑖− 1

1 ≤ 𝑖′ ≤ 𝑛

𝑖′ + 1 ≤ 𝑗′ ≤ 𝑛

𝑗 = 𝑗′, 𝑘 = 𝑖′

𝑖 = 𝑖′, 𝑗 < 𝑗′

system 3:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ≤ 𝑖 ≤ 𝑛

𝑖+ 1 ≤ 𝑗 ≤ 𝑛

1 ≤ 𝑘 ≤ 𝑖− 1

1 ≤ 𝑖′ ≤ 𝑛

𝑖′ + 1 ≤ 𝑗′ ≤ 𝑛

𝑗 = 𝑗′, 𝑘 = 𝑖′

𝑖 = 𝑖′, 𝑗 = 𝑗′
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𝑖′ + 1 ≤ 𝑗′ ≤ 𝑛

𝑗 = 𝑗′, 𝑘 = 𝑖′

𝑖 < 𝑖′

system 2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ≤ 𝑖 ≤ 𝑛

𝑖+ 1 ≤ 𝑗 ≤ 𝑛

1 ≤ 𝑘 ≤ 𝑖− 1

1 ≤ 𝑖′ ≤ 𝑛

𝑖′ + 1 ≤ 𝑗′ ≤ 𝑛

𝑗 = 𝑗′, 𝑘 = 𝑖′

𝑖 = 𝑖′, 𝑗 < 𝑗′

system 3:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ≤ 𝑖 ≤ 𝑛

𝑖+ 1 ≤ 𝑗 ≤ 𝑛

1 ≤ 𝑘 ≤ 𝑖− 1

1 ≤ 𝑖′ ≤ 𝑛

𝑖′ + 1 ≤ 𝑗′ ≤ 𝑛

𝑗 = 𝑗′, 𝑘 = 𝑖′

𝑖 = 𝑖′, 𝑗 = 𝑗′
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Delinearization

Linearized multi-dimensional array

for (int i = 0; i < n; i ++)
for (int j = i + 1; j < n; j ++)

A[i * n + j] =
A[n * n - n + j - 1];

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ≤ 𝑖1 < 𝑛

𝑖1 + 1 ≤ 𝑗1 < 𝑛
0 ≤ 𝑖2 < 𝑛

𝑖2 + 1 ≤ 𝑗2 < 𝑛
𝑖1 * 𝑛+ 𝑗1 = 𝑛2 − 𝑛+ 𝑗2 − 1

(1)

Delinearized multi-dimensional array

for (int i = 0; i < n; i ++)
for (int j = i + 1; j < n; j ++)

A[i][j] = A[n - 1][j - 1];

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 ≤ 𝑖1 < 𝑛
𝑖1 + 1 ≤ 𝑗1 < 𝑛

0 ≤ 𝑖2 < 𝑛
𝑖2 + 1 ≤ 𝑗2 < 𝑛

𝑖1 = 𝑛− 1
𝑗1 = 𝑗2 − 1

(2)



Problem definition
Input:
(i1 · · · ; · · · ; 𝑖1++)
. . . (𝑖𝑑 · · · ; · · · ; 𝑖𝑑++)
𝐴[𝑅(𝑖1, . . . , 𝑖𝑑,𝑚1, . . . ,𝑚𝛿)]← · · · . . .

� 𝑖1, . . . , 𝑖𝑑 take non-negative integer values
such that

𝐿

⎛⎜⎝ 𝑖1
...
𝑖𝑑

⎞⎟⎠ ≤

⎛⎜⎝ 𝑟1
...
𝑟𝑑

⎞⎟⎠ ,

� L is a lower-triangular full-rank matrix over
Z (known at compile time) defining the
iteration domain

� 𝑚1, . . . ,𝑚𝛿, 𝑟1, . . . , 𝑟𝑑: data parameters
(known only at execution time)

� 𝑅(𝑖1, . . . , 𝑖𝑑,𝑚1, . . . ,𝑚𝛿) is a polynomial,
the coefficients of which are known at
compile time.

Output:
(𝑖1 · · · ; · · · ; 𝑖1++)
. . . (𝑖𝑑 · · · ; · · · ; 𝑖𝑑++)

∼
𝐴[𝑓1] · · · [𝑓𝛿]← · · · . . .

� 𝑓1, . . . , 𝑓𝛿 are affine forms in 𝑖1, . . . , 𝑖𝑑 the
coefficients of which are integers
to-be-determined,

�
∼
𝐴 is an 𝑀1 × · · · ×𝑀𝛿-array,

� 𝑀1, . . . ,𝑀𝛿 are affine forms in 𝑚1, . . . ,𝑚𝛿

the coefficients of which are integers TBD,

such that:
𝑅 = 𝑓1𝑀2 · · ·𝑀𝛿 + · · · + 𝑓𝛿−1𝑀2 + 𝑓𝛿

holds and for each (𝑖1, . . . , 𝑖𝑑) in the iteration
domain we have:

0 ≤ 𝑓1 < 𝑀1, . . . , 0 ≤ 𝑓𝛿 < 𝑀𝛿.



Problem definition
Input:
(i1 · · · ; · · · ; 𝑖1++)
. . . (𝑖𝑑 · · · ; · · · ; 𝑖𝑑++)
𝐴[𝑅(𝑖1, . . . , 𝑖𝑑,𝑚1, . . . ,𝑚𝛿)]← · · · . . .

� 𝑖1, . . . , 𝑖𝑑 take non-negative integer values
such that

𝐿

⎛⎜⎝ 𝑖1
...
𝑖𝑑

⎞⎟⎠ ≤

⎛⎜⎝ 𝑟1
...
𝑟𝑑

⎞⎟⎠ ,

� L is a lower-triangular full-rank matrix over
Z (known at compile time) defining the
iteration domain

� 𝑚1, . . . ,𝑚𝛿, 𝑟1, . . . , 𝑟𝑑: data parameters
(known only at execution time)

� 𝑅(𝑖1, . . . , 𝑖𝑑,𝑚1, . . . ,𝑚𝛿) is a polynomial,
the coefficients of which are known at
compile time.

Output:
(𝑖1 · · · ; · · · ; 𝑖1++)
. . . (𝑖𝑑 · · · ; · · · ; 𝑖𝑑++)

∼
𝐴[𝑓1] · · · [𝑓𝛿]← · · · . . .

� 𝑓1, . . . , 𝑓𝛿 are affine forms in 𝑖1, . . . , 𝑖𝑑 the
coefficients of which are integers
to-be-determined,

�
∼
𝐴 is an 𝑀1 × · · · ×𝑀𝛿-array,

� 𝑀1, . . . ,𝑀𝛿 are affine forms in 𝑚1, . . . ,𝑚𝛿

the coefficients of which are integers TBD,

such that:
𝑅 = 𝑓1𝑀2 · · ·𝑀𝛿 + · · · + 𝑓𝛿−1𝑀2 + 𝑓𝛿

holds and for each (𝑖1, . . . , 𝑖𝑑) in the iteration
domain we have:

0 ≤ 𝑓1 < 𝑀1, . . . , 0 ≤ 𝑓𝛿 < 𝑀𝛿.



Two problems to solve

Polynomial system solving
Find 𝑓1, . . . , 𝑓𝛿 so that

𝑅 = 𝑓1𝑀2 · · ·𝑀𝛿 + · · ·+ 𝑓𝛿−1𝑀2 + 𝑓𝛿
holds.
� This part can be done off-line.

Quantifier elimination
∀(𝑖1, . . . , 𝑖𝑑) in the iteration domain, we have:

0 ≤ 𝑓1 < 𝑀1, . . . , 0 ≤ 𝑓𝛿 < 𝑀𝛿

� At run-time, all the parameters are known, we can solve this problem in the
integer domain.

� But we would rather do it off-line (thus parametrically).



Integer QE problem

For each 𝑓𝑘 and 𝑀𝑘, we need to ensure max 𝑓𝑘 < 𝑀𝑘

maximize 𝑓𝑘
subject to 𝑖1, . . . , 𝑖𝑑 ∈ Z

∀(𝑖1, . . . , 𝑖𝑑) ∈ D

� At compile time, 𝑓𝑘 and 𝑀𝑘 cannot be determined numerically because of the
parameters.

� Thus, the above problem becomes a parametric integer linear programming
problem (PILP) which is very similar to a parametric integer hull problem.

� This has motivated what follows.
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A for-loop nest and its associated parametric polyhedral set

for(i = 0; i ≤ n; i ++)
for(j = i; j ≤ n; j ++)
A[i][j]...

{︂
0 ≤ 𝑖 ≤ 𝑛
𝑖 ≤ 𝑗 ≤ 𝑛

� Loop counters can only be
integers

� This leads to the problem of
finding the integer points of a
polyhedral set, called the
iteration space

� Often this space is parametric
(e.g. the variable 𝑛) 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

𝑖

𝑗

Figure: Iteration space when 𝑛 = 10



Integer hull: simple non-parametric example

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ≤ 𝑥
0 ≤ 𝑦

3𝑥+ 2 𝑦 ≤ 12
2𝑥+ 3 𝑦 ≤ 12
−𝑥+ 𝑦 ≤ 1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ≤ 𝑥
0 ≤ 𝑦
𝑦 ≤ 2

𝑥+ 𝑦 ≤ 4
−𝑥+ 𝑦 ≤ 1 1 2 3 4

1

2

3

𝑥

𝑦

Figure

skip slide
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Decomposing the integer points of a polyhedron

Example

Input: 𝐾1 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3𝑥1 − 2𝑥2 + 𝑥3 ≤ 7

−2𝑥1 + 2𝑥2 − 𝑥3 ≤ 12

−4𝑥1 + 𝑥2 + 3𝑥3 ≤ 15

−𝑥2 ≤ −25

, assume 𝑥1 > 𝑥2 > 𝑥3.

Output: 𝐾1
1 ,𝐾

2
1 ,𝐾

3
1 ,𝐾

4
1 ,𝐾

5
1 given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3𝑥1 − 2𝑥2 + 𝑥3 ≤ 7

−2𝑥1 + 2𝑥2 − 𝑥3 ≤ 12

−4𝑥1 + 𝑥2 + 3𝑥3 ≤ 15

2𝑥2 − 𝑥3 ≤ 48

−5𝑥2 + 13𝑥3 ≤ 67

−𝑥2 ≤ −25

2 ≤ 𝑥3 ≤ 17

,

⎧⎪⎨⎪⎩
𝑥1 = 15

𝑥2 = 27

𝑥3 = 16

,

⎧⎪⎨⎪⎩
𝑥1 = 18

𝑥2 = 33

𝑥3 = 18

,

⎧⎪⎨⎪⎩
𝑥1 = 14

𝑥2 = 25

𝑥3 = 15

,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥1 = 19

𝑥2 = 50 + 𝑡

𝑥3 = 50 + 2𝑡

−25 ≤𝑡 ≤ −16.



Decomposing the integer points of a polyhedron

Output: 𝐾1
1 ,𝐾

2
1 ,𝐾

3
1 ,𝐾

4
1 ,𝐾

5
1 given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3𝑥1 − 2𝑥2 + 𝑥3 ≤ 7

−2𝑥1 + 2𝑥2 − 𝑥3 ≤ 12

−4𝑥1 + 𝑥2 + 3𝑥3 ≤ 15

2𝑥2 − 𝑥3 ≤ 48

−5𝑥2 + 13𝑥3 ≤ 67

−𝑥2 ≤ −25

2 ≤ 𝑥3 ≤ 17

,

⎧⎪⎨⎪⎩
𝑥1 = 15

𝑥2 = 27

𝑥3 = 16

,

⎧⎪⎨⎪⎩
𝑥1 = 18

𝑥2 = 33

𝑥3 = 18

,

⎧⎪⎨⎪⎩
𝑥1 = 14

𝑥2 = 25

𝑥3 = 15

,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥1 = 19

𝑥2 = 50 + 𝑡

𝑥3 = 50 + 2𝑡

−25 ≤𝑡 ≤ −16.

� An integer point solves 𝐾1 iff it solves either 𝐾1
1 , 𝐾

2
1 , 𝐾

3
1 , 𝐾

4
1 or 𝐾5

1 .
� Each of 𝐾1

1 ,𝐾
2
1 ,𝐾

3
1 ,𝐾

4
1 ,𝐾

5
1 has at least one integer point.

� For each 𝐾𝑖
1, each integer point in any (standard) projection of 𝐾𝑖

1 can be lifted
to an integer point in the polyhedron.
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Example (0/3)

Input
Let’s look at a simple example first.
Vertices: (−44/5, 408/25), (349/27, 206/27), (85/57, 109/57)

⎧⎨⎩ 2𝑥+ 5𝑦 ≤ 64
7𝑥+ 5𝑦 ≥ 20
3𝑥− 6𝑦 ≤ −7

𝑥

𝑦



Example (1/3)

Normalization
Replace the facets that could not have integer point
Vertices: (−44/5, 408/25),(349/27, 206/27),(85/57, 109/57),
(113/9, 70/9),(25/19, 41/19)

3𝑥− 6𝑦 ≤ −7⎧⎨⎩ 2𝑥+ 5𝑦 ≤ 64
7𝑥+ 5𝑦 ≥ 20
3𝑥− 6𝑦 ≤ −9

𝑥

𝑦



Example (2/3)

Partition
Vertices: (−44/5, 408/25), (113/9, 70/9), (25/19, 41/19)
Find the triangles with vertices: [(−8, 16), (−44/5, 408/25), (−5, 11)],
[(3, 3), (25/19, 41/19), (0, 4)], [(12, 8), (113/9, 70/9), (11, 7)]

⎧⎨⎩ 5𝑦 ≤ −2𝑥+ 64
5𝑦 ≥ −7𝑥+ 20
2𝑦 ≥ 𝑥+ 3

𝑥

𝑦



Example (3/3)

Merging
Vertices: (−8, 16), (−7, 14), (−5, 11), (0, 4), (1, 3), (3, 3), (11, 7), (12, 8)

⎧⎨⎩ 5𝑦 ≤ −2𝑥+ 64
5𝑦 ≥ −7𝑥+ 20
2𝑦 ≥ 𝑥+ 3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑦 ≥ −2𝑥
2𝑦 ≥ 3𝑥+ 7
𝑦 ≥ −𝑥+ 4
𝑦 ≥ 3
𝑦 ≥ 𝑥− 4

𝑥

𝑦



Main steps of our algorithm

Our algorithm has 3 main steps:

� Normalization: construct a new polyhedral set 𝑄 from 𝑃 as follows. Consider
in turn each facet 𝐹 of 𝑃 :

1 if the hyperplane 𝐻 supporting 𝐹 contains an integer point, then 𝐻 is a
hyperplane supporting a facet of 𝑄,

2 otherwise we slide 𝐻 towards the center of 𝑃 along the normal vector of 𝐹 ,
stopping as soon as we hit a hyperplane 𝐻 ′ containing an integer point, then
making 𝐻 ′ a hyperplane supporting a facet of 𝑄.

Clearly 𝑄𝐼 = 𝑃𝐼 .
� Partitioning: make each part of the partition a polyhedron 𝑅 which:

1 either has integer points as vertices so that 𝑅𝐼 = 𝑅,
2 or has a small volume so that any algorithm (including exhaustive search) can be

applied to compute 𝑅𝐼 .

� Merging: Once the integer hull of each part of the partition is computed and
given by the list of its vertices, an algorithm for computing the convex hull of a
set points, such as QuickHull, can be applied to deduce 𝑃𝐼 .

skip slide



The general algorithm on a 3D example

Normalization
The integer hull of the normalized polyhedral set should be the same as that of
the input⎧⎪⎨⎪⎩

−98877𝑥1 − 189663𝑥2 − 1798𝑥3 ≤ 705915
−10109𝑥1 − 5958𝑥2 − 14601𝑥3 ≤ 31333
−5405𝑥1 + 4965𝑥2 + 3870𝑥3 ≤ 4303504

729𝑥1 − 117𝑥2 + 350𝑥3 ≤ 4561
677𝑥1 + 465𝑥2 − 540𝑥3 ≤ 3489

⎧⎪⎨⎪⎩
−98877𝑥1 − 189663𝑥2 − 1798𝑥3 ≤ 705915
−10109𝑥1 − 5958𝑥2 − 14601𝑥3 ≤ 31333

−1081𝑥1 + 993𝑥2 + 774𝑥3 ≤ 860700
729𝑥1 − 117𝑥2 + 350𝑥3 ≤ 4561
677𝑥1 + 465𝑥2 − 540𝑥3 ≤ 3489



The general algorithm: building the partition

Partition
For each face 𝑓 of 𝑃 :
� let ℱ be the set of all facets that intersect at 𝑓
� if there exist integer points on 𝑓 (which implies that the closest integer points

on f to each of its vertices do exist as well), then for each vertex 𝑣 of 𝑓 , a
“corner” polyhedral is built as the convex hull of:

𝑣,
the closest integer point to 𝑣 on 𝑓 ,
all the closest integer points to 𝑣 on 𝐹 , for 𝐹 ∈ ℱ .

� if there is no integer point on 𝑓 , a single “corner” polyhedral set is built for 𝑓 as
the convex hull of:

the vertex set of 𝑓 ,
all the closest integer points to 𝑣 on 𝐹 , for 𝐹 ∈ ℱ .



The general algorithm on a 3D example

Partition



The general algorithm on a 3D example
Merging
The integer hull has 139 vertices



“Closest integer points” on a facet to each of its vertices

Projection and recursive call
In Q𝑑, for a facet 𝐹 of dimension 𝑑− 1 < 𝑑, and its vertex set 𝑉 :
1 make a projection on a full-dimensional polyhedron 𝐺 using Hermite normal form

𝑐⃗𝑡𝑈 = [0𝐻] (where 𝑈 = [𝑈𝐿𝑈𝑅] and 𝑐⃗𝑡x = 𝑠 is the hyperplane supporting 𝐹 )
2 we obtain a parametrization 𝑅𝐹 of 𝐹 of the form:

𝑅𝐹 :

{︂
Q𝑑−1 → Q𝑑

z ↦−→ x = v + 𝑈𝐿z.
(3)

3 thus 𝑅𝐹 (𝐺) = 𝐹 . Moreover, we have
𝑅𝐹 (𝐺𝐼) = 𝐹𝐼 .

4 q recursive call to our integer hull algorithm computes the vertices 𝑉 ′
𝐼 of the

integer hull of 𝐺
5 we deduce the vertices 𝑉𝐼 of 𝐹𝐼 by 𝑅𝐹 (𝑉

′
𝐼 ) = 𝑉𝐼

6 finally, we find in 𝑉𝐼 the “closest integer points” to each 𝑣 of 𝑉 .



Closest integer points on a face to one of its vertices

Projection and recursive call

𝑅𝐹 :

⎧⎨⎩ 𝑥1 = 993𝑥′
1 + 573𝑥′

2 − 67995300
𝑥2 = 1081𝑥′

1 + 623𝑥′
2 − 74020200

𝑥3 = 𝑥′
2



The PolyhedralSets:-IntegerHull command in Maple



The PolyhedralSets:-IntegerHull command in Maple



The PolyhedralSets:-IntegerHull command in Maple



Benchmarks 2D
E&C represents “enumeration and convex hull”, which in Maple is done by
ZPolyhedralSets:-EnumerateIntegerPoints and ConvexHull. Normaliz is an open
source tool for computations in affine monoids, vector configurations, lattice polytopes,
and rational cones.

Volume 27.95 111.79 11179.32
Algorithm IntegerHull E&C IntegerHull E&C IntegerHull E&C
Maple (ms) 172 410 244 890 159 58083
C/C++ (ms) 0.284 0.768 0.339 1.676 0.286 6.883
Normaliz (ms) 835.730 462.116 1559.401

Table: Integer hulls of triangles

Volume 58.21 5820.95 23283.82
Algorithm IntegerHull E&C IntegerHull E&C IntegerHull E&C
Maple (ms) 303 752 275 31357 304 123159
C/C++ (ms) 0.451 0.565 0.478 0.657 0.396 0.682
Normaliz (ms) 2.837 1216.238 740.559

Table: Integer hulls of hexagons



Benchmarks 3D

Volume 447.48 6991.89 55935.2
Algorithm IntegerHull E&C IntegerHull E&C IntegerHull E&C
Maple (ms) 977 7289 1223 74804 1378 531904
C/C++ (ms) 4.488 0.826 4.615 0.923 4.624 1.527
Normaliz (ms) 851.495 956.666 793.192

Table: Integer hulls of tetrahedrons (4 vertices, 4 facets and 6 edges)

Volume 412.58 7050.81 60417.63
Algorithm IntegerHull E&C IntegerHull E&C IntegerHull E&C
Maple (ms) 1476 5711 1573 60233 1728 512101
C/C++ (ms) 11.049 21.235 16.001 145.068 23.822 2082.559
Normaliz (ms) 7862.109 N/A N/A

Table: Integer hulls of triangular bipyramids (5 vertices, 6 facets and 9 edges)
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Conclusions and remarks

Over the reals:

� The notion of regular semi-algebraic system is a natural generalization of that of
a regular chain for isolating real solutions.

� The incremental flavor of RealTriangularize is experimentally more effective
than its elimination approach.

� RealTriangularize has inspired follow-up works (CAD and QE based on
regular chains and proceeding incrementally).

� The implementation of RealTriangularize relies on CAD but this could be
relaxed. (The complexity analysis uses Renagar’s work.)

� Can the notion of a regular semi-algebraic system be weakened so as to reduce
the cost of the decomposition while remaining useful?

Over the integers:

� The IntegerPointDecomposition is also inspired by the theory of regular
chains.

� It often produces more information than needed and this has a cost.
� Our IntegerHull solves that issue and is currently adapted to support

parameters and thus QE problems.



Thank You!
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