

— On Fulton's Algorithm for Computing Intersection Multiplicities —

Steffen Marcus, Marc Moreno Maza, and Paul Vrbik

Introduction

Let $f_1, \ldots, f_n \in \mathbf{k}[x_1, \ldots, x_n]$ such that $\mathbf{V}(f_1, \ldots, f_n) \subset \overline{\mathbf{k}}[x_1, \ldots, x_n]$ is zero-dimensional. The intersection multiplicity $I(p; f_1, \ldots, f_n)$ at the point $p \in \mathbf{V}(f_1, \ldots, f_n)$ specifies the *weights* of the weighted sum in Bézout's Theorem.

The number $I(p; f_1, ..., f_n)$ is not natively computable by MAPLE while it is computable by SINGULAR and MAGMA—but only when all coordinates of p are in k.

We are interested in removing this algorithmic limitation. We combine Fulton's Algorithm and the theory of regular chains, leading to a complete algorithm for n=2. Moreover, we propose algorithmic criteria for reducing the case of n>2 variables to the bivariate one. Experimental results are reported.

The case of two plane curves

Intuitively, the intersection multiplicity (IM) of two plane curves at a given point counts the number of times that these curves intersect at that point. More formally, given an arbitrary field \mathbf{k} and two bivariate polynomials $f,g\in\mathbf{k}[x,y]$, consider the affine algebraic curves $\mathcal{C}:=\mathbf{V}(f)$ and $\mathcal{D}:=\mathbf{V}(g)$ in $\mathbb{A}^2=\overline{\mathbf{k}}^2$, where $\overline{\mathbf{k}}$ is the algebraic closure of \mathbf{k} . Let p be a point in the intersection.

The intersection multiplicity of p in V(f,g) is defined to be

$$I(p; f, g) = \dim_{\overline{k}}(\mathcal{O}_{\mathbb{A}^2, p} / \langle f, g \rangle)$$

where $\mathcal{O}_{\mathbb{A}^2,p}$ and $\dim_{\overline{k}}(\mathcal{O}_{\mathbb{A}^2,p}/\langle f,g\rangle)$ are the local ring at p and the dimension of the vector space $\mathcal{O}_{\mathbb{A}^2,p}/\langle f,g\rangle$.

Remarkably, and as pointed out by Fulton in his *Intersection Theory*, the intersection multiplicities of the plane curves C and D satisfy a series of properties which uniquely define I(p; f, g) at each point $p \in \mathbf{V}(f, g)$. Moreover, the proof of this remarkable fact is constructive, which leads to an algorithm.

The intersection multiplicities of two plane curves satisfy and are uniquely determined by the following.

- 1. I(p;f,g) is a non-negative integer for any C, D, and p such that C and D have no common component at p. We set $I(p;f,g)=\infty$ if C and D have a common component at p.
- 2. I(p; f, g) = 0 if and only if $p \notin C \cap D$.
- 3. I(p; f, g) is invariant under affine change of coordinates on \mathbb{A}^2 .
- 4. I(p; f, g) = I(p; g, f)

Fulton's Algorithm

I(p; f, g) is greater or equal to the product of the multiplicity of p in f and g, with equality occurring if and only if C and D have no tangent lines in common at p.

6. $I(p; f, gh) = I(p; f, g) + I(p; f, h) \text{ for all } h \in \mathbf{k}[x, y].$

7. I(p; f, g) = I(p; f, g + hf) for all $h \in \mathbf{k}[x, y]$.

 $_{-}\operatorname{\mathsf{IM}}_{2}(p;f_{1},f_{2})$

Input: $p=(\alpha,\beta)\in \mathbb{A}^2(\mathbf{k})$ and $f,g\in \mathbf{k}[y\succ x]$ such that $\gcd(f,g)\in \mathbf{k}$

Output: $I(p; f, g) \in \mathbb{N}$ satisfying (2-1)–(2-7)

if $f(p) \neq 0$ or $g(p) \neq 0$ then

return 0;

 $r, s = \deg(f(x, \beta)), \deg(g(x, \beta));$ assume $s \ge r$.

if r = 0 then

write $f = (y - \beta) \cdot h$ and $g(x, \beta) = (x - \alpha)^m (a_0 + a_1(x - \alpha) + \cdots);$

return $m + IM_2(p; h, g)$;

 $\mathsf{IM}_2(p;(y-\beta)\cdot h\cap g)=\mathsf{IM}_2(p;(y-\beta),g)+\mathsf{IM}_2(p;h,g)$

 $\mathsf{IM}_2(p;(y-\beta)\cap g) = \mathsf{IM}_2(p;(y-\beta)\cap g(x,\beta)) = \mathsf{IM}_2(p;(y-\beta)\cap (x-\alpha)^m) = m$

if r > 0 then

 $h \leftarrow \operatorname{monic}(g) - (x - \alpha)^{s-r} \operatorname{monic}(f);$ return $\operatorname{IM}_2(p; f, h);$

Our Goal: Extending Fulton's Algorithm

Limitations of Fulton's Algorithm:

- does not generalize to n>2, that is, to n polynomials $f_1,\ldots,f_n\in \mathbf{k}[x_1,\ldots,x_n]$ since $\mathbf{k}[x_1,\ldots,x_{n-1}]$ is no longer a PID.
- ullet is limited to computing the IM at a single point with rational coordinates, that is, with coordinates in the base field ${f k}$. (Approaches based on standard or Gröbner bases suffer from the same limitation)

\triangleright Our contributions \triangleleft

- ullet We adapt Fulton's Algorithm such that it can work at any point of ${f V}(f_1,f_2)$, rational or not.
- ullet For $n\geq 2$, we propose an algorithmic criterion to reduce the n-variate case to that of n-1 variables.

> Our tools <</p>

Regular Chains

To deal with non-rational points, we extend Fulton's Algorithm to compute $\mathrm{IM}_2(T;f_1,f_2)$, where $T\subset \mathbf{k}[x_1,x_2]$ is a regular chain such that we have $\mathbf{V}(T)\subseteq \mathbf{V}(f_1,f_2)$. This makes sense thanks to the following theorem.

Theorem 1. Recall that $V(f_1, f_2)$ is zero-dimensional. Let $T \subset \mathbf{k}[x_1, x_2]$ be a regular chain such that we have $V(T) \subset V(f_1, f_2)$ and the ideal $\langle T \rangle$ is maximal. Then $\mathrm{IM}_2(p; f_1, f_2)$ is the same at any point $p \in \mathbf{V}(T)$.

Expansions About a Set of Points_

We observe that this algorithm works with the Taylor series of f_1, f_2 at a rational point p. To extend this idea when working with $\mathbf{V}(T)$, instead of a point p, we introduce two new variables y_1 and y_2 representing $x_1 - \alpha$ and $x_2 - \beta$ respectively, for an arbitrary point $(\alpha, \beta) \in \mathbf{V}(T)$. These variables are simply used as place holders in the following definition, where $f \in \{f_1, f_2\}$.

Let $F \in \mathbf{k}[x_1,x_2][y_1,y_2]$ and $T \subset \mathbf{k}[x_1,x_2]$ be a regular chain such that we have $\mathbf{V}(T) \subset \mathbf{V}(f_1,f_2)$. We say that F is an expansion of f about $\mathbf{V}(T)$ if at every point $(\alpha,\beta) \in \mathbf{V}(T)$ we have $F(\alpha,\beta)(x_1-\alpha,x_2-\beta)=f(x_1,x_2)$. The fundamental example is $F=\sum_j \left(\sum_i f_{i,j} y_1^i\right) y_2^j$ where $f_{i,j}=\frac{1}{i!j!}\frac{\partial^{i+j}f}{\partial x^i\partial y^j}$.

> Our algorithm for the bivariate case < □

For an arbitrary zero-dimensional regular chain T, we apply the D5 Principle to Fulton's Algorithm in order to reduce to the irreducible case, as covered by the previous theorem. $\mathsf{Algorithm} = \mathsf{IM}_2(T; F^1, F^2)$

```
Input: F^1, F^2 \in \mathbf{k}[x_1, x_2][y_1, y_2] expansions of f_1, f_2.
Output: Finitely many pairs (T_i, m_i) where T_i \subset k[x_1, x_2] are regular
chains and m_i \in \mathbb{Z}^+ such that \forall p \in V(T^i) \ I(p; f_1, f_2) = m_i.
for (F_1^1,T) \in \text{Regularize}(F_1^1,T) do
      if F_1^1 \not\in \langle T \rangle then
            \mathbf{output}(T,0);
            for (T, F_1^2) \in \text{Regularize}(F_1^2, T) do
                  if F_1^2 \not\in \langle T \rangle then
                         \mathbf{output}(T,0);
                        for (T,a_{F^1}) \in \mathsf{LT}\left(F^1_{< y_2},T\right) do
                               for (T,a_{F^2})\in \mathsf{LT}\left(F^2_{< y_2},T\right) do
                                      /* Wlog deg(F^1_{< y_2}) \le deg(F^2_{< y_2})
                                      if a_{F^1} \in \langle T \rangle then
                                             for (T,d) \in \mathsf{TDeg}\left(F^2_{< y_2}, T\right) do
                                                   for (T,i) \in \mathsf{IM}_2(T, \frac{F^1 - F_{< y_2}^1}{y_2}, F^2) do
                                                        \mathbf{output}(T,(d+i));
                                            H \leftarrow F^2 - a_{F^2} \cdot \text{Inverse} (a_F^1, T) \cdot F^1;
                                            \mathsf{output} \big( \mathsf{IM}_2(T, F^1, H) \big);
```

Notations

In the adjacent algorithm, the polynomials F_1^1 and F_1^2 consist of the terms of F^1 and F^2 of degree 0 in both y_1 and y_2 . The command Regularize $\left(F_1^1,T\right)$ separates the points of $\mathbf{V}(T)$ cancelling F_1^1 from the others. The command LT $\left(F_{< y_2}^1,T\right)$ partitions $\mathbf{V}(T)$ according to the degree of $F_{< y_2}^1$, thus computing the leading term of $F_{< y_2}^1$ at each point of $\mathbf{V}(T)$. The command TDeg $\left(F_{< y_2}^2,T\right)$ works similarly but deals with the trailing degree instead.

Reducing the n-dimensional case to the n-1 case

The intersection multiplicity of p in $\mathbf{V}(f_1,\ldots,f_n)$ is given by

$$I(p; f_1, \ldots, f_n) := \dim_{\overline{k}} \left(\mathcal{O}_{\mathbb{A}^n, p} / \langle f_1, \ldots, f_n \rangle \right).$$

where $\mathcal{O}_{\mathbb{A}^n,p}$ and $\dim_{\overline{k}}(\mathcal{O}_{\mathbb{A}^n,p}/\langle f_1,\ldots,f_n\rangle)$ are respectively the local ring at the point p and the dimension of the vector space $\mathcal{O}_{\mathbb{A}^n,p}/\langle f_1,\ldots,f_n\rangle$. The next theorem reduces the n-dimensional case to n-1, under assumptions which state that f_n does not contribute to $I(p;f_1,\ldots,f_n)$.

Theorem 2. Assume that $h_n = \mathbf{V}(f_n)$ is non-singular at p. Let v_n be its tangent hyperplane at p. Assume that h_n meets each component (through p) of the curve $\mathcal{C} = \mathbf{V}(f_1, \dots, f_{n-1})$ transversely (that is, the tangent cone $TC_p(\mathcal{C})$ intersects v_n only at the point p). Let $h \in \mathbf{k}[x_1, \dots, x_n]$ be the degree 1 polynomial defining v_n . Then, we have $I(p; f_1, \dots, f_n) = I(p; f_1, \dots, f_{n-1}, h)$.

The reduction in practice.

How to use this theorem in practice? Assume that the coefficient of x_n in h is non-zero, thus $h = x_n - h'$, where $h' \in \mathbf{k}[x_1, \dots, x_{n-1}]$. Hence, we can rewrite the ideal $\langle f_1, \dots, f_{n-1}, h \rangle$ as $\langle g_1, \dots, g_{n-1}, h \rangle$ where g_i is obtained from f_i by substituting x_n with h'. If instead of a point p, we have a zero-dimensional regular chain $T \subset \mathbf{k}[x_1, \dots, x_n]$, we use the techniques developed before.

When this reduction does not apply a priori, one can look for a more favorable system of generators. For instance, consider the system *Ojika 2*:

$$x^{2} + y + z - 1 = x + y^{2} + z - 1 = x + y + z^{2} - 1 = 0.$$
 (1)

The above theorem does not apply. However, if one uses the first equation, say $x^2+y+z-1=0$, to eliminate z from the other two, we obtain two bivariate polynomials $f,g\in\mathbf{k}[x,y]$. At any point of $p\in\mathbf{V}(h,f,g)$ the tangent cone of the curve $\mathbf{V}(f,g)$ is independent of z; in some sense it is "vertical". On the other hand, at any point of $p\in\mathbf{V}(h,f,g)$ the tangent space of $\mathbf{V}(h)$ is not vertical. Thus, the previous theorem applies without computing any tangent cones.

Experimental Results

				System	Dim	$Time(\triangle ize)$	#rc's	$Time(rc_{-}im)$
Label	Name	torms	dograa	$\langle 1, 3 \rangle$	888	9.7	20	19.2
		terms	degree	$\langle 1, 4 \rangle$	1456	226.0	8	9.023
1	hard_one	30	37	$\langle 3, 5 \rangle$	1413	22.5	27	28.6
2	L6_circles	4	24	$\langle 4,5 \rangle$	1781	218.4	9	13.9
3	spiral29_24	63	52					
4	tryme	38	59	$\langle 5, 1 \rangle$	1759	113.0	10	15.8
5	challenge_12	49	30	$\langle 6, 9 \rangle$	2560	299.3	10	22.9
	G			$\langle 6, 11 \rangle$	1440	59.8	17	27.5
6	challenge_12_1	64	40	$\langle 7, 8 \rangle$	1152	32.8	12	16.2
7	compact_surf	52	18	$\langle 7, 9 \rangle$	756	18.5	16	11.2
8	degree_6_surf	467	42					
9	mignotte_xy	81	64	$\langle 7, 11 \rangle$	648	9.2	25	11.1
10	SA ₄ 4eps	63	33	$\langle 8, 10 \rangle$	1362	232.5	7	9.3
	•			$\langle 8, 11 \rangle$	1256	49.6	17	45.7
11	spider	292	36	$\langle 9, 10 \rangle$	2080	504.9	12	34.812
				(0,10)		001.5		01.012

 $|\langle 10, 11 \rangle|$ 1180 40.9 17

Name	Dim	Points	∆ize	Cones	COV	rc_im	Total	Success
Nbody5	99	49	1.60	0.00	0.06	1.90	2.00	51/99
mth191	27	18	0.56	5400.00	0.04	0.01	5400.00	23/27
ojika2	8	5	0.20	8.20	0.13	0.47	8.80	8/8
E-Arnold1	45	30	0.89	1100.00	0.01	1800.00	2900.00	45/45
hiftedCubes	27	25	0.66	0.00	0.00	0.52	0.52	27/27
							-	