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Dodgson’s condensation Algorithm

@ Example of a condensation step:

o -1 2

-1 -5 8

1 1 -4

=>

0O -1 -1 2
-1 -5 -5 8
-1 -5 -5 8
1 1 1 -4

@ Reference:
C. L. Dodgson, Condensation of Determinants, Proceedings of the
Royal Society of London, 15(1866), 150-155.
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Dodgson’s condensation Algorithm (cont.)

@ Condensation step (cont.)

0O -1 2
-1 -5 8
1 1 -4
=>
-1 2
4 12
=-20

@ And the determinant is: —20/—5 = 4.
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Salem and Said’s condensation Algorithm

@ Condensation step with the same example:

O -1 2

-1 -5 8

1 1 -4

=>

0 -1 -1 2
-1 -5 -5 8
0 -1 -1 2
1 1 1 -4

@ A formula is needed before concluding (see next slide).
@ Reference:
Abdelmalek Salem, and Kouachi Said, Condensation of
Determinants, http://arxiv.org/abs/0712.0822.
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Salem and Said’s condensation Algorithm (cont.)

@ The input of a condensation step is a matrix
A:(au ’ OSI,j Sn—l)

of order n > 2.
@ It produces amatrix B = (bj; | 0 <i,j <n-—1)ofordern—1

such that

b — | 20t  8ojt1
= 4 o
QAit1e Aiy1j+1

forj > ¢ and by bi,j = —ajy1doy forj < ¢.

@ The key relation between A and B is the following:

det(A) = det(B)/(ao,)"?
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Salem and Said’s condensation Algorithm (cont.)

@ Returning to our example, we obtain:

o -1 2
-1 -5 8
1 1 -4
=>
-1 2
1 2
=>4

@ So the determinant is: —4/(—1)3-2 = 4,
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Complexity estimates for Salem and Said’s Algorithm

@ For the usual RAM model, In the worst case, the work is
n3 —3/2n? + 1/2n — 3 coefficient operations.

@ Asymptotically, on (Z,L) ideal cache, the number of cache misses
is in the order of
(n=2Z)(n?—n+Z?2-Z+Zn+1+4L)
L

@ Hence, the ratio between the two is L, similarly to Gaussian
Elimination.

@ However, the condensation method is more data-oblivious which
is good for the hardware scheduling of a GPU.
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Data mapping

© Each condensation step is performed by one kernel call. No data
copied back to the host until n = 2.

@ At each condensation step, the input A and output B are stored in
global memory. Shared memory is used for efficiency issues.
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Data mapping

© Each condensation step is performed by one kernel call. No data
copied back to the host until n = 2.

@ At each condensation step, the input A and output B are stored in
global memory. Shared memory is used for efficiency issues.

© Salem and Said’s Algorithm suggest to store A and B in column
major layout .

© We use a 1-D grid of 1-D thread blocks
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Data mapping

© Each condensation step is performed by one kernel call. No data
copied back to the host until n = 2.

@ At each condensation step, the input A and output B are stored in
global memory. Shared memory is used for efficiency issues.

© Salem and Said’s Algorithm suggest to store A and B in column
major layout .
© We use a 1-D grid of 1-D thread blocks

© With T threads per block and t elements of B written per thread,
[(n — 1)?/(Tt)] blocks are required. For t = 4 and n > 200 this
leads to about 10, 000 threads in flight.

© The j-th thread in the i-th block computes-and-writes
BTt +it, Tt +it +1,...Ttj +it +t — 1].
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Finding the ¢-th column: finite field case

@ A condensation step produces a matrix
B=(bij | 0<i,j <n-—1)ofordern— 1 such that

b —| 2o  ojt1
ij —
! Qit1¢ Aiy1j+1

forj > ¢and by b;j = —ajqjag, forj < £.
@ Recall that we have

det(A) = det(B)/(ao,)"?
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Finding the /¢-th column: finite field case

@ A condensation step produces a matrix
B=(bi; | 0<i,j <n-—1)ofordern — 1 such that

b — | d0.¢ 8ojt1
i —
y Ait1e Aiy1j+1
forj > ¢and by b;j = —ajqjag, forj < £.
@ Recall that we have

det(A) = det(B)/(ao,)"?

@ The above formula requires ag ¢ to be the first non-zero on the first
row: we call it the pivot. It is computed by one kernel call.

@ The successive pivots are in the global memory of GPU and used
to compute the determinant of the original matrix.
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Finding the ¢-th column: floating point number Case

@ On the first row, we choose the element p whose absolute value is
the closest to 1: we call it the pivot.

@ Then we divide each element of the first row by p and we have

det(A) = det(B)  p
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Finding the ¢-th column: floating point number Case

@ On the first row, we choose the element p whose absolute value is
the closest to 1: we call it the pivot.

@ Then we divide each element of the first row by p and we have
det(A) = det(B) « p

@ The successive pivots are stored in the GPU global memory.

@ After all condensation steps are completed, the pivots are
multiplied together so as to avoid overflow/underflow, if possible:
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Finding the ¢-th column: floating point number Case

@ On the first row, we choose the element p whose absolute value is
the closest to 1: we call it the pivot.

@ Then we divide each element of the first row by p and we have
det(A) = det(B) « p

@ The successive pivots are stored in the GPU global memory.

@ After all condensation steps are completed, the pivots are
multiplied together so as to avoid overflow/underflow, if possible:
Stepl L;:={pePivots | -1 <p <1}
Lo:={pePivots | p&Li};
m:=1;
Step 2 While L; and L, not empty do m := m pop(L;) pop(L;)
Step 3 Finish wih the non-empty stack, if any.
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Experimental setup

@ The order of our test matrices varies from 10 to 4000.
@ We conduct all our experiments on a GPU NVIDIA Tesla 2050 C.
@ Our GPU code is written using CUDA.

@ Our CPU is intel core 2 processor Q6600. It has L2 cache of 8BMB
and the CPU frequency is 2.40 GHz.

@ Reference: NVIDIA developer zone, http://developer.nvidia.com.
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Effective memory bandwidth

@ We use effective memory bandwidth to evaluate our GPU code.

@ The effective memory bandwidth (measured in GB/seconds) of a
kernel run is amount of data traversed in the global memory of
GPU during the kernel run divided by the running time of the
kernel.

@ Itis compared against a simple CUDA code, called copy kernel,
that just performs one copy memory from one place to other place
in the global area of GPU.

@ Reference:
Greg Ruetsch, and Paulius Micikevicius, Optimizing Matrix
Transpose in CUDA, NVIDIA Corporation, 2009.
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CPU Vs GPU (cont.)

Condensation Method for determinant CPU Vs GPU
%4 epu 4
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Effective Memory Bandwidth (cont.)

Memory Bandwidth of Condensation Method
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Finite Filed Case 1

Condensation Vs Maple code for computing determinant
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Maple: http://www.maplesoft.com.
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Finite Filed Case 2

Condensation Vs NTL code for computing determinant
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Reference:

NTL: A library for doing number theory, http://www.shoup.net/ntl.



Determinant on MAPLE Vs Condensation Method on GPU
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Floating point number Case 1 (cont.)

Determinant on MAPLE Vs Condensation Method on GPU
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Floating point number Case 2

Determinant on MATLAB Vs Condensation Method on GPU
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Reference:

Matlab: http://www.mathworks.com.
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Hilbert Matrices

@ In order to investigate the numerical stability of our GPU
implementation of the condensation method, we use the infamous
Hilbert matrix H; = Iﬂ%l which is a canonical example of
ill-conditioned (and invertible) matrix.

@ For example, for n = 5, we have

©F NP Ol JlR B

Ol ©l N ol gl

ol Jll B Wk NP
NP Ol R B W
L

gl D Wk N
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Hilbert Matrices (cont.)

Matrix order MAPLE MATLAB Condensation on GPU
software double double floats
floats floats plus lists
5 0.3239712e-11 3.749295e-12 3.74967e-12
6 -0.1037653175e-16 5.367300e-18 5.36556e-18
7 -0.2940657217e-22 4.835803e-25 4.44292e-25
8 -0.2156380381e-28 2.737050e-33 -3.92813e-33
9 -0.1692148341e-35 9.720265e-43 -2.79235e-41
10 0.4704819751e-42 2.164405e-53 -4.44342e-50
15 0.1386122551e-74 -2.190300e-120 -9.47742e-103
20 0.4711757502e-106 | -1.100433e-195 3.81829%-164
25 -0.4092672466-139 5.482309e-274 -3.82134e-239
30 -0.2087134536-174 0 -2.50914e-319
35 0.6863051439e-205 - 3.50293e-398
40 0.3354475665e-237 - -7.42227e-479
70 -0.1605231989¢e-443 - -1.42973e-961
100 -0.1344119185e-667 - 1.96009e-1467
200 -0.1635472167e-1423 - 9.43651e-3169

Table: Determinant of Hilbert Matrix by MAPLE, MATLAB, and condensation

method on both CPU and GPU.
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Hilbert Matrices (cont.)

Matrix order | MAPLE | MATLAB | Condensation
Method
on GPU

5 0.004 0 0.000530
6 0.008 0 0.000570
7 0.012 0 0.000595
8 0.008 0 0.000631
9 0.012 0 0.000741
10 0.012 0 0.000447
15 0.016 0 0.000964
20 0.016 0 0.001078
25 0.020 0 0.001271
30 0.024 - 0.001460
35 0.044 - 0.001671
40 0.036 - 0.001896
70 0.188 - 0.003083
100 0.588 - 0.005145
200 5.988 - 0.012488

Table: Time(s) Required to compute determinant of Hilbert Matrix by MAPLE,
MATLAB, and condensation method on both CPU and GPU.
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Conclusion

@ The condensation method implemented on GPU is a promising
candidate to compute determinant of matrices with both modular
integer and floating point number coefficients.

@ We believe that it can be used to improve the efficiency, in terms
of running time and numerical stability, of existing mathematical
software packages.
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Thank you
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