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Introduction

Introductory example (1/2)

Consider Newton’s root finding method for approximating a solution of
f (x) = 0 starting from an initial guess x = x0:

xi+1 = xi −
f (xi)

f ′(xi)
.

This iteration continues until f (xn) satisfies a specified tolerance.

x0 f (x0) f ′(x0) ⇒ x1

x1 f (x1) f ′(x1) ⇒ x2
...

xn−1 f (xn−1) f ′(xn−1) ⇒ xn

Li, Leiserson, Moreno Maza, Xie () Efficient Evaluation of Large Polynomials ICMS 2010 2 / 71



Introduction

Introductory example (2/2)

Suppose that

f is encoded by a SLP P (compiled code) of length ℓ.

to be evaluated at m points in dimension n with int coordinates

using a (Z , L) data cahce and (Z ′, L′) instruction cache.

If ℓ and m are large enough (Z ′ ≪ ℓ and ℓ L≪ nmZ ′) and n is small
enough (n≪ LL′) one can prove that this process will incur

O(m ℓ/L′ + m) instruction cache misses and

O(mn/L + 1) data cache misses.

If P is decomposed s ≃ ℓ/Z ′ subprograms then the total number of
cache misses drops to O((ℓ/Z ′)(mn/L) + ℓ/L′).

This is indeed better since we have:

(ℓ/Z ′)(mn/L)≪ m ℓ/L′.
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Introduction

Objective 1

Given a polynomial f expressed by the sum of its terms, find a
representation of f that “minmizes” the evaluation cost of f .

Observe that:

The evaluation points and their number are not known in advance.

The evaluation points may be symbolic expressions.
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Introduction

Input (557 operations):

a2b2cde2ghjlm+ a2b2cdeh2klmn+ a2bcdegh2lm2n+ ab3c2de2ghij+

ab3c2deh2ikn+ ab2c2de2ghjlm+ ab2c2degh2imn+ ab2c2deh2klmn+

ab2cd2e3ghjm+ ab2cd2e2h2kmn+ abc2degh2lm2n+ abcd2e2gh2m2n+

b3c3de2ghij + b3c3deh2ikn+ b2c3degh2imn+ b2c2d2e3ghjm+

b2c2d2e2h2kmn+ bc2d2e2gh2m2n+ ab2ceghij2lm+ ab2ch2ijklmn+

abc2de2ghjlm+ abc2deh2klmn+ abcgh2ijlm2n+ abe2ghjklm2n+

abeh2k2lm2n2
+ ac2degh2lm2n+ aegh2klm3n2

+ b3c2eghi2j2+

b3c2h2i2jkn+ b2c3de2ghij + b2c3deh2ikn+ b2c2gh2i2jmn+

b2cde2ghij2m+ b2cdeh2ijkmn+ b2ce2ghijkmn+ b2ceh2ik2mn2
+

bc3degh2imn+ bc2d2e3ghjm+ bc2d2e2h2kmn+ bcdegh2ijm2n+

bcegh2ikm2n2
+ bde3ghjkm2n+ bde2h2k2m2n2

+ c2d2e2gh2m2n+

de2gh2km3n2
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Introduction

Applying Multivariate Horner scheme of Maple (382
operations)

de2gh2km3n2 + c2d2e2gh2m2n+ ((k2m2n2h2 + jkm2nghe)e2d+

(egh2ikm2n2 + degh2ijm2n+ ((h2m2ng +mh2kn+ jmghe)e2d2+

dih2nmegc)c)c+ (((k2n2imh2 + jiknmghe)e+ (ijmh2kn+ ij2mghe)ed+

(i2jgh2mn+ (mh2kn+ jmghe)e2d2 + (ih2nmg + ih2kn+ ijghe)edc)c)c+

(i2j2egh+ i2jh2kn+ (ih2kn+ ijghe)edc)c2b)b)b+ (c2degh2lm2n+ egh2klm3n2+

((lk2m2n2h2 + jkm2nlghe)e+ (h2m2nd2e2g + lm2ijgh2n+ (h2m2nlg + lmh2kn+

jlmghe)edc)c+ ((ij2lmegh+ jlimh2kn+ (mh2kn+ jmghe)e2d2 + (ih2nmg+

lmh2kn+ jlmghe)edc)c+ (ih2kn+ ijghe)edc2b)b)b+ (h2m2ndcleg + (lmh2kn+

jlmghe)edcb)ba)a
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Introduction

Applying Maple’s optimize command with ‘tryhard’
option (153 operations)

t86 = al, t85 = de, t84 = ij, t83 = kn, t55 = c2, t82 = at55, t46 = m2, t81 = bt46,

t57 = b2, t80 = ct57, t44 = n2, t79 = kt44, t78 = t57m, t77 = a2l, t76 = t57 + b,

t52 = e2, t53 = d2, t75 = t53t52, t56 = bt57, t74 = t55t56, t73 = et86, t72 = it78,

t71 = t55t75, t49 = i2, t70 = t49t74, t69 = t81t83, t68 = ct72, t67 = it52t80, t54 = ct55,

t66 = (t56 + t57)t54, t65 = t84 + t77, t64 = (t75 + lt84)a, t63 = (dt73 + t75)t55,

t51 = et52, t50 = h2, t48 = j2, t45 = mt46,

t1 = ((et68 + (t73 + dt52)t81)k
2t44 + (jt70 + (at74 + t66)it85 + (bt63 + (t63+

(t65t85 + t64)c)t57)m)t83)t50 + (((t45t86 + cit81)et79 + (t55t49jt78 + (t71+

(t71 + ct64)b)t46)n)t50 + ((t68t86 + t70)t48e+ (t52t69t86 + (t67t83 + (at80+

t76t55)t53t51)m)j)h+ ((t52t45t79 + (t54t72 + (lt46 + t72)t82 + (t54im+ (lt82+

t65c)t46)b)ne)t50 + (t48mt67 + (t51t69 + (ct77t78 + it66 + (t56i+ t76ml)t82)t52)j)h)d)g
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Introduction

Our output (142 operations)

(((((bej + hmn)d(ab+ bc+ c) + b2ij2)c+ (bej + hmn)kmn)(al + de)+

(bej + hmn)bcikn+ (c(ab+ bc+ c) + jm)bcdihn)m+ (bij + de(ab+

bc+ c))b2c2ij)egh+ ((((((al + de)(ab + bc+ c) + bij)d+ knbi)e+ ajlbi)c+

(al + de)kmne)m+ (bij + de(ab+ bc+ c))bc2i)bh2kn+ (alm+ bci)bcijgh2mn

Li, Leiserson, Moreno Maza, Xie () Efficient Evaluation of Large Polynomials ICMS 2010 8 / 71



Introduction

After application of common subexpression elimination
technique to our output (94 operations)

t5 = bej + hmn, t8 = bc, t9 = ab+ t8 + c, t11 = b2, t13 = j2, t18 = mn,

t21 = al, t22 = de, t23 = t21 + t22, t41 = bi, t42 = t41j, t44 = t42 + t22t9,

t46 = c2, t47 = t46i, t76 = h2,

t91 = ((((t5dt9 + t11it13)c+ t5kt18)t23 + t5bcikn+ (ct9 + jm)bcdihn)m+

t44t11t47j)egh+ (((((t23t9 + t42)d+ knt41)e + ajlbi)c+ t23kt18e)m+

t44bt47)bt76kn+ (t21m+ t8i)bcijgt76mn
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Introduction

Objective 2

From our “slim representation” of f deduce a schedule for evaluating f
efficiently in terms of data locality and parallelism.

Example

f = 3ab2c + 5abc2 + 2ae + 6b2cd + 10bc2d + 4de + r
♯operations= 4 + 4 + 2 + 4 + 4 + 2 + 6 = 30

+

× r

+ +

× × a ×

+ × 2 e 2 d

× × b c

3 b 5 c
f = (a + 2d) (bc (3b + 5c) + 2e) + r

Figure: An evaluation schedule off when 3 processors are available
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Introduction

Main results

Given a polynomial in expanded form, compute a syntactic
decomposition of it which permits a cheaper evaluation.

Go to section details

Generate Cilk++ program for parallel evaluation of a syntactic
decomposition.

Go to section details

Parallelize the computation of syntactic decomposition and of the
minimal elements of a partially ordered set.

Go to section details

Return to Outline
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Minimizing the evaluation cost

“Minimizing” the evaluation cost

Background

The hypergraph method

Complexity estimation
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Minimizing the evaluation cost Background

Evaluating univariate polynomials

f (x) = a0 + a1x + a2x2 + · · ·+ anxn

The most direct evaluation computes terms one by one.

♯mult = 0 + 1 + 2 + · · · + n = n(n + 1)/2
♯add = 0 + 1 + 1 + · · · + 1 = n

Horner’s rule writes the polynomial in the form

f (x) = a0 + x(a1 + x(a2 + · · ·+ x(an−1 + anx)))
♯mult = 0 + 1 + 1 + · · ·+ 1 + 1 = n
♯add = 0 + 1 + 1 + · · ·+ 1 + 1 = n

Horner’s rule is optimal for evaluating arbitrary univariate
polynomials.
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Minimizing the evaluation cost Background

Multivariate Horner’s rule and friends

There are no known methods proven to be optimal! However there is
an abundant literature on related topics.

Generation of Optimal Code for Expressions via Factorization
(Melvin A. Breuer, 1969)

On the Multivariate Horner Scheme
(J. M. Peña, 2000)

Greedy Algorithms for Optimizing Multivariate Horner Schemes
(M. Ceberio & V. Kreinovich, 2004)

Optimizing Polynomial Expressions by Algebraic Factorization and
Common Subexpression Elimination
(A. Hosangadi, F. Fallah & R. Kastner, 2006)
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Minimizing the evaluation cost Background

Common subexpression elimination

Common subexpression elimination (CSE) is a compiler optimization
technique that searches for instances of identical expressions.

Example

Consider this polynomial,

f = (ab + c)d + (ab + d)e

It can be rewritten in a CSE form as

g = ab
f = (g + c)d + (g + d)e

It can always be used as a post-processing technique.
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Minimizing the evaluation cost Background

Functional decomposition (and algebraic factorization)

f = g ◦ h

Example

f = x9 + 3x7 + 4x6 + 3x5 + 8x4 + 6x3 + 4x2 + 5x + 3
g = x3 + x2 + 1
h = x3 + x + 1

Weakness

It was showna that “most” polynomials over an arbitrary field are
indecomposable.

aSome Results on the Functional Decomposition of Polynomials, Mark William
Giesbrecht, 1988.
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Minimizing the evaluation cost The hypergraph method

Notations

terms(f ) refers to the set of all the terms of f .

mons(f ) refers to the set of all the monomials of f .

Writing f ∈ K[X ] indicates that the coefficients of the polynomial f
are in base field K and that its variables are in set X .

syntactic product : g h is a syntactic product if there is no grouping
or cancellation of terms when multiplying g and h, written as g⊙ h.

(a + b)(a− b) cancellation ab − ab
(a + b)(a + b) grouping ab + ab
(a + b)(c + d) syntactic product (a + b)⊙ (c + d)

syntactic sum : g + h is a syntactic sum if there is no grouping or
cancellation of terms when adding g and h, written as g ⊕ h.
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Minimizing the evaluation cost The hypergraph method

Syntactic Factorization

For f , g, h ∈ K[X ], we say that g h is a syntactic factorization of f if

f = g ⊙ h.

Example

(x − 1)(x2 + x + 1) is not a syntactic factorization of x3 − 1.

Property

f = g ⊙ h⇒
{

degree(f ) = degree(g) + degree(h);
♯terms(f ) = ♯terms(g) × ♯terms(h).
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Minimizing the evaluation cost The hypergraph method

Partial Syntactic Factorization

A set of pairs of polynomials (g1, h1), (g2, h2), . . . , (ge, he) and a
polynomial r in K[X ] is a partial syntactic factorization of f if:

1 f = (g1 ⊙ h1)⊕ (g2 ⊙ h2)⊕ · · · ⊕ (ge ⊙ he)⊕ r
2 r or any part of r does not admit any nontrivial syntactic

factorization.

Example

A partial syntactic factorization of

f = ac + ad + bc + bd + e

is
(a + b)⊙ (c + d)⊕ e
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Minimizing the evaluation cost The hypergraph method

Partial Syntactic Factorization

Example

f = (g1 ⊙ h1)⊕ (g2 ⊙ h2)⊕ (g3 ⊙ h3)⊕ (g4 ⊙ h4)⊕ r

+

+ r

+ +

× × × ×

g1 h1 g2 h2 g3 h3 g4 h4

Figure: syntactic decomposition
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Minimizing the evaluation cost The hypergraph method

Base monomial setM: given by an oracle

Question

How do we discover part of f that admits a syntactic factorization?

Example

f = ac + ad + bc + bd + e = (a + b) (c + d) + e

If the monomial set {a, b} is given, we can find (a + b)⊙ (c + d).

We say a partial syntactic factorization

f = (g1 ⊙ h1)⊕ (g2 ⊙ h2)⊕ · · · ⊕ (ge ⊙ he)⊕ r

is w.r.t a base monomial setM if mons(gi) ∈M for all i = 1, . . . , e.
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Minimizing the evaluation cost The hypergraph method

Question

How to exploit the base monomial set to build a syntactic factorization?

Using a hypergraph designed for it!
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Minimizing the evaluation cost The hypergraph method

Hypergraph review

A hypergraph is a generalization of a graph where an edge can
connect any number of vertices. Formally, a hypergraph H is a pair
H = (V, E) where

V is a set of elements, called vertices;

E is a set of non-empty subsets of V, called hyperedges.

V = {v1, v2, v3, v4, v5, v6, v7}

E =















e1 = {v1, v2, v3}
e2 = {v2, v3}
e3 = {v3, v5, v6}
e4 = {v4}
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Minimizing the evaluation cost The hypergraph method

Hypergraph HG(f ,M)

Given f andM, then HG(f ,M) = (V, E) is defined as
V =M
E = {Eq | Eq is nonempty} , where Eq denotes the set

{m ∈M | m q ∈ mons(f )}.

for an arbitrary monomial q.

Example

f = ax + ay + az + by + bz
M = {x , y , z}

V = {x , y , z}

E =

{

Ea = {x , y , z},
Eb = {y , z}.

x y

z

a

b
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Minimizing the evaluation cost The hypergraph method

Property of hypergraph HG(f ,M)

{

f = g ⊙ h + · · ·
mons(g) ⊆M

⇒ mons(g) ⊆ ∩q∈mons(h)Eq.

Example

f = ax + ay + az + by + bz
= (y + z)⊙ (a + b) + ax

V = {x , y , z}

E =

{

Ea = {x , y , z},
Eb = {y , z}.

x y

z

a

b
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Minimizing the evaluation cost The hypergraph method

Constructing Syntactic Factorization

Question

How to construct a syntactic factorization from a hypergraph?

Greedy strategy

find the largest intersection of edges in the hypergraph.

construct a candidate syntactic factorization from it.

build a system to solve the coefficients in a candidate syntactic
factorization.
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Minimizing the evaluation cost The hypergraph method

Constructing Syntactic Factorization: example

a d

b^2c

bc^2

e

  

d
a

e bc

ac
cd
bd
ab

f = 3ab2c + 5abc2 + 2ae + 6b2cd + 10bc2d + 4de + r

M = {a, bc, d , e}

Eb2c ∩ Ebc2 ∩ Ee = {a, d}

the candidate syntactic factorization is therefore

(α1a + α2d)(β1b2c + β2bc2 + β3e)

= 3ab2c + 5abc2 + 2ae + 6b2cd + 10bc2d + 4de
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Minimizing the evaluation cost The hypergraph method

Constructing Syntactic Factorization: example

(α1a + α2d)(β1b2c + β2bc2 + β3e)

= 3ab2c + 5abc2 + 2ae + 6b2cd + 10bc2d + 4de















α1β1 = 3
α1β2 = 5
α1β3 = 2
α2β1 = 6

α1=1
=⇒























α1 = 1
α2 = 2
β1 = 3
β2 = 5
β3 = 2

⇒

{

α2β2 = 10
α2β3 = 4

A syntactic factorization has been found:

(a + 2d)⊙ (3b2c + 5bc2 + 2e)
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Minimizing the evaluation cost The hypergraph method

Constructing partial syntactic factorization

We have an algorithm to construct a syntactic factorization of part of f .

Question

How to build a partial syntactic factorization of f?

f = (g1 ⊙ h1)⊕ (f − g1h1)

+

× f − g1h1

g1 h1

Figure: computation of partial syntactic factorization
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Minimizing the evaluation cost The hypergraph method

Constructing Partial Syntactic Factorization

f = (g1 ⊙ h1)⊕ (g2 ⊙ h2)⊕ (f − g1h1 − g2h2)

+

× +

g1 h1 × f − g1h1 − g2h2

g2 h2

Figure: computation of partial syntactic factorization
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Minimizing the evaluation cost The hypergraph method

Constructing Partial Syntactic Factorization

f = (g1 ⊙ h1)⊕ (g2 ⊙ h2)⊕ (g3 ⊙ h3)⊕ (f − g1h1 − g2h2 − g3h3)

+

× +

g1 h1 × +

g2 h2 × f − g1h1 − g2h2 − g3h3

g3 h3

Figure: computation of partial syntactic factorization
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Minimizing the evaluation cost The hypergraph method

Constructing Partial Syntactic Factorization

f = (g1 ⊙ h1)⊕ (g2 ⊙ h2)⊕ (g3 ⊙ h3)⊕ r

+

× +

g1 h1 × +

g2 h2 × r

g3 h3

Figure: computation of partial syntactic factorization
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Minimizing the evaluation cost The hypergraph method

Flow chart: partial syntactic factorization

(V, E) =

HG(f ,M)
f M

is E

empty?

construct

candidate

syntactic

factorization

return

update

HG(f ,M)

update

candidate

valid?

yes

no

no

yes
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Minimizing the evaluation cost The hypergraph method

About base monomial set (1/2)

Question

How to find an appropriate base monomial setM?

Requirement

It better contains all the monomials from which a syntactic
factorization may be derived.

f = g ⊙ h⇒ mons(g) ∈M

It better satisfies condition (?? )

∀mi , mj ∈M, i 6= j ⇒ mi ∤ mj

such that recursive computation of partial syntactic factorizations
of all g′

i s can be avoided.
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Minimizing the evaluation cost The hypergraph method

About base monomial set (2/2)

Options:

M = the set of all the variables X .

the set of minimal elements of the pairwise gcd set G,

G = {gcd(mi , mj) | mi , mj ∈ mons(f ), i 6= j},

for the divisibility relation.
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Minimizing the evaluation cost The hypergraph method

Recursive Calls

f = (g1 ⊙ h1)⊕ (g2 ⊙ h2)⊕ (g3 ⊙ h3)⊕ r

+

× +

g1 h1 × +

g2 h2 × r

g3 h3

Figure: recursive calls
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Minimizing the evaluation cost The hypergraph method

Syntactic Decomposition

Let T be a binary tree whose internal nodes are the operators +,−,×
and whose leaves belong to K ∪ X . Let pT be the polynomial
represented by T . We say that T is a syntactic decomposition of pT if
either (1), (2) or (3) holds:

(1) T consists of a single node which is pT .
(2) if T has root + (resp. −) with left subtree Tℓ and right subtree Tr

then we have:
(a) Tℓ, Tr are syntactic decompositions of two polynomials

pTℓ
, pTr ∈ K[X ],

(b) pT = pTℓ
⊕ pTr (resp. pT = pTℓ

⊖ pTr ) holds,

(3) if T has root ×, with left subtree Tℓ and right subtree Tr then we
have:
(a) Tℓ, Tr are syntactic decompositions of two polynomials

pTℓ
, pTr ∈ K[X ],

(b) pT = pTℓ
⊙ pTr holds.
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Minimizing the evaluation cost Complexity

Complexity

Suppose that f is a polynomial of t terms with total degree d in
K[x1, x2, . . . , xn]. Assume that the input polynomial is given in
distributed representation and that each exponent in a monomial is
encoded by a machine word.

A partial syntactic factorization of f can be computed in
O(|M|3t3n log(|M|t)) bit operations and O(|M|3t3) operations in
K.

IfM is chosen to be all the variables, then a syntactic
decomposition of f can be computed in t3n4d log(tn) bit
operations and t3n3d operations in K.

IfM is chosen to be the set of minimal elements of pairwise gcd’s,
then a syntactic decomposition of f can be computed in
O(t9nd log t) bit operations and O(t9d) operations in K.

Return to Main Results
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p-Schedule

Computation of parallel evaluation schedule

Question

How to compute a parallel evaluation schedule from a syntactic
decomposition of the given polynomial?

Objective

A syntactic decomposition is a binary tree which becomes a directed
acyclic graph (DAG) after eliminating common subexpressions. Our
objective is to decompose a DAG into p sub-DAGs for a given
parameter p, the number of available processors.

the evaluation of one sub-DAG does not depend on the evaluation
of the other.

these sub-DAGs are balanced in size such that the “span” of the
intended parallel evaluation is minimized.
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p-Schedule

Two steps of DAG evaluation

We first collect all common subexpressions, and treat them as leaves.
Then the problem of scheduling DAGs reduces to that of scheduling
binary trees, where broadcasting common subexpressions may be
necessary.

Example

The DAG on the left represents the polynomial abc(d + e)+ f (abc + h).

×

×

f +

×

h × +

c × d e

a b

×

c ×

a b

×

×

f +

×

h g g +

d e

Figure: Evaluate a DAG in two steps
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p-Schedule

Scheduling of binary trees

By choosing a cut-off value K > 0, with a tree traversal, one can find
the set M of the maximal subtrees of T such that each subtree has at
most K nodes.

23

21 1

15 5

11 3 1 3

7 3 1 1 1 1

3 3 1 1

1 1 1 1

Figure: setp = 3, M = {7, 3, 3, 5, 1}, K = ⌈ 23
3 ⌉

Li, Leiserson, Moreno Maza, Xie () Efficient Evaluation of Large Polynomials ICMS 2010 41 / 71



p-Schedule

Scheduling of binary trees

Multiprocessor scheduling of M is an NP-Complete problem. However,
the simple LPT-algorithm1 (Longest Processing Time) achieves a
partition within a factor 4/3 of optimal.

Example

M = {7, 5, 3, 3, 1}, p = 3

P1

P2

P3

7

1Bounds on multiprocessing anomalies and related packing algorithms,
R. L. Graham, 1972.
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p-Schedule

Scheduling of binary trees

Multiprocessor scheduling of M is an NP-Complete problem. However,
the simple LPT-algorithm (Longest Processing Time) achieves a
partition within a factor 4/3 of optimal.

Example
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Scheduling of binary trees
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Scheduling of binary trees

Multiprocessor scheduling of M is an NP-Complete problem. However,
the simple LPT-algorithm (Longest Processing Time) achieves a
partition within a factor 4/3 of optimal.

Example

M = {7, 5, 3, 3, 1}, p = 3
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p-Schedule

Scheduling of binary trees

Multiprocessor scheduling of M is an NP-Complete problem. However,
the simple LPT-algorithm (Longest Processing Time) achieves a
partition within a factor 4/3 of optimal.

Example

M = {7, 5, 3, 3, 1}, p = 3
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p-Schedule

Scheduling of binary trees

23

21 1

15 5

11 3 1 3

7 3 1 1 1 1

3 3 1 1

1 1 1 1

Figure: A 3-schedule of a binary tree
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Experimentation on generic resultants

Our test case

Resultants provide conditions for a given system to have solutions.

linear systems determinants
non-linear systems resultants

Let am, . . . , a1, a0, bn, . . . , b1, b0 be independent symbols

a = amxm + · · ·+ a1x + a0

b = bnxn + · · ·+ b1x + b0

the number of monomials of resultant(a, b, x) grows exponentially
in n and m.

m 5 6 6 7 7 7 8 8 8 8
n 5 5 6 5 6 7 5 6 7 8

#Mon 1696 4605 14869 11380 43166 145330 25917 114080 441145 1524326
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Experimentation on generic resultants

Number of operations for evaluating generic resultants

m and n: degree of two polynomials.
Input : direct evaluation of the polynomial.
Horner : Maple’s multivariate Horner’s rule.
Tryhard : Maple’s optimize function with ‘tryhard’ option.
SD : our hypergraph method. SD + CSE : applying CSE to our output.

m n #Mon Input Horner tryhard SD SD + CSE
5 5 1696 18185 7779 4056 7134 3543
6 4 1233 13221 6539 3230 4853 2547
6 5 4605 54269 22779 10678 18861 8432
6 6 14869 190890 69909 31760 63492 24701
7 4 2562 30438 14948 6707 9862 4905
7 5 11380 146988 61399 27363 45546 19148
7 6 43166 601633 219341 - 179870 65770
7 7 145330 2166653 697743 - 627584 206840
8 4 4970 63731 19547 12191 18730 8826
8 5 25917 359487 106800 - 101327 39816
8 6 114080 1700662 498410 - 464593 157312
8 7 441145 7028510 2042037 - 1863653 565020
8 8 1524326 25838829 * - 6648972 1844464

* means that the computation is killed due to 0% CPU usage and 90% memory usage.

- means that the computation does not terminate after 5 days.
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Experimentation on generic resultants

Timing in seconds

m and n: degree of two polynomials.
Input : direct evaluation of the polynomial.
Horner : Maple’s multivariate Horner’s rule.
Tryhard : Maple’s optimize function with ‘tryhard’ option.
SD : our hypergraph method. SD + CSE : applying CSE to our output.

m n #Mon Horner tryhard SD
5 5 1696 1.276 868.118 0.617
6 4 1233 0.988 363.970 0.409
6 5 4605 4.868 8658.037 4.820
6 6 14869 24.378 145602.915 43.764
7 4 2562 4.377 1459.343 2.407
7 5 11380 24.305 98225.730 33.156
7 6 43166 108.035 >5 days 404.708
7 7 145330 191.184 >5 days 4252.534
8 4 4970 3.744 6528.992 8.497
8 5 25917 23.858 >5 days 189.259
8 6 114080 145.385 >5 days 3240.737
8 7 441145 930.966 >5 days 45380.056
8 8 1524326 * >5 days 494362.097

* means that the computation is killed due to 0% CPU usage and 90% memory usage.

Figure: Timing to optimize large polynomials
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Experimentation on generic resultants

Timing in seconds to evaluate different representations

m and n: degree of two polynomials
Input : the input polynomial
SD : syntactic decomposition
SD+CSE : CSE technique applied syntactic decomposition
4-schedule : our computed 4-schedule

m n Input SD SD+CSE 4-schedule
6 5 144.838 26.681 18.103 9.343
6 6 577.624 185.883 42.788 28.716
7 5 461.981 114.026 40.526 19.560
7 6 1902.813 545.569 138.656 81.270

Figure: Timing to evaluate large polynomials at 100K Points

Return to Main Results
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Parallelization

Parallelization of the hypergraph method

Challenge

The algorithm to compute partial syntactic factorization is inherently
sequential.

Strategy

We extract parallelism from all subroutines of the computation of
partial syntactic factorization, including

the computation of base monomial set,

the construction of hypergraph,

the computation of the largest intersection of hyperedges,

the computation of the hyperedge with maximal cardinality,

the product set of two monomial sets,

the updating process of the hypergraph.
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Parallelization

Parallel computation of the base monomial set2

Our base monomial set is chosen to be the set of minimal
elements of the pairwise gcd set G,

G = {gcd(mi , mj) | mi , mj ∈ mons(f ), i 6= j},

where the partial order is chosen to be their divisibility. We call this
base monomial set Support of mons(f ).
By Split(A), we mean a partition A−, A+ of A such that |A−| and
|A+| differ at most by 1.
Union(A, B) accepts two disjoint sets A, B and returns C where
C = A ∪ B;
A Spawn tells the compiler that the function may run in parallel
with the caller.
A Sync statement indicates that the current function can resume
its execution once all functions spawned in its body have
completed.

2originally proposed in Parallel Computation of the Minimal Elements of a Poset
(Charles E. Leiserson, Liyun Li, Marc Moreno Maza and Yuzhen Xie, PASCO 2010)
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Parallelization

Ideal-Cache Model

Q
cache
misses

organized by
optimal replacement

strategy

Main
Memory

Cache

Z�L Cache lines

Lines
of lengthL

CPU

W
work

Figure 1: The ideal-cache model

a computer has a two-level memory hierarchy:
an ideal (data) cache of Z words
an arbitrarily large main memory

the cache is partitioned into cache lines, each consisting L
consecutive words which are always moved together.
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Parallelization

Parallel computation of the base monomial set

Algorithm 1: ParallelSupport

if |A| ≤ SupportBase then
return SerialSupport(A);

else
(A−, A+)← Split(A);
B ← spawn SelfSupport(A−, A+);
C ← spawn CrossSupport(A−, A+);
sync ;
(D1, D2)← ParallelMerge(B, C);
return Union(D1, D2);

A− A+

A−

A+

|A| = n






W (n) = O(n4)
S(n) = O(n2)

Q(n) = O( n4

ZL + n2

L )

SupportBase should be

large enough to reduce parallelization overheads

small enough to increase data locality.

Li, Leiserson, Moreno Maza, Xie () Efficient Evaluation of Large Polynomials ICMS 2010 55 / 71



Parallelization

Parallel computation of the base monomial set

Algorithm 2: SelfSupport

E ← spawn ParallelSupport(B);
F ← spawn ParallelSupport(C);
sync ;
(D1, D2)← ParallelMerge(E , F );
return Union(D1, D2);

B

C

B

C

|B| = |C| = n






W (n) = O(n4)
S(n) = O(n2)

Q(n) = O( n4

ZL + n2

L )
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Parallelization

Parallel computation of the base monomial set

Algorithm 3: CrossSupport

if |B| ≤ MergeBase then
return SerialCrossSupport(B, C);

else
(B−, B+)← Split(B);
(C−, C+)← Split(C);
D1 ← spawn CrossSupport(B−, C−);
D2 ← spawn CrossSupport(B+, C−);
D3 ← spawn CrossSupport(B−, C+);
D4 ← spawn CrossSupport(B+, C+);
sync ;
(E1, E2)← spawn ParallelMerge(D1, D2);
(E3, E4)← spawn ParallelMerge(D3, D4);
sync ;
(F1, F2)←
ParallelMerge(Union(E1, E2), Union(E3, E4));
return Union(F1, F2);

C− C+

B−

B+

|B| = |C| = n






W (n) = O(n4)
S(n) = O(n2)

Q(n) = O( n4

ZL + n2

L )
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Parallelization

ParallelMerge algorithm

Algorithm 4: ParallelMerge(B, C)

if |B| ≤ MergeBase and |C| ≤ MergeBase then
return SerialMerge(B, C);

else if |B| > MergeBase and |C| > MergeBase then
(B−, B+)← Split(B);
(C−, C+)← Split(C);
(B−, C−)← spawn ParallelMerge(B−, C−);
(B+, C+)← spawn ParallelMerge(B+, C+);
sync ;
(B−, C+)← spawn ParallelMerge(B−, C+);
(B+, C−)← spawn ParallelMerge(B+, C−);
sync ;
return (Union(B−, B+), Union(C−, C+));

. . . . . . . . .

C− C+

B−

B+

|B| = |C| = n






W (n) = O(n2)
S(n) = O(n)

Q(n) = O( n2

ZL)
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Parallelization

ParallelMerge algorithm

Algorithm 5: ParallelMerge(B, C)

if |B| ≤ MergeBase and |C| ≤ MergeBase then
return SerialMerge(B, C);

else if |B| > MergeBase and |C| > MergeBase then. . . . . . . . .
else if |B| > MergeBase and |C| ≤ MergeBase then

(B−, B+)← Split(B);
(B−, C)← ParallelMerge(B−, C);
(B+, C)← ParallelMerge(B+, C);
return (Union(B−, B+), C);

. . . . . . . . .

C

B−

B+
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Parallelization

Scalability Analysis by Cilkview

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

S
pe

ed
up

Cores

Computing the syntactic decomposition of degree pattern (8, 7)

Measured Speedup
Parallelism = 11444, Ideal Speedup

Syntactic decomposition computation of the resultant of generic
polynomials with degree 8 and 7.
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Parallelization

Conclusion

Given a polynomial in expanded form, we propose an algorithm to
compute a syntactic decomposition of it which permits a cheaper
evaluation.

Our computation runs in polynomial time with the degree, number
of variables and number of terms of the input polynomial.

We have implemented our algorithm in the Cilk++ concurrency
platform and our implementation achieves near linear speedup on
16 cores with large enough input.

We have introduced an algorithm to generate a parallel evaluation
schedule of a syntactic decomposition. It has been realized to
produce a Cilk++ program that is ready to be compiled.

For some large polynomial, our resulting schedule provides a
10-times-faster evaluation comparing to the direct evaluation of its
straight-line program (SLP) representation (both conducted
sequentially).
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typical output of various optimization tools

Serial base monomial set algorithm

Algorithm 6: SerialSupport
M← ∅;
for i ← 1 to t do

for j ← i + 1 to t do

g ← Gcd(Mi , Mj); is min← true;
for m ∈M do

if m | g then
is min← false;
break;

else if g | m then
M←M\ {m};

if is min = true then
M←M∪ {g};

return M;
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typical output of various optimization tools

Serial cross monomial set algorithm

Algorithm 7: SerialCrossSupport
M← ∅;
for i ← 1 to |B| do

for j ← 1 to |C| do
g ← Gcd(Bi , Cj);
is min← true;
for m ∈M do

if m | g then
is min← false;
break;

else if g | m then
M←M\ {m};

if is min = true then
M←M∪ {g};

return M;
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typical output of various optimization tools

Serial merge algorithm

Algorithm 8: SerialMerge
if |B| = 0 or |C| = 0 then

return (B, C);

else
for i ← 1 to |B| do

for j ← 1 to |C| do
if cj is unmarked then

if cj �bi then
Merge(bi , cj), Mark bi and break inner loop;

if bi � cj then
Merge(cj , bi), Mark cj ;

B ← {unmarked elements in B};
C ← {unmarked elements in C};
return (B, C);
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typical output of various optimization tools

Why syntactic?

Suppose that f admits a syntactic factorization g h while nothing is
known about g and h, except their numbers of terms. Then, one can
set up a system of polynomial equations to compute the terms of g
and h. For instance with tf = 4 and tg = th = 2, let

f = M + N + P + Q, g = X + Y , h = Z + T

Up to renaming the terms of f , the following system must have a
solution:

XZ = M, XT = P, YZ = N and YT = Q.

This implies that M/P = N/Q holds. Then, one can check that
(

g, g′,
M
g

,
N
g′

)

is a solution for (X , Y , Z , T ), where g = gcd(M, P) and g′ = gcd(N, Q).
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typical output of various optimization tools

Functional decomposition

Let f (~x), h1(~x), . . . , hd(~x) and g(~x) be polynomials over K . If

f (~x) = g(h1(~x), . . . , hd(~x)),

then we call g, h1, , . . . , hd a functional decomposition of f .

For univariate polynomials in “tame” case, the time bound given by
von zur Gathen3 is O(n log2 n log log n), O(n log2 n) if F supports
an FFT.

Given a monic n variable polynomial f ∈ K[X ] of total degree d
and and r ∈ N, Dickerson4 shows how to find a monic g ∈ K[X ] of
total degree r and monic h ∈ K[X ] of degree s = d/r such that
f = g ◦ h. The computation requires O(d3n) field operations.

3Functional decomposition of polynomials: the tame case. J. Symb. Comput.,
1990.

4Polynomial Decomposition Algorithms for Multivariate Polynomial, Cornell
University, Technical Report 87-826, 1987.
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typical output of various optimization tools

Polynomial factorization

A nonconstant polynomial f ∈ Fq[x ], where q is an odd prime
power can be reduced to monic irreducible factors and their
multiplicities in O (̃n2 log q) arithmetic operations in Fq

5 .

A non-zero polynomial f ∈ Q[x ] of degree n ≥ 1 can be factorized
into irreducibie factors in O (n12 + n9(log(|f |))3) bit operations 6,
where

|
∑

i

aix
i | = (

∑

i

a2
i )

1/2.

5Modern Computer Algebra.
6Factoring polynomials with rational coefficients, A. K. Lenstra, H. W. Lenstra, Jr.,

and L. Lovász, 1982.
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typical output of various optimization tools

Coefficients solving of candidate syntactic factorization

Proposition

Let F1, F2, . . . , Fc be the monomials and f1, f2, . . . , fc be the coefficients
of a polynomial f ∈ K[X ], such that f =

∑c
i=1fiFi . Let a, b > 0 be two

integers such that c = ab. Suppose we are given two lists monomials
G = {G1, G2, . . . , Ga} and H = {H1, H2, . . . , Hb} such that the products
GiHj are all in mons(f ) and are pairwise different. Then, within O(c)
operations in K and O(nc log c) bit operations, one can decide whether
f = g ⊙ h, mons(g) = G and mons(h) = H all hold. Moreover, if such a
syntactic factorization exists it can be computed within the same time
bound.
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typical output of various optimization tools

Code generation challenge

The following figure illustrates the typical sizes (the generic resultant
with m = n = 6) of the source files, object files and executable files
generated from the four methods. The first data row shows the number
of lines in each SLP.

Input SD SD+CSE 4-schedule
#line 319091 121463 24820 24820
src 16 MB 6MB 1MB 1MB
obj 22 MB 9MB 2MB 2MB
exe 16 MB 6MB 2MB 2MB

Figure: file sizes of different methods

The gcc 4.2.4 compiler takes 3-4 minutes to compile a file of size 1MB
and more than 4 hours to compile a file of size 12MB. For such large
file, the memory usage goes up to 100%. We have to divide a large file
into many small files in order to compile it.
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typical output of various optimization tools

Evaluation schedule of generic resultants

m and n: degree of two polynomials
T : the number of operations in syntactic decomposition
#CS : the number of operations in common subexpressions
T ′ : the number of operations got scheduled

m n T #CS T ′ 4-schedule
6 5 8510 1455 7030 1760, 1761, 1755, 1754
6 6 24820 4491 20294 5082, 5069, 5072, 5071
7 5 19293 3169 16073 4029, 4012, 4017, 4015
7 6 66022 11167 54792 13694, 13699, 13717, 13682
7 7 207289 35096 172073 43195, 42981, 42949, 42948
8 5 40051 6812 33186 8305, 8287, 8292, 8302
8 6 157784 28461 129217 32347, 32289, 32281, 32300
8 7 565909 103311 462395 115625, 115589, 115603, 115578
8 8 1846280 345446 1500295 375772, 374969, 374779, 374775

Figure: Parallel evaluation 4-schedule
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