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Introduction

Let f1,...,f, € Klz1,..., 2, such that V(fi,..., f,) C k|xy,...,x,] is zero-dimensional. The
intersection multiplicity I(p; fi1,..., f,) at the point p € V(fi,..., f.) specifies the weights of the
weighted sum in Bézout's Theorem.

The number I(p; f1,..., fn) is not natively computable by MAPLE while it is computable by SINGU-
LAR and MAGMA—but only when all coordinates of p are in k.

We are interested in removing this algorithmic limitation. We combine Fulton’s Algorithm and the
theory of regular chains, leading to a complete algorithm for n = 2. Moreover, we propose algorithmic
criteria for reducing the case of n > 2 variables to the bivariate one. Experimental results are reported.

The case of two plane curves

Intuitively, the intersection multiplicity (IM) of two plane curves at a given point counts the number
of times that these curves intersect at that point. More formally, given an arbitrary field k and two
bivariate polynomials f, g € k|x, y|, consider the affine algebraic curves C := V(f) and D := V(g) in

A? = EQ, where k is the algebraic closure of k. Let p be a point in the intersection.
The intersection multiplicity of p in V(f, g) is defined to be

I(p; [, g) = dimp(Og2 ./ ([, 9))

where Oy2, and dimz(Op2,,/ (f, g)) are the local ring at p and the dimension of the vector space
OAQap/ <f7 g>

Remarkably, and as pointed out by Fulton in his Intersection Theory, the intersection multiplicities of
the plane curves C' and D satisfy a series of properties which uniquely define I(p; f, g) at each point
p € V(f,g). Moreover, the proof of this remarkable fact is constructive, which leads to an algorithm.

> Fulton’s Properties <

The intersection multiplicities of two plane curves satisfy and are uniquely determined by the following.

1. I(p; f, g) is a non-negative integer for any C,
D, and p such that C' and D have no com-
mon component at p. We set I(p; f,g) = o
if C and D have a common component at p.

2.I(p; f,g)=0ifand only if p & C N D.

3.1(p; f, g) is invariant under affine change of “h e klz,y|.
coordinates on A’ , I(p: f,q9) = I(p; f,q + hf) for all h €

4. 1(p; f,9) = 1(p: g, ) klz,y).

Fulton’s Algorithm
Input: p = (o, 8) € A*(k) and f, g € k[y = x| such that ged(f, g) € k
Output: /(p; f, g) € N satisfying (2-1)—(2-7)
if /(p) # 0 org(p)# 0 then

I(p; f, g) is greater or equal to the product of
the multiplicity of p in f and g, with equal-
ity occurring if and only if C' and D have no
tangent lines in common at p.

o 1 f,9h) = 1(p; f,9) + 1(p; [, h) for all

IMQ(pa f17 f2)

t return 0;
r,s =deg(f(x,0)),deg(g(x,3)); assume s > r.
if » =0 then

write f = (y — 8) - h and g(x, ) = (v — @)™ (ap + a1z — @) + - - +);
return m + IMy(p: I, g);

IMy(p; (y — B) - h N g) = IMa(p; (y — B), g) + IMy(p; R, g)

IMa(p; (y — 8) N g) = IMa(p; (y — B) N g(x, B)) = IMa(p; (y — B) N (z —a)") =m

if » > 0 then
h < monic(g) — (x — a)* "monic ( f);
return IMy(p: f, h);

Our Goal: Extending Fulton’s Algorithm

Limitations of Fulton's Algorithm:

e does not generalize to n > 2, that is, to n polynomials fi,...,f, € Kklz,...,x,| since
k|xi,...,x,_1] is no longer a PID.

e is limited to computing the IM at a single point with rational coordinates, that is, with coordinates in
the base field k. (Approaches based on standard or Grobner bases suffer from the same limitation)

> Our contributions <
e We adapt Fulton's Algorithm such that it can work at any point of V(f, f5), rational or not.
e For n > 2, we propose an algorithmic criterion to reduce the n-variate case to that of n — 1 variables.
> Qur tools <

Regular Chains
To deal with non-rational points, we extend Fulton's Algorithm to compute IMy(T" fi, f2), where
T C K|x1,29| is a regular chain such that we have V(T') C V(fi, fo). This makes sense thanks

to the following theorem.

Theorem 1. Recall that V( fi, f5) is zero-dimensional. Let T C k|1, 25| be a regular chain such that
we have V(T') C V(fi, f2) and the ideal (T") is maximal. Then IMs(p; fi, f>) is the same at any point
pe V(T).
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Expansions About a Set of Points
We observe that this algorithm works with the Taylor series of fi, fo at a rational point p. To extend
this idea when working with 'V (7T'), instead of a point p, we introduce two new variables ; and
representing 1 — o and x5 — (3 respectively, for an arbitrary point («, 8) € V(T'). These variables are
simply used as place holders in the following definition, where f € {fi, f>}.

Let ' € K|z, zo||y1, 40| and T' C K|z, x5] be a regular chain such that we have V(T') C V(fi, f>).

We say that F' is an expansion of f about V(7') if at every point (a,3) € V(I') we have
Fl(a, B)(x1—a, x9— ) = f(x1,22). The fundamental example is F' = Z]‘ (ZZ fii yﬁ) ys where f;; =

1 O f
il ozt oyl

> Qur algorithm for the bivariate case <

For an arbitrary zero-dimensional regular chain I°, we apply the D5 Principle to Fulton's Algorithm in

order to reduce to the irreducible case, as covered by the previous theorem.
Algorithm IMy(T: FY, F2)
Input: F', F? € k[z1, 25][y1, y2] expansions of fi, fs.
Output: Finitely many pairs (T, m;) where T; C k|x1, x5| are regular
chains and m; € Z* such that Vp € V/(T") I(p; f1, f2) = m;.
for (F117T) € Regularize (F117T) do

if 7! ¢ (T) then Notations
_ output(T’, 0); In the adjacent algorithm, the polynomials
else Fl and F? consist of the terms of F'! and F™

for (T, Ff) € Regularize (FE,T) do
if /7 ¢ (T) then
~ output(T’,0);

of degree 0 in both y; and 3». The command
Regularize (Fll,T) separates the points of

| ;
" for (T,ap) € LT (FL, . T) do V(T) cancelling F} from the others. The
for (T,a;2) € LT (2, T) do command LT (FL T partitions V(T) ac-
cording to the degree of 'l | thus comput-

<y2?

/* Wlog deg(FL )< deg(F2,) */

<y2 <y2

if a1 € (T) then _ _ | b2’ .
for (T, d) € TDeg (F2, ., T) do ing the leading term of F_ at each point of
for (T,7) ¢ |M2(T,F_y—?”2,F2) do V(T). The command TDeg (Fiyz, T) works
_ output(T, (d +1)); similarly but deals with the trailing degree in-

clse stead.
H < F? — ap - Inverse (a}p,T) . F,
output (IMy(T, F*, H));

Reducing the n-dimensional case to the n — 1 case

The intersection multiplicity of p in V(fi,..., f.) is given by

I(p; fir s f) o= dimg (One/ (frr -, )

where Opn,, and dimyz(Oan,/ (f1, ..., fn)) are respectively the local ring at the point p and the di-
mension of the vector space Oan,/ (fi, ..., fn). The next theorem reduces the n-dimensional case to
n — 1, under assumptions which state that f,, does not contribute to I(p; fi,..., f.).

Theorem 2. Assume that h, = V/(f,) is non-singular at p. Let v, be its tangent hyperplane at p.
Assume that h, meets each component (through p) of the curve C = V(fi,..., f,_1) transversely
(that is, the tangent cone T'C),(C) intersects v,, only at the point p). Let h € k|zy,...,x,] be the
degree 1 polynomial defining v,,. Then, we have I(p; fi,..., fu) = 1(®; f1,..., fa_1,h).

The reduction in practice
How to use this theorem in practice? Assume that the coefficient of x,, in h is non-zero, thus h = z,,—h/,

where h' € k|x1,...,x,_1]. Hence, we can rewrite the ideal (f1,..., f,_1,h) as (g1, ..., gn_1, h) where
g; is obtained from f; by substituting x,, with A’. If instead of a point p, we have a zero-dimensional
regular chain T' C k|x1, ..., x,], we use the techniques developed before.

When this reduction does not apply a priori, one can look for a more favorable system of generators.
For instance, consider the system Ojika 2:

rHytz—l=z+y+z—l=x+y+2—1=0. (1)

2

The above theorem does not apply. However, if one uses the first equation, say x°+y + 2z — 1 = 0,
to eliminate 2z from the other two, we obtain two bivariate polynomials f, g € k|x,y|. At any point of
p € V(h, f, g) the tangent cone of the curve V(f, g) is independent of z; in some sense it is “vertical”.
On the other hand, at any point of p € V(h, f, g) the tangent space of V(h) is not vertical. Thus,
the previous theorem applies without computing any tangent cones.

Experimental Results

System | Dim  Time(Aize) #rc's Time(rc.im)
(1,3) | 888 9.7 20 19.2
Label Name terms degree
(1,4) | 1456 226.0 8 9.023
1 hard_one 30 37
_ (3,5) | 1413 22.5 27 28.6
2 locrdes |4 A 4,5) |1781 2184 9 13.9
3 spiral29_24 63 52 (4,5) ' ' Name Dim | Points | Aize | Cones | COV | rc_im Total | Success
(5,1) | 1759 113.0 10 15.8
4 tryme 38 59 Nbody5 99 49 | 160 | 0.00 |0.06 | 1.90 2.00 51/99
(6,9) | 2560 299.3 10 22.9
5 challenge 12 49 30 mth191 27 18 | 0.56 | 5400.00 | 0.04 | 0.01 |5400.00 | 23/27
(6,11) | 1440 59.8 17 27.5
6  challenge 121 | 64 40 ojika2 8 5 020 | 820 |0.13 | 0.47 8.80 8/8
7 tsurf | 52 18 \7.8) | 1152 528 . 102 E-Arnoldl 45 30 | 0.89 | 1100.00 | 0.01 | 1800.00 | 2900.00 | 45/45
compact_sur - : : : : :
8 d p 6.surf | 467 42 (7.9) | 756 185 0 e Shif ':Z bes| 27 | 2 2 2 |2 /2
egree_6_sur
-g (7.11) | 648 9.2 o5 111 iftedCubes 7 5 |066| 000 |000| 05 0.5 7/27
9 mignotte xy 81 64
(8,10) | 1362 232.5 7 9.3
10 SA_4_4 eps 63 33
_ (8,11) | 1256 49.6 17 45.7
11 spider 292 36
(9,10) | 2080 504.9 12 34.812
(10,11) | 1180 40.9 17 21.3




