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What’s wrong with my matrix multiplication code?

// x, y, z are positive integers

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

// A, B, C encode dense matrices in row-major layout

...........................................

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

A[ i ][ j ] += B[ i ][ k ] * C[ k ][ j ];



High cache miss rate

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

...........................................

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

A[ i ][ j ] += B[ i ][ k ] * C[ k ][ j ];

For z large enough, one cache miss per flop: poor spatial data locality!



A better program

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

Cx = (double *)malloc(sizeof(double)*y*z);

.........................................

for(j =0; j < y; j++)
for(k=0; k < z; k++)
Cx [ j ][ k ] = C[ k ][ j ] ;

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

A[ i ][ j ] += B[ i ][ k ] * Cx[ j ][ k ];



What’s wrong with my program again?

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

Cx = (double *)malloc(sizeof(double)*y*z);

.........................................

for(j =0; j < y; j++)

for(k=0; k < z; k++)

Cx [ j ][ k ] = C[ k ][ j ] ;

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

A[ i ][ j ] += B[ i ][ k ] * Cx[ j ][ k ];



Still high cache miss rate!

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

Cx = (double *)malloc(sizeof(double)*y*z);

.........................................

for(j =0; j < y; j++)

for(k=0; k < z; k++)

Cx [ j ][ k ] = C[ k ][ j ] ;

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

A[ i ][ j ] += B[ i ][ k ] * Cx[ j ][ k ];

For computing each row (resp. column) of A we read the corresponding row
(resp. column) of B (resp. C) y (resp. x) times: poor temporal data locality!



A better program

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

Cx = (double *)malloc(sizeof(double)*y*z);

.........................................

for(j =0; j < y; j++)

for(k=0; k < z; k++)

Cx [ j ][ k ] = C[ k ][ j ] ;

for(j =0; j < y; j++)

for(k=0; k < z; k++)

IND(Cx,j,k,z) = IND(C,k,j,y);

for (i = 0; i < x; i += BLOCK_X)
for (j = 0; j < y; j += BLOCK_Y)
for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

A[ i0 ][ j0 ] += B[ i0 ][ k0 ] * Cx[ j0 ][ k0 ];

For well chosen values of BLOCK X, BLOCK Y, BLOCK Z, this program is
cache-complexity optimal among all dense matrix multiplication algorithms
with cubic running time.
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My program is serial and all my computers have multicore processors

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

Cx = (double *)malloc(sizeof(double)*y*z);

.........................................

for(j =0; j < y; j++)

for(k=0; k < z; k++)

Cx [ j ][ k ] = C[ k ][ j ] ;

for(j =0; j < y; j++)

for(k=0; k < z; k++)

IND(Cx,j,k,z) = IND(C,k,j,y);

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)
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for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

A[ i0 ][ j0 ] += B[ i0 ][ k0 ] * Cx[ j0 ][ k0 ];



A nearly optimal program for parallel dense cubic matrix
multiplication on multicore architectures

void parallel_dandc(int i0, int i1, int j0, int j1, int k0, int k1, int* A, int lda, int* B, int ldb, int* C, int ldc, int X)

{

int di = i1 - i0;

int dj = j1 - j0;

int dk = k1 - k0;

if (di >= dj && di >= dk && di >= X) {

int mi = i0 + di / 2;

cilk_spawn parallel_dandc(i0, mi, j0, j1, k0, k1, A, lda, B, ldb, C, ldc,X);

parallel_dandc(mi, i1, j0, j1, k0, k1, A, lda, B, ldb, C, ldc,X);

cilk_sync;
} else if (dj >= dk && dj >= X) {

int mj = j0 + dj / 2;

cilk_spawn parallel_dandc(i0, i1, j0, mj, k0, k1, A, lda, B, ldb, C, ldc,X);

parallel_dandc(i0, i1, mj, j1, k0, k1, A, lda, B, ldb, C, ldc,X);

cilk_sync;
} else if (dk >= X) {

int mk = k0 + dk / 2;

parallel_dandc(i0, i1, j0, j1, k0, mk, A, lda, B, ldb, C, ldc,X);

parallel_dandc(i0, i1, j0, j1, mk, k1, A, lda, B, ldb, C, ldc,X);

} else {

mm_loop_serial2(C, k0, k1, A, i0, i1, B, j0, j1, lda) ;

/* for (int i = i0; i < i1; ++i)

for (int j = j0; j < j1; ++j)

for (int k = k0; k < k1; ++k)

Ci * ldc + j += Ai * lda + k * Bk * ldb + j;*/

}

}



Is that all?

void parallel_dandc(int i0, int i1, int j0, int j1, int k0, int k1, int* A, int lda, int* B, int ldb, int* C, int ldc, int X)

{

int di = i1 - i0;
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int dk = k1 - k0;

if (di >= dj && di >= dk && di >= X) {
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cilk_sync;
} else if (dj >= dk && dj >= X) {

int mj = j0 + dj / 2;

cilk_spawn parallel_dandc(i0, i1, j0, mj, k0, k1, A, lda, B, ldb, C, ldc,X);

parallel_dandc(i0, i1, mj, j1, k0, k1, A, lda, B, ldb, C, ldc,X);

cilk_sync;
} else if (dk >= X) {

int mk = k0 + dk / 2;

parallel_dandc(i0, i1, j0, j1, k0, mk, A, lda, B, ldb, C, ldc,X);

parallel_dandc(i0, i1, j0, j1, mk, k1, A, lda, B, ldb, C, ldc,X);

} else {

mm_loop_serial2(C, k0, k1, A, i0, i1, B, j0, j1, lda) ;

/* for (int i = i0; i < i1; ++i)

for (int j = j0; j < j1; ++j)

for (int k = k0; k < k1; ++k)

Ci * ldc + j += Ai * lda + k * Bk * ldb + j;*/

}

}
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Automatic Parallelization

Automatic parallelization: objectives

Background

Automatic generation of parallel code from serial one is a dramatically
needed: most of our computers are parallel machines, but most of the
programs that we have or write are serial ones.
Automatic generation of parallel code is very hard and in many cases
hopeless, but makes sense for kernels in scientific computing (dense
linear and polynomial algebra, stencil computations).

C to CUDA

Automatic parallelization of simple C code to GPU code (with
parameters such as block size, number of processors, etc.) can improve
code development substantially.
Standard techniques (like the polyhedron model) rely on solving
systems of linear equations and inequalities.
However, parametric programs (say, in CUDA) introduce non linear
expressions requiring polynomial system solvers, in particular QE tools.
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Automatic Parallelization

Loop transformation and automatic parallelization

Parallélisation à l’ancienne

for(i=0; i<=n-1; i++){

c[i] = 0.0;

for(j=0; j<=n-1; j++)

c[i] += a[i][j]*b[j];

}

⇒
par_for(i=0; i<=n-1; i++){

c[i] = 0.0;

for(j=0; j<=n-1; j++)

c[i] += a[i][j]*b[j];

}
The parallel code is (restricted to be) isomorphic to the serial code.

Parallélisation polyhédrique

for (n=1; n<51; n++)

for (k=1; k<51-n; k++)

c[n,k] = c[n-1,k]

+ c[n,k-1];

⇒
for (t=2; t<51; t++)

par_for (p=1; p<t; p++)

c[t-p, p] = c[-1+t-p, p]

+ c[t-p, p-1];
Generating the parallel code requires a “good” change of coordinates. Here
t = n+ k, p = k, where t means time and p means processor.



Automatic Parallelization

Automatic parallelization: principles

Dependence analysis

The input loop nest is transformed to a geometrical object (generally a
polyhedron) in the index space.
Then, one determines a partition of the iteration space such that within
a part, iterations do not depend on each other.

Parallelization

The source index space (with loop variables as coordinates) is mapped to a
target time-space (where time and processor are coordinates).

Code Generation

In order to obtain efficient code, scheduling, data locality and parallelism
overheads lead to further transformations (exchanging loops, introducing
new coordinates such as in blocked-matrix multiplication.)



Automatic Parallelization

Automatic parallelization: people

Bib refs

Pioneer works: (Leslie Lamport 1974) (Allen and Kennedy, 1984)

Introduction of the Polyhedral Model by Paul Feautrier in the early
90’s. Largely extended by his students and their students (F. Irigoin,
P. Boulet, C. Bastoul, etc.) and other research groups.

Concurrently to Feautrier’s group, other research teams have further
developed the model: Christian Lengauer and his followers (M. Griebl,
A. Grösslinger, etc.) P. (Saday) Sadayappan and Uday Bondhugula at
Ohio State Univ., S. Rajopadhy at Colorado State Univ., J. (Ram)
Ramanujam at Louisiana State Univ.

This talk follows and responds to a 2006 JSC paper by A. Grösslinger,
M. Griebl and C. Lengauer.



Automatic Parallelization

A complete example: Jacobi

for (int t = 0; t < T; ++t) {

for (int i = 1; i < N-1; ++i)

b[i] = (a[i-1] + a[i] + a[i+1]) / 3;

for (int i = 1; i < N-1; ++i)

a[i] = b[i];

}

Original C code.



Automatic Parallelization

A complete example: Jacobi

int ub_v = (N - 2) / B;

meta_schedule {

for (int t = 0; t < T; ++t) {

meta_for (int v = 0; v < ub_v; v++) {

meta_for (int u = 0; u < B; u++) {

int p = v * B + u + 1;

int y = p - 1;

int z = p + 1;

b[p] = (a[y] + a[p] + a[z]) / 3;

}

}

meta_for (int v = 0; v < ub_v; v++) {

meta_for (int u = 0; u < B; u++) {

int w = v * B + u + 1;

a[w] = b[w];

}

}

}

}

MetaFork code obtained via quantifier elimination.



Automatic Parallelization

A complete example: Jacobi

#include "jacobi_kernel.hu"

__global__ void kernel0(int *a, int *b, int N,

int T, int ub_v, int B, int c0)

{

int b0 = blockIdx.x;

int t0 = threadIdx.x;

int private_p;

int private_y;

int private_z;

extern __shared__ int shared_a[];

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

for (int c1 = b0; c1 < ub_v; c1 += 32768) {

if (!t0) {

shared_a[(B)] = a[(c1 + 1) * (B)];

shared_a[(B) + 1] = a[(c1 + 1) * (B) + 1];

}

if (N >= t0 + (B) * c1 + 1)

shared_a[t0] = a[t0 + (B) * c1];

__syncthreads();

for (int c2 = t0; c2 < B; c2 += 512) {

private_p = ((((c1) * (B)) + (c2)) + 1);

private_y = (private_p - 1);

private_z = (private_p + 1);

b[private_p] = (((shared_a[private_y - (B) * c1] +

shared_a[private_p - (B) * c1]) +

shared_a[private_z - (B) * c1]) / 3);

}

__syncthreads();

}

}

CUDA kernel corresponding to the first loop nest.



GPGPUs and CUDA
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GPGPUs and CUDA

Heterogeneous programming

A CUDA program is a serial program with parallel kernels, all in C.

The serial C code executes in a host (= CPU) thread

The parallel kernel C code executes in many device threads across
multiple GPU processing elements, called streaming processors (SP).



GPGPUs and CUDA

Vector addition on GPU (1/4)



GPGPUs and CUDA

Vector addition on GPU (2/4)



GPGPUs and CUDA

Vector addition on GPU (3/4)



GPGPUs and CUDA

Vector addition on GPU (4/4)



GPGPUs and CUDA

Blocks run on multiprocessors



GPGPUs and CUDA

Streaming processors and multiprocessors



GPGPUs and CUDA

Blocks run on multiprocessors: four principles

Hardware allocates resources to blocks and schedules threads.

The user should:

1 expose as much parallelism as possible,

2 optimize memory usage for maximum bandwidth,

3 maximize occupancy to hide latency,

4 optimize instruction usage for maximum throughput.



Performance Measures of CUDA Kernels
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Performance Measures of CUDA Kernels

The Many-Core Machine (MCM) model: the abstract machine

Figure: A many-core machine

Global memory has high latency and low throughput while private
memories have low latency and high throughput.

(Sardar A. Haque, M. & Ning XIe, ParCo 2015)



Performance Measures of CUDA Kernels

The Many-Core Machine (MCM) model: program structure

Figure: Sketch of a many-core machine program



Performance Measures of CUDA Kernels

The MCM model: parameters and complexity measures

Machine parameters

Z: Private memory size of any streaming multiprocessor (SM),

U : Data transfer time.

Program parameters

`: number of threads per thread-block,

number of data words read/written per thread,

. . .

Complexity measures

The work accounts for the total amount of local operations (ALU
and private memory accesses)

The span accounts for the maximum number of local operations
along a path in the DAG representing the program

The parallelism overhead for the total amount of data transfer.



Performance Measures of CUDA Kernels

Fast Fourier Transform

Let f be a vector with coefficients in a field (either a prime field like Z/pZ
or C) and size n, which is a power of 2. Let ω be a n-th primitive root of
unity.

The n-point Discrete Fourier Transform (DFT) at ω is the linear map
defined by x 7−→ DFTn x with

DFTn = [ωij ]0≤i, j<n.

We are interested in comparing popular algorithms for computing DFTs on
many-core architectures:

Cooley & Tukey FFT algorithm,

Stockham FFT algorithm.



Performance Measures of CUDA Kernels

Fast Fourier Transforms: Cooley & Tukey vs Stockham

The work, span and parallelism overhead ratios between Cooley & Tukey
and Stockham FFT algorithms are, respectively,

Wct

Wsh
∼ n (34 log2(n) log2(`) + 47 log2(n) + 333− 136 log2(`))

43n log2(n) + n
4 ` + 12 `+ 1− 30n

,

Sct

Ssh
∼ 34 log2(n) log2(`) + 47 log2(n) + 2223− 136 log2(`)

43 log2(n) + 16 log2(`) + 3
,

Oct

Osh
=

2nU (4 log2(n)
` + log2(`)−

log2(`)+15
` )

5nU ( log2(n)` + 1
4 `)

,

where ` is the number of threads per thread-block.

Both the work and span of the algorithm of Cooley & Tukey are
increased by Θ(log2(`)) factor w.r.t their counterparts in Stockham
algorithm.



Performance Measures of CUDA Kernels

Fast Fourier Transforms: Cooley & Tukey vs Stockham

The ratio R = Tct/Tsh of the estimated running times (using our
Graham-Brent theorem) on Θ(n` ) SMs is 1:

R ∼ log2(n)(2U `+ 34 log2(`) + 2U)

5 log2(n) (U + 2 log2(`))
,

when n escapes to infinity. This latter ratio is greater than 1 if and only if
` > 1.

n Cooley & Tukey Stockham
214 0.583296 0.666496
215 0.826784 0.7624
216 1.19542 0.929632
217 2.07514 1.24928
218 4.66762 1.86458
219 9.11498 3.04365
220 16.8699 5.38781

Table: Running time (secs) with input size n on GeForce GTX 670.

1` is the number of threads per thread-block.



Performance Measures of CUDA Kernels

A popular performance counter: occupancy

The occupancy of an SM is Awarp/Mwarp, where Awarp and Mwarp

are respectively the number of active warps and maximum number of
running warps per SM.
Warps require resources (registers, shared memory, thread slots) to
run
Awarp is bounded over by Mblock `, where Mblock is the maximum
number of active blocks.
Hence a small value for ` may limit occupancy.
But larger ` will reduce the amount of registers and shared memory
available per thread; this will limit data reuse within a thread-block
and opportunities to use instruction-level parallelism (ILP) and
common subexpression elimination (CSE).



Performance Measures of CUDA Kernels

Summary: we need parametric CUDA kernels

Overall, both theoretical models and empirical performance counters
suggest that:

1 Generating kernel code depending on ` and other parameters (like the
number of coefficients written and/or computed by a thread) is an
important code optimization technique.

2 Once the machine parameters (like Swarp, Mwarp, Mblock, Z) are
known, then optimizing at run-time the values of those program
parameters (like ` and others) can be done by numerical methods
and/or auto-tuning.

Questions?



Generating Parametric CUDA Kernels
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Generating Parametric CUDA Kernels

Automatic parallelization: plain multiplication

Serial dense univariate polynomial multiplication

for(i=0; i<=n; i++){

c[i] = 0; c[i+n] = 0;

for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];

}

Dependence analysis suggests to set t(i, j) = n− j and p(i, j) = i+ j.

Synchronous parallel dense univariate polynomial multiplication

for (p=0, p<=2*n, p++) c[p]=0;

for (t=0, t=n, t++)

meta_for (p=n-t; p<=2*n -t; p++)

c[p] = c[p] + a[t+p-n] * b[n-t];

}



Generating Parametric CUDA Kernels

Dependence analysis: how?

Problem

Among all possible change of coordiantes, one typically wants to
minimze cache complexity (or data communication).
This translates to a problem of the form: Find the lexicographical
minimum of {x | Ax+By ≥ c,Dy ≥ e}, where x, y, c, e are vectors
and A,B,D are matrices all in integer coefficients.
The result is a piecewise affine function.

Solutions

Two popular solutions which both reduce to test whether a polyhedral
set has integer points or not.
One is based on a variant on the Simplex Algorithm (P. Feautrier) the
other on a variant of Fourier-Motzkin Elimination (W. Pugh).
In each case, the algorithm reduces to test whether a linear system
Ax = b has integer solutions,
Which can be done by considering the Hermite Normal Form of A.
The PolyhedralSets library has code for this task.



Generating Parametric CUDA Kernels

Interlude: Fourier-Motzkin Algorithm

Folklore

A polyhedral set K of Rd is the solution set of a system of linear
equations and inequalities. The projections of K to linear subspaces of
Rd can be computed by the famous Fourier-Motzkin Algorithm (FMA),
which is a natural adaptation of Gaussian Elimination.
Most users believe that, if K is the intersection of n closed half-spaces of
Rd, then FMA runs in O(n2

d
) coefficient operations.

Reality

In fact, this bound comes from (many) non-handled superfluous
constraints generated by FMA.
Those can be eliminated by LP (as suggested by L. Khachiyan, who gave
no complexity estimates) and this works very well in practice.
If the maximum absolute value of coefficients is bounded by T then FMA
for projecting into a sub-coordinate space of co-dimension s can produce
an irredundant system in O

(
2s (d+ δ2)10 log(d δ T )

)
bit operations (with

Rong Xiao).
Application: Consider a system of equations and inequalities with a few
non-linear monomials. We use tag variables to reduce FMA and recover
the true result by CAD when unwrapping the tagged monomials.
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an irredundant system in O

(
2s (d+ δ2)10 log(d δ T )

)
bit operations (with

Rong Xiao).
Application: Consider a system of equations and inequalities with a few
non-linear monomials. We use tag variables to reduce FMA and recover
the true result by CAD when unwrapping the tagged monomials.



Generating Parametric CUDA Kernels

Generating parametric code & use of tiling techniques (1/2)

meta_for (p=0; p<=2*n; p++){

c[p]=0;

for (t=max(0,n-p); t<= min(n,2*n-p);t++)

C[p] = C[p] + A[t+p-n] * B[n-t];

}

Improving the parallelization

The above generated code is not practical for multicore
implementation: the number of processors is in Θ(n). (Not to
mention poor locality!) and the work is unevenly distributed among
the workers.

We group the virtual processors (or threads) into 1D blocks, each of
size B. Each thread is known by its block number b and a local
coordinate u in its block.

Blocks represent good units of work which have good locality
property.

This yields the following constraints: 0 ≤ u < B, p = bB + u.



Generating Parametric CUDA Kernels

Generating parametric code: using tiles (2/2)

We apply RegularChains:-QuantifierElimination on the left system
(in order to get rid off i, j) leading to the relations on the right:

o < n
0 ≤ i ≤ n
0 ≤ j ≤ n
t = n− j
p = i+ j

0 ≤ b
o ≤ u < B
p = bB + u,



B > 0
n > 0

0 ≤ b ≤ 2n/B
0 ≤ u < B

0 ≤ u ≤ 2n−Bb
p = bB + u,

(1)

From where we derive the following program:

for (p=0; p<=2*n; p++) c[p]=0;

meta_for (b=0; b<= 2 n / B; b++) {

meta_for (u=0; u<=min(B-1, 2*n - B * b); u++) {

p = b * B + u;

for (t=max(0,n-p); t<=min(n,2*n-p) ;t++)

c[p] = c[p] + a[t+p-n] * b[n-t];

}

}



Generating Parametric CUDA Kernels

Generation of parametric parallel programs

Summary

Given a parallel algorithm (e.g. divide-and-conquer matrix multiplication)
expressed in MetaFork with program parameters like B,
given a type of hardware accelerators, like GPGPUs, characterized by
machine parameters, like Z, M ,
we can:

1 automatically generate code that depends on the machine and program
parameters Z, M , . . . , B, by means of symbolic computation,

2 specialize the machine parameters for a specific accelerator of the above
type,

3 optimize the program parameters by means of numerical computation.

Note

The symbolic computation part, which is a special form of quantifier
elimination (QE) (Changbo Chen & M3 , ISSAC 2014 & CASC 2015) is
performed by our RegularChains library in Maple available at

www.regularchains.org

www.regularchains.org
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Experimentation

Another complete example: (simplified) LU

///////////////////////////////////////////////////////////////

// Main loop for serial LU

// Assumes: column major representation of L and U

// thus, column major initialization of L and U from

// the input matrix M.

// Assumes: n > 1.

///////////////////////////////////////////////////////////////

for (int k = 0; k < n; ++k) {

// Update the k-th column of L

for (int i = 0; i < n-k-1; i++) {

int p = i + k + 1;

L[k][p] = U[k][p] / U[k][k];

|

// Update the the last n-k columns of U

for (int i = 0; i < n-k-1; i++) {

int p = i + k + 1;

for (int j = k; j < n; j++)

U[j][p] -= L[k][p] * U[j][k];

}

}

Original C code.



Experimentation

Another complete example: (simplified) LU

for (int k = 0; k < n; ++k) {

// Update the k-th column of L

int I_k = n-k-1;

int J_k = n-k;

meta_schedule {

meta_for (int b=0; b < I_k / B; b++)

meta_for (int u=0; u < B; u++) {

int p = b * B + u + k + 1;

if (p < n)

L[k][p] = U[k][p] / U[k][k];

}

// Update the last n-k columns of U

meta_for (int b_j=0; b_j < J_k / Sqrt_T; b_j++)

meta_for (int b_i=0; b_i < J_k / Sqrt_T; b_i++)

meta_for (int u_j=0; u_j < Sqrt_T; u_j++)

meta_for (int u_i=0; u_i < Sqrt_T; u_i++) {

int i = b_i * Sqrt_T + u_i;

if (i < n-k-1) {

int j = b_j * Sqrt_T + u_j;

int q = j + k;

int p = i + k + 1;

U[q][p] -= L[k][p] * U[q][k];

}

}

}

}

MetaFork code obtained via quantifier elimination.
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Another complete example: (simplified) LU

#include "jacobi_kernel.hu"

__global__ void kernel1(double *L, double *U, int n, int dim, int B, int ub, int T, int T2, int c0)

{

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

//int private_u;

//int private_q;

//extern __shared__ double shared_L[];

extern __shared__ double shared_U[];

__shared__ double s_l[1];

__shared__ double s_u[BLOCK][BLOCK];

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

#define min(x,y) ((x) < (y) ? (x) : (y))

for (int c1 = b1; c1 < dim; c1 += 256)

for (int c2 = b0; c2 < B; c2 += 256)

for (int c3 = 0; c3 < ub; c3 += 1) {

if (!t0 && !t1)

s_l[0] = L[c0 * (n) + c1 * (B) + c2];

for (int c4 = t1; c4 < T; c4 += 32)

for (int c5 = t0; c5 < T; c5 += 32)

shared_U[c4 * (T) + c5] = U[((((c3) * (T2)) + ((c4) * (T))) + (c5)) * (n) + c1 * (B) + c2];

for (int c4 = t1; c4 < T; c4 += 32)

for (int c5 = t0; c5 < T; c5 += 32)

s_u[c4][c5] = U[((((c3) * (T2)) + ((c4) * (T))) + (c5)) * (n) + c0];

__syncthreads();

for (int c4 = t1; c4 < T; c4 += 32)

for (int c5 = t0; c5 < T; c5 += 32)

if ((((((c0) + 1) - ((c1) * (B))) < (B)) && ((((-(B)) * (c1)) + (c0)) < (c2))) && ((c2) < ((n) - ((c1) * (B))))) {

shared_U[c4 * (T) + c5] -= s_l[0] * s_u[c4][c5];

}

__syncthreads();

for (int c4 = t1; c4 < T; c4 += 32)

for (int c5 = t0; c5 < T; c5 += 32)

U[((((c3) * (T2)) + ((c4) * (T))) + (c5)) * (n) + c1 * (B) + c2] = shared_U[c4 * (T) + c5];

__syncthreads();

}

}

CUDA kernel corresponding to the second loop nest.
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Preliminary implementation

The Polyhedral Parallel Code Generator (PPCG) is a source-to-source
framework performing C- to-CUDA automatic code generation. PPCG
does not use parameters for the generated kernel code.
Our MetaFork C-to-CUDA translator is based on PPCG. In fact, we are
currently modifying the PPCG framework to take parameters into
account. Hence, our implementation is preliminary.

Figure: Components of MetaFork-to-CUDA generator of parametric code.
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Reversing an array

Speedup (kernel) Input size
Block size 223 224 225 226

PPCG
32 8.312 8.121 8.204 8.040

MetaFork
16 3.558 3.666 3.450 3.445
32 7.107 6.983 7.039 6.831
64 12.227 12.591 12.763 12.782

128 17.743 19.506 19.733 19.952
256 19.035 21.235 22.416 21.841
512 18.127 18.017 19.206 20.587

Table: Reversing a one-dimensional array



Experimentation

1D Jacobi

Speedup (kernel) Input size
Block size 213 214 215

PPCG
32 1.416 2.424 5.035

MetaFork
16 1.217 1.890 2.954
32 1.718 2.653 5.059
64 1.679 3.222 7.767

128 1.819 3.325 10.127
256 1.767 3.562 10.077
512 2.081 3.161 9.654

Table: 1D-Jacobi
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Matrix matrix multiplication

Speedup (kernel) Input size
Block size 210 211

PPCG
16 * 32 129.853 393.851

MetaFork
4 * 8 22.620 80.610
4 * 16 39.639 142.244
4 * 32 37.372 135.583
8 * 8 48.463 172.871
8 * 16 43.720 162.263
8 * 32 33.071 122.960

16 * 8 30.128 101.367
16 * 16 34.619 133.497
16 * 32 22.600 84.319

Table: Matrix multiplication
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LU decomposition

Speedup (kernel) Input size
Block size

kernel0, kernel1 212 213

PPCG
32, 16 * 32 31.497 39.068

MetaFork
32, 4 * 4 18.906 27.025
64, 4 * 4 18.763 27.316

128, 4 * 4 18.713 27.109
256, 4 * 4 18.553 27.259
512, 4 * 4 18.607 27.353

32, 8 * 8 34.936 52.850
64, 8 * 8 34.163 53.133

128, 8 * 8 34.050 52.731
256, 8 * 8 33.932 52.616
512, 8 * 8 34.850 53.112

32, 16 * 16 32.310 41.131
64, 16 * 16 32.093 40.829

128, 16 * 16 32.968 41.219
256, 16 * 16 32.229 41.246
512, 16 * 16 32.806 40.705

Table: LU decomposition



Conclusion

Plan

1 Automatic Parallelization

2 GPGPUs and CUDA

3 Performance Measures of CUDA Kernels

4 Generating Parametric CUDA Kernels

5 Experimentation

6 Conclusion



Conclusion

Concluding remarks (1/2)

Observations

Most computer programs that we write are far to make an efficient
use of the targeted hardware

CUDA has brought supercomputing to the desktop computer, but is
hard to optimize even to expert programmers.

High-level models for accelerator programming, like OpenACC,
OpenCL and MetaFork are an important research direction.
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Concluding remarks (2/2)

Our current work

MetaFork-to-CUDA generates kernels depending on program
parameters (like number of threads per block) and machine
parameters (like shared memory size) are allowed.

This is feasible thanks to techniques from quantifier elimination (QE).

Machine parameters and program parameters can be respectively
determined and optimized, once the generated code is installed on the
target machine.

The optimization part can be done from numerical computation
and/or auto-tuning.

Our implementation is very preliminary; yet experimental results are
promising

We still need to better integrate MetaFork-to-CUDA into the
PPCG framework: make a better use of their internals and avoid
duplicating work (when robustifying the code).



Conclusion

Our project web sites

www.bpaslib.org
www.metafork.org

www.cumodp.org www.regularchains.org

www.bpaslib.org
www.metafork.org
www.cumodp.org
www.regularchains.org
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