Determinant Computation on the GPU using the
Condensation Method

Sardar Anisul Haque

Marc Moreno Maza

Ontario Research Centre for Computer Algebra
University of Western Ontario, London, Ontario

AMMCS 2011, Waterloo, July 25, 2011

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011

1/1

Sardar Anisul Ha

(UWO)

Det¢

inant Computat

he GPU using t|

[m]

F

Plan

Sardar Anisul Haque (UWO)

Determinant Computatiol

he GPU using t|

[m]

=

Dodgson’s condensation Algorithm

@ Example of a condensation step:

o -1 2

-1 -5 8

1 1 -4

=>

0O -1 -1 2
-1 -5 -5 8
-1 -5 -5 8
1 1 1 -4

@ Reference:
C. L. Dodgson, Condensation of Determinants, Proceedings of the
Royal Society of London, 15(1866), 150-155.

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 4/1

Dodgson’s condensation Algorithm (cont.)

@ Condensation step (cont.)

0O -1 2
-1 -5 8
1 1 -4
=>
-1 2
4 12
=-20

@ And the determinant is: —20/—5 = 4.

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 5/1

Salem and Said’s condensation Algorithm

@ Condensation step with the same example:

O -1 2

-1 -5 8

1 1 -4

=>

0 -1 -1 2
-1 -5 -5 8
0 -1 -1 2
1 1 1 -4

@ A formula is needed before concluding (see next slide).
@ Reference:
Abdelmalek Salem, and Kouachi Said, Condensation of
Determinants, http://arxiv.org/abs/0712.0822.

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 6/1

Salem and Said’s condensation Algorithm (cont.)

@ The input of a condensation step is a matrix
A:(au ’ OSI,j Sn—l)

of order n > 2.
@ It produces amatrix B = (bj; | 0 <i,j <n-—1)ofordern—1

such that

b — | 20t 8ojt1
= 4 o
QAit1e Aiy1j+1

forj > ¢ and by bi,j = —ajy1doy forj < ¢.

@ The key relation between A and B is the following:

det(A) = det(B)/(ao,)"?

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 7/1

Salem and Said’s condensation Algorithm (cont.)

@ Returning to our example, we obtain:

o -1 2
-1 -5 8
1 1 -4
=>
-1 2
1 2
=>4

@ So the determinant is: —4/(—1)3-2 = 4,

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 8/1

Complexity estimates for Salem and Said’s Algorithm

@ For the usual RAM model, In the worst case, the work is
n3 —3/2n? + 1/2n — 3 coefficient operations.

@ Asymptotically, on (Z,L) ideal cache, the number of cache misses
is in the order of
(n=2Z)(n?—n+Z?2-Z+Zn+1+4L)
L

@ Hence, the ratio between the two is L, similarly to Gaussian
Elimination.

@ However, the condensation method is more data-oblivious which
is good for the hardware scheduling of a GPU.

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 9/1

Plan

Sardar Anisul Haque (UWO)

Determinant Computatiol

he GPU using t|

[m]

=

Data mapping

© Each condensation step is performed by one kernel call. No data
copied back to the host until n = 2.

@ At each condensation step, the input A and output B are stored in
global memory. Shared memory is used for efficiency issues.

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 11/1

Data mapping

© Each condensation step is performed by one kernel call. No data
copied back to the host until n = 2.

@ At each condensation step, the input A and output B are stored in
global memory. Shared memory is used for efficiency issues.

© Salem and Said’s Algorithm suggest to store A and B in column
major layout .

© We use a 1-D grid of 1-D thread blocks

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 11/1

Data mapping

© Each condensation step is performed by one kernel call. No data
copied back to the host until n = 2.

@ At each condensation step, the input A and output B are stored in
global memory. Shared memory is used for efficiency issues.

© Salem and Said’s Algorithm suggest to store A and B in column
major layout .
© We use a 1-D grid of 1-D thread blocks

© With T threads per block and t elements of B written per thread,
[(n — 1)?/(Tt)] blocks are required. For t = 4 and n > 200 this
leads to about 10, 000 threads in flight.

© The j-th thread in the i-th block computes-and-writes
BTt +it, Tt +it +1,...Ttj +it +t — 1].

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 11/1

Finding the ¢-th column: finite field case

@ A condensation step produces a matrix
B=(bij | 0<i,j <n-—1)ofordern— 1 such that

b —| 2o ojt1
ij —
! Qit1¢ Aiy1j+1

forj > ¢and by b;j = —ajqjag, forj < £.
@ Recall that we have

det(A) = det(B)/(ao,)"?

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 12/1

Finding the /¢-th column: finite field case

@ A condensation step produces a matrix
B=(bi; | 0<i,j <n-—1)ofordern — 1 such that

b — | d0.¢ 8ojt1
i —
y Ait1e Aiy1j+1
forj > ¢and by b;j = —ajqjag, forj < £.
@ Recall that we have

det(A) = det(B)/(ao,)"?

@ The above formula requires ag ¢ to be the first non-zero on the first
row: we call it the pivot. It is computed by one kernel call.

@ The successive pivots are in the global memory of GPU and used
to compute the determinant of the original matrix.

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 12/1

Finding the ¢-th column: floating point number Case

@ On the first row, we choose the element p whose absolute value is
the closest to 1: we call it the pivot.

@ Then we divide each element of the first row by p and we have

det(A) = det(B) p

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 13/1

Finding the ¢-th column: floating point number Case

@ On the first row, we choose the element p whose absolute value is
the closest to 1: we call it the pivot.

@ Then we divide each element of the first row by p and we have
det(A) = det(B) « p

@ The successive pivots are stored in the GPU global memory.

@ After all condensation steps are completed, the pivots are
multiplied together so as to avoid overflow/underflow, if possible:

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 13/1

Finding the ¢-th column: floating point number Case

@ On the first row, we choose the element p whose absolute value is
the closest to 1: we call it the pivot.

@ Then we divide each element of the first row by p and we have
det(A) = det(B) « p

@ The successive pivots are stored in the GPU global memory.

@ After all condensation steps are completed, the pivots are
multiplied together so as to avoid overflow/underflow, if possible:
Stepl L;:={pePivots | -1 <p <1}
Lo:={pePivots | p&Li};
m:=1;
Step 2 While L; and L, not empty do m := m pop(L;) pop(L;)
Step 3 Finish wih the non-empty stack, if any.

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 13/1

Plan

Sardar Anisul Haque (UWO)

Determinant Computatiol

he GPU using t|

[m]

=

Experimental setup

@ The order of our test matrices varies from 10 to 4000.
@ We conduct all our experiments on a GPU NVIDIA Tesla 2050 C.
@ Our GPU code is written using CUDA.

@ Our CPU is intel core 2 processor Q6600. It has L2 cache of 8BMB
and the CPU frequency is 2.40 GHz.

@ Reference: NVIDIA developer zone, http://developer.nvidia.com.

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 15/1

Effective memory bandwidth

@ We use effective memory bandwidth to evaluate our GPU code.

@ The effective memory bandwidth (measured in GB/seconds) of a
kernel run is amount of data traversed in the global memory of
GPU during the kernel run divided by the running time of the
kernel.

@ Itis compared against a simple CUDA code, called copy kernel,
that just performs one copy memory from one place to other place
in the global area of GPU.

@ Reference:
Greg Ruetsch, and Paulius Micikevicius, Optimizing Matrix
Transpose in CUDA, NVIDIA Corporation, 2009.

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 16/1

0.05
0.045
0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005
0

Time (s)

CPU Vs GPU

Condensation Method for determinant CPU Vs GPU

CPU & 1
GPU = A
A
A
A
A
A
A
A
AA
AAA
AAA ot ="
AAT "L et ="
nm !l““’)
iz . AAadA4
50 100 150 200 250
matrix order
AMMCS 2011

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t!

17/1

CPU Vs GPU (cont.)

Condensation Method for determinant CPU Vs GPU
%4 epu 4
0.35 [GPU = A
0.3 A
0.25 A
0.2 oA

0.15 LA

Time (s)
>

250 300 350 400 450 500
matrix order

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 18/1

Effective Memory Bandwidth (cont.)

Memory Bandwidth of Condensation Method

20 ‘ ‘ ‘ ‘
18 BandWidth(GB/Sl..-.... pamguEEEEEEEEEER

16 .
14
12
10

s!l
f
/

Bandwidth (GB/s)

o N MO

/

0 500 1000 1500 2000 2500 3000 3500 4000
matrix order

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 19/1

Finite Filed Case 1

Condensation Vs Maple code for computing determinant

90
80
70
60
50
40
30
20
10

time (s)

Reference:

‘ Maplé A

Condensation method -

Al

0

500

LAY

Ow“f‘----

1000 1500 2000 2500 3000 3500 4000

matrix order

Maple: http://www.maplesoft.com.

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t!

AMMCS 2011

20/1

Finite Filed Case 2

Condensation Vs NTL code for computing determinant

900 ‘ ‘
NTL
800 Condensation method .
700 5
600 °
Z 500 s
o (o)
E 400 s
300 0.l
ee
200 °
o ° °
1 00 0®°
(o]
01—_‘Haee ssissmsunuun
0 500 1000 1500 2000 2500 3000 3500 4000
matrix order
Reference:

NTL: A library for doing number theory, http://www.shoup.net/ntl.

Determinant on MAPLE Vs Condensation Method on GPU

0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0

Time (s)

Floating point number Case 1

MAPLE 4
- GPU -

A
A A AsAATA

A A

50 100

150
matrix order

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t!

200

AMMCS 2011

250

22/1

Floating point number Case 1 (cont.)

Determinant on MAPLE Vs Condensation Method on GPU

120 ‘
GPU a
MAPLE =
100 .
80 :
@ [u
q) | |
g 60
— u n
40 s
20 s
0 A
250 300 350 400 450 500

matrix order

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 23/1

Floating point number Case 2

Determinant on MATLAB Vs Condensation Method on GPU

0.5 : ‘
MATLAB A
GPU =
0.4
@ 03
(0]
£
= 0.2 " A
V' N A A
0.1 A, A A AA
A A A Aad s
A IIII“IIII‘k.n. e -
0 imhubeitbtptptttihot - §
50 100 150 200 250 300 350 400 450 500
matrix order
Reference:

Matlab: http://www.mathworks.com.

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 24/1

Hilbert Matrices

@ In order to investigate the numerical stability of our GPU
implementation of the condensation method, we use the infamous
Hilbert matrix H; = Iﬂ%l which is a canonical example of
ill-conditioned (and invertible) matrix.

@ For example, for n = 5, we have

©F NP Ol JlR B

Ol ©l N ol gl

ol Jll B Wk NP
NP Ol R B W
L

gl D Wk N

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 25/1

Hilbert Matrices (cont.)

Matrix order MAPLE MATLAB Condensation on GPU
software double double floats
floats floats plus lists
5 0.3239712e-11 3.749295e-12 3.74967e-12
6 -0.1037653175e-16 5.367300e-18 5.36556e-18
7 -0.2940657217e-22 4.835803e-25 4.44292e-25
8 -0.2156380381e-28 2.737050e-33 -3.92813e-33
9 -0.1692148341e-35 9.720265e-43 -2.79235e-41
10 0.4704819751e-42 2.164405e-53 -4.44342e-50
15 0.1386122551e-74 -2.190300e-120 -9.47742e-103
20 0.4711757502e-106 | -1.100433e-195 3.81829%-164
25 -0.4092672466-139 5.482309e-274 -3.82134e-239
30 -0.2087134536-174 0 -2.50914e-319
35 0.6863051439e-205 - 3.50293e-398
40 0.3354475665e-237 - -7.42227e-479
70 -0.1605231989¢e-443 - -1.42973e-961
100 -0.1344119185e-667 - 1.96009e-1467
200 -0.1635472167e-1423 - 9.43651e-3169

Table: Determinant of Hilbert Matrix by MAPLE, MATLAB, and condensation

method on both CPU and GPU.

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t!

AMMCS 2011

Hilbert Matrices (cont.)

Matrix order | MAPLE | MATLAB | Condensation
Method
on GPU

5 0.004 0 0.000530
6 0.008 0 0.000570
7 0.012 0 0.000595
8 0.008 0 0.000631
9 0.012 0 0.000741
10 0.012 0 0.000447
15 0.016 0 0.000964
20 0.016 0 0.001078
25 0.020 0 0.001271
30 0.024 - 0.001460
35 0.044 - 0.001671
40 0.036 - 0.001896
70 0.188 - 0.003083
100 0.588 - 0.005145
200 5.988 - 0.012488

Table: Time(s) Required to compute determinant of Hilbert Matrix by MAPLE,
MATLAB, and condensation method on both CPU and GPU.

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t!

AMMCS 2011

2711

Plan

Sardar Anisul Haque (UWO)

Determinant Computatiol

he GPU using t|

[m]

=

Conclusion

@ The condensation method implemented on GPU is a promising
candidate to compute determinant of matrices with both modular
integer and floating point number coefficients.

@ We believe that it can be used to improve the efficiency, in terms
of running time and numerical stability, of existing mathematical
software packages.

Acknowledgements. We are grateful to Dr. Wei Pan and Dr. Jirgen
Gerhard for helpful discussion.

Sardar Anisul Haque (UWO) Determinant Computation on the GPU using t! AMMCS 2011 29/1

Thank you

Sardar Anisul Haque (UWO)

