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ABSTRACT
Though there is increased activity in the implementation of
asymptotically fast polynomial arithmetic, little is reported
on the details of such effort. In this paper, we discuss how we
achieve high performance in implementing some well-studied
fast algorithms for polynomial arithmetic in two high-level
programming environments, AXIOM and Aldor.

Two approaches are investigated. With Aldor we rely
only on high-level generic code, whereas with AXIOM we
endeavor to mix high-level, middle-level and low-level spe-
cialized code. We show that our implementations are satis-
factory compared with other known computer algebra sys-
tems or libraries such as Magma v2.11-2 and NTL v5.4.

Categories and Subject Descriptors:

I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation – Algebraic Algorithms

General Terms:

Algorithms, Experimentation, Performance, Theory

Keywords:

High-performance, polynomials, Axiom, Aldor.

1. INTRODUCTION
Asymptotically fast algorithms for exact polynomial and

matrix arithmetic have been known for more than forty
years. Among others, the work of Karatsuba [21], Cooley
and Tukey [6], and Strassen [27] has initiated an intense ac-
tivity in this area. Unfortunately, its impact on computer
algebra systems has been reduced until recently. One reason
was, probably, the belief that these algorithms were of very
limited practical interest. In [13] p. 132, referring to [25],
the authors state that the FFT-based univariate polynomial
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multiplication is “better than the classical method approxi-
mately when n + m ≥ 600”, where n and m are the degrees
of the input polynomials. In [22] p. 501, quoting [3], Knuth
writes “He (R. P. Brent) estimated that Strassen’s scheme
would not begin to excel over Winograd’s until n ≈ 250 and
such enormous matrices rarely occur in practice unless they
are very sparse, when other techniques apply.”

The implementation of asymptotically fast arithmetic was
not the primary concern of the early computer algebra sys-
tems, which had many other challenges to face. For in-
stance, one of the main motivations for the development of
the AXIOM computer algebra system [19] was the design
of a language where mathematical properties and algorithms
could be expressed in a natural and efficient manner. Nev-
ertheless, successful implementations of the FFT-based uni-
variate polynomial multiplication [25] and Strassen’s matrix
multiplication [2] have been reported for several decades.

In the last decade, several software for performing sym-
bolic computations have put a great deal of effort in pro-
viding outstanding performances, including successful im-
plementation of asymptotically fast arithmetic. As a result,
the general-purpose computer algebra system Magma [5]
and the Number Theory Library NTL [26, 18] have set world
records for polynomial factorization and determining orders
of elliptic curves. The book Modern Computer Algebra [12]
has also contributed to increase the general interest of the
computer algebra community for these algorithms.

As to linear algebra, in addition to Magma, let us men-
tion the C++ template library LinBox [17] for exact linear
algebra computation with dense, sparse, and structured ma-
trices over the integers and over finite fields. A cornerstone
of this library is the use of BLAS libraries such as ATLAS
to provide high-speed routines for matrices over small finite
fields, through floating-point computations [9].

Today, it is common practice to assume that a new al-
gorithm, say for GCD computations over products of fields
as in [8], can rely on asymptotically fast polynomial multi-
plication. Therefore, it is desirable not only to offer im-
plementations of asymptotically fast arithmetic, but also
programming environments for developing new such algo-
rithms. In addition, it is also a demand to achieve this goal
in the context of high-level programming languages, where



new ideas can be tested quickly and where algorithms can
be easily made generic. These are the goals of this paper,
which reports on implementation techniques for asymptot-
ically fast algorithms in two high-level programming envi-
ronments, AXIOM and Aldor. We focus on polynomial
arithmetic and our test-operations are univariate and mul-
tivariate multiplication, and computations of power series
inverses as well as GCDs for univariate polynomials.

Implementing asymptotically fast algorithms for these op-
erations in a high-level programming environment presents
several difficulties. First, compilation of high-level generic
code to machine code through middle-level, say Lisp, and
low-level, say C, may lead to a running-time overhead, with
respect to carefully hand-written C code. This may reduce
the benefit of these algorithms, since they generally involve
changes of data representation, whereas classical algorithms
work usually in a straightforward manner. Minimizing this
overhead is the motivation of our work in Aldor where
our entire code is written for univariate polynomials over an
arbitrary field supporting the FFT. Second, compiled and
optimized high-level code may not take advantage of some
hardware features. If writing architecture-aware code can be
done in C [20], this remains a challenge in a non-imperative
language like Lisp. Thus, in our second high-level program-
ming environment, namely AXIOM, we take advantage of
every component of the system, by mixing low-level code
(C and assembly code), middle-level code (Lisp) and high-
level code in the AXIOM language. We develop specialized
code for univariate and multivariate polynomials over Z/pZ

where p is a prime; we distinguish also the cases where p is
machine word size and a big integer.

Section 2 contains an overview of the features of AXIOM

and Aldor systems. In Sections 3 and 4, we discuss our
implementation techniques in the Aldor and AXIOM en-
vironments. We compare our implementation of asymptot-
ically fast algorithms with those of Magma and NTL. In
Section 5 we report on our experiments. Our generic imple-
mentations in Aldor are only, approximately, twice slower
than those of NTL for comparable operations. Our special-
ized implementation in AXIOM leads to comparable per-
formances and sometimes outperforms those of Magma and
NTL. A review of the algorithms we implemented is given
in appendix. All timings given in this article are obtained
on a bi-Pentium 4, 2.80GHz machine, with 1 Gb of RAM.

2. HIGH LEVEL PROGRAMMING
ENVIRONMENT

AXIOM and Aldor designers attempted to surmount
the challenges of providing an environment for implementing
the extremely rich relationships among mathematical struc-
tures. Hence, their design is of somewhat different direction
than that of other contemporary programming languages.
They have a two-level object model of categories and do-

mains that is similar to Interfaces and Classes in Java. They
provide a type system that allows the programmer the flexi-
bility to extend or build on existing types or create new type
categories as is usually required in algebra.

In AXIOM and Aldor, types and functions can be con-
structed and manipulated within programs dynamically like
the way values are manipulated. This makes it easy to create
generic programs in which independently developed compo-
nents are combined in many useful ways. For instance, for

a given AXIOM or Aldor ring R, the domains SUP(R) and
DUP(R), for sparse and dense univariate polynomials respec-
tively, provide exactly the same operations; that is they have
the same user interface, which is defined by the category
UnivariatePolynomialCategory(R). But, of course, the im-
plementation of the operations of SUP(R) and DUP(R) is quite
different. While SUP(R) implements polynomials with linked
lists of terms, DUP(R) implements them with arrays of coef-
ficients indexed by their degrees. This allows us to specify
a package, FFTPolynomialMultiplication(R, U), parame-
terized by R, an FFTRing, that is, a ring supporting the FFT;
and by U, a domain of UnivariatePolynomialCategory(R).

2.1 TheAldor environment
Aldor can be used both as a compiled and interpreted

language. Code optimization is however only available when
used in compiled mode. An Aldor program can be com-
piled into: stand-alone executable programs; object libraries
in native operating system formats (which can be linked
with one another, or with C or Fortran code to form ap-
plication programs); portable byte code libraries; and C or
Lisp source [16]. Code improvements by techniques such
as program specialization, cross-file procedural integration
and data structure elimination, are performed at intermedi-
ate stages of compilation [28]. This produces code that is
comparable to hand-optimized C.

2.2 TheAXIOM environment
AXIOM has both an interactive mode for user interac-

tions and a high level programming language, called SPAD,
for building library modules. In the interactive mode, users
can evaluate arithmetic expressions, declare and define vari-
ables, call library functions and define their own functions.
Programmers can also add new functions to the local AX-

IOM library. To do so, they need to integrate their code in
AXIOM type constructors.

SPAD code is translated into Common Lisp code by a
built-in compiler, then translated into C code by the GCL

compiler. Finally, GCL makes use of a native C compiler,
such as GCC, to generate machine code. Since these compil-
ers can generate fairly efficient code, programmers can con-
centrate on their mathematical algorithms and write them
in SPAD. However, to achieve higher performance, our im-
plementation also involves Lisp, C, and assembly level code.
By modifying the AXIOM makefiles, new Lisp functions can
be compiled and made available at SPAD level. Moreover,
by using the GCL system provided make-function macro,
one can add new C functions into the GCL system, then
use them at the GCL and SPAD level. Finally, assembly
code can either be inlined in C code or compiled into Lisp

images, and so available for Lisp and SPAD level as well.

2.3 Implementation Strategies
In the case of Aldor, we write optimizer-friendly and

garbage collector (GC)-friendly code without compromis-
ing the high-level nature of our implementations. Thus, we
achieve completely generic code. In the case of AXIOM,
we put additional efforts on investigating the efficiency of
the compiled code. The reasons are as follows. First, we
are curious about how exactly a compiler can optimize our
code, and what it cannot do for us. Second, our work is
largely motivated by the implementation of modular meth-
ods. High performance for these methods relies on appropri-



ately utilizing machine arithmetic as well as carefully con-
structing underlying data structures. This leads us to look
into machine-level questions, such as machine integer arith-
metic, memory hierarchy, and processor architecture. At
this level, C and assembly code is preferred. Third, we are
interested in parallel programming, which is not available at
SPAD level, but can be achieved in Lisp and C. Another
reason for our Lisp is to avoid some potential overhead.

By integrating our assembly and C functions into GCL

compiler and our Lisp code into its libraries, we are able to
extend the AXIOM system at the middle and low level. At
SPAD level we directly use these extended functionalities in
both interpreter and compiler mode.

3. IMPLEMENTATION TECHNIQUES:
THE GENERIC CASE

Our goal here is to implement algorithms with quasi-linear
time complexities in a high-level programming environment
(Aldor), without resorting to low-level techniques [11]. The
primary focus is not to outperform other implementations of
similar algorithms in other platforms, but rather to ensure
that we achieve the best in terms of space and time complex-
ities in our target environment. This work will form part of
the Aldor library.

3.1 Efficiency-critical operations inAldor

We first discuss the techniques and results of our Aldor

implementation of two efficiency-critical algorithms: Fast
Fourier Transform (FFT) and power series inversion.

FFT. We specify a FFT multiplication package that accepts
a generic polynomial type, but performs all operations on
arrays of coefficients, which are pre-allocated and released
when necessary, without using the compiler’s garbage collec-
tor. For coefficient fields of the form Z/pZ, Aldor’s opti-
mizer produces code comparable to hand-optimized C code.

Power series inversion. We implemented two versions of
the power series inversion algorithm. The “naive” version
implemented the algorithm as is; then we implemented a
space-efficient version, using the following ideas:

• We pre-determine all array sizes and pre-allocate all needed
buffers, so that there is no memory allocation in the loop.

• Even though we accept a generic polynomial type, we
change the data representation to arrays of coefficients, work
only with these arrays, and reuse DFT’s as much as possible.

• As in NTL, we use wrapped convolution to compute the
n middle coefficients of a (2n − 1) × n full product (this is
the middle-product operation of [14]).

Figure 1 shows the runtimes of our two implementations,
together with the time for a single multiplication, in a field
of the form Z/pZ. We measured the maximum Resident Set
Size; Figure 2 shows that the naive version used a total of
over 16000 Kb to invert a polynomial of degree 8000 while
the space efficient version used less than 2500 Kb for the
same polynomial. For higher degrees, the factor is larger.
We first give the source code of the naive version:

modularInversion(f:U,n:Z):U == {
assert(one?(trailingCoefficient(f)));

local m,g0,g__old,g__new,mi:U;
m: == monom;

g0:U:=1; g__old:U:=1; g__new:U:=1;
local r,mii:MI;

if PowerOfTwo?(n) then r := length(n)-1;
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else r := length(n);

for i in 1..r repeat {

mi := m^(2^i);
g__new := (2*(g__old)-(f*((g__old)*(g__old)))) mod mi;

g__old := g__new;
}

return (g__new);
}

Then follows the source code of the efficient version.

macro {
U == DenseUnivariatePolynomial(K:Field);

Z == AldorInteger;
}
fastModInverse(f:U,n:Z):U == {

import from Z,MI;
local dftf,dftg,Y,G,workspace,dftw,op,coeff:AK;

local di__1,di,r,mii:MI; local res:U; local wi:K;

if PowerOfTwo?(n) then r := length(n)-1;

else r := length(n);
nn:MI := shift(1,r); -- 2^r

– allocate storage

dftg := new(nn,0$K);
Y := new(nn,0$K);

G := new(nn,0$K);
workspace := new(nn,0$K);

op := new(nn,0$K);



– stores gi−1

G.0 := 1$K;
dftg.0 := 1$K;

– stores truncated f

coeff := new(nn,0$K);
dftf := new(nn,0$K);

dftw := new(nn,0$K);
kk:MI := 0;

for k in coefficients(f) repeat {
kk = nn => break;
coeff.kk := k; kk := next(kk);

}
for i in 1..r repeat {

mii := shift(1,i); -- 2^i

– degree of gi

di := mii - 1;

w:Partial K := primitiveRootOfUnity(mii);
wi := retract(w);

– op stores OmegaPowers up to mii

OmegaPowers!(op,wi,mii);

dftg := dft!(dftg,mii,i,op,workspace);

– f mod X2i
: truncates f

for j in 0..di repeat dftf.j := coeff.j;

dftf := dft!(dftf,mii,i,op,workspace);

– dftf*dftg pointwise

for j in 0..di repeat dftf.j := dftf.j*dftg.j;

dftf := idft!(dftf,mii,i,op,workspace); -- invert dft
di__1 := shift(1,i-1) - 1; -- degree of g_i_1
ndi__1 := next di__1;

– takes the end part

kk:=0;
for j in ndi__1..di repeat {

dftw.kk := dftf.j; kk:=next kk;
}

dftw := dft!(dftw,mii,i,op,workspace);
for j in 0..di repeat dftg.j := dftg.j*dftw.j;
dftg := idft!(dftg,mii,i,op,workspace);

– Xndi 1 ∗ Y : the middle product

for j in 0..di__1 repeat Y.(j+(ndi__1)) := dftg.j;
for j in ndi__1..di repeat G.j := G.j - Y.j;

– to allow dft! in-place of G, save G

for j in 0..di repeat dftg.j := G.j;

}

– convert to polynomial

res := unvectorize(dftg,nn);

free!(dftg); free!(dftf); free!(dftw); free!(workspace);
free!(op); free!(coeff);
return res;

}

3.2 Extended Euclidean Algorithm
We implemented the Half-GCD algorithms of [29] and [4],

adapted to yield monic remainders. The timings in this pa-
per are based on the adaptation of Yap’s version. Though
the algorithms are classic, we faced the difficulties on de-
termining truncation degrees already experienced by others,
see for instance [24] for the report on a variation of the in-
teger Half-GCD in Mathematica. The algorithms given in
appendix contain the changes we made.

Our implementation of Euclidean division uses power se-
ries inversion [12, Ch. 9], when the degree difference be-
tween two consecutive remainders is large enough. We used
Strassen’s algorithm [12, Ch. 13] for the 2 × 2 polynomial
matrix multiplications; we plan to use it to perform the un-
balanced matrix / vector multiplications as well. This im-
plementation outperforms the standard Euclidean algorithm
by a factor of 8 at degree 3000.

4. IMPLEMENTATION TECHNIQUES:
THE NON-GENERIC CASE

Obtaining fast implementations of algorithms over fields
of the form Z/pZ requires low-level considerations of data
structures, machine arithmetic, memory traffic, compiler op-
timization, etc [23]. In this section we discuss such tech-
niques, applied to univariate polynomial algorithms, for our
AXIOM implementation. This work will be integrated into
the AXIOM CVS repository.

4.1 Data representation
We use dense polynomials: we have in mind to implement

algorithms for solving polynomial systems, and experience
shows that the univariate polynomials appeared in such ap-
plications tend to become dense, due to the use of the Eu-
clidean algorithm, Hensel lifting techniques, etc.

Elements of the prime field Z/pZ are encoded by integers
in the range 0, . . . , p − 1, thus using a fixed number of ma-
chine words to store each number. This allows us to use
C-like arrays such as fixnum-array in Lisp to encode poly-
nomials in Z/pZ[X]. If p is small, we tell the compiler to
use machine integer arithmetic; for large p, we use the Gnu
Multiple Precision library (GMP), adapting it to handle the
arithmetic of polynomial coefficients.

Then, we accomplish such tasks as univariate polynomial
addition or multiplication in C or assembly code for higher
efficiency: we pass the arrays’ references to our low-level
code and return the result array to AXIOM.

We performed comparisons between the SUP constructor
(from the SPAD level), and UMA, our dense univariate poly-
nomials written in Lisp, C and assembly. Over a 64-bit
prime field, UMA addition of polynomials is up to 20 times
faster than SUP addition, in degree 30000; the quadratic
UMA implementation of polynomial multiplication is up to 10
times faster than SUP multiplication, in degree 5000. FFT
multiplication is discussed below.

With this data representation, we created a specialized
AXIOM univariate polynomial domain for Z/pZ. It can be
integrated into AXIOM library and used in a user-transparent
way, since AXIOM supports conditional implementation.

Similarly, we have implemented a specialized multivari-
ate polynomial domain over Z/pZ. The operations in this
domain are mostly implemented at the Lisp level which of-
fers us more flexibility (less type checking, better support
from the machine arithmetic) than at the SPAD level, where
objects are strongly-typed. We follow the vector-based ap-

proach proposed by Fateman [10] where a polynomial is ei-
ther a number or a vector: If a coefficient is a polynomial,
then the corresponding slot keeps a pointer to that polyno-
mial or, say, another vector; otherwise, if the coefficient is a
number, the slot keeps the pointer to this number.

4.2 FFT
Our implementation of FFT-based univariate polynomial

multiplication in Z/pZ[X] distinguishes the cases of small
(single-precision) primes and big (multiple-precision) primes.
For both cases, we used the algorithm of [7] and techniques
discussed in Subsection 4.3 below. However, the big prime
case requires extra efforts, since two strategies are available.
One can directly implement the DFT algorithm on big inte-
gers, by adapting the code of the small prime case to the big
prime case. Alternatively, one can use the Chinese Remain-
der Theorem (CRT) based approach, which reduces the big



prime problem into 2 or more small prime problems [26, 12].
Figure 3 shows a comparison between these approaches.

We put special effort on the big prime case, rewriting some
GMP low-level functions. Figure 3 shows that the spe-
cialized double precision big prime functions and CRT ap-
proaches are faster than the generic GMP functions. The
CRT recombination part spends a negligible 0.06% to 0.07%
percent of the time in the whole FFT algorithm.
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4.3 SSE2, loop unrolling, parallelism
Modern compilers can generate highly efficient code, but

sometimes do not provide the highest efficiency. We show
three examples of hand-tuned improvements from our FFT

implementation; timings are reported for small primes.

Single precision integer division with SSE2. The single
precision modular reduction uses floating point arithmetic,
based on the formula a ≡ a − ⌊a ∗ 1/p⌋ ∗ p [26]. We im-
plemented this idea in assembly for the Pentium IA-32 ar-
chitecture with SSE2 support. This set of instructions is
of Single Instruction Multiple Data style, since they make
use of XMM registers which pack 2 double floats or 4 single
floats/integers in one single register. The following sample
code computes (a ∗ b) mod p with SSE2 instructions.

1 movl RPTR, %edx 11 movups (%eax), %xmm0
2 movl WD1, %eax 12 cvttpd2pi %xmm2, %mm2
3 movl WPD1, %ecx 13 cvtpi2pd %mm2, %xmm2
4 movq (%edx), %mm0 14 mulpd %xmm2, %xmm0
5 movups (%eax), %xmm1 15 subpd %xmm0, %xmm1
6 cvtpi2pd %mm0, %xmm0 16 cvttpd2pi %xmm1, %mm1
7 movups (%ecx), %xmm2 17 movq %mm1, (%edx)
8 movl PD, %eax 18 emms
9 mulpd %xmm0, %xmm1 19 ret
10 mulpd %xmm0, %xmm2

Figure 4 shows that our SSE2-based FFT implementation
is significantly faster than our generic assembly version.
Reducing loops overhead. Many algorithms operating on
dense polynomials have an iterative structure. One major
overhead for such algorithms is loop indexing and loop con-
dition testing. We can reduce this by unrolling loops. This
feature is provided by some compilers, for instance by set-
ting GCC’s funroll-loops flag.

However, optimally setting the number of iterations a
compiler will unroll is subtle. There is a trade-off: unrolled
loops require less loop indexing, but they suffer from code
size growth, which will aggravate the burden of instruction
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caching. If the loop body contains branching statements,
increased number of branches in each iteration will have a
negative impact on branch prediction. Hence, compilers and
interpreters usually do static or run-time analysis to decide
how much to unroll a loop. However, the analysis may not
be precise when loops become complex and nested. More-
over, compilers are very cautious when unrolling loops, since
this may change the original program’s data dependency. In
addition, optimizing compilers usually do not check if there
is a possibility to combine unrolled statements together for
better performance. Hence, we have unrolled some loop
structures by hand, and recombined the related statements
into small assembly functions. This allows us to keep some
values in registers or evict those unwanted ones. The follow-
ing is a fragment of our implementation of the FFT-based
univariate polynomial multiplication.

#include "fftdfttab_4.h"
typedef void (* F) (long int *, long int, long int,

long int *, long int, int);

typedef void (* G) (long int *, long int *,
long int *, long int, int);

inline void
fftdftTAB_4( long int * a, long int * b, long int * w,

long int p, F f, G g1, G g2 ){

long int w0=1, w4=w[4], * w8=w+8;
f(a, w0, w4, a+2, p, 8); g2(a+4, w8, a+8, p, 4);

g2(a+12, w8, a+16, p, 4); g1(a+8, w8, a+16, p, 8);
f(b, w0, w4, b+2, p, 8); g2(b+4, w8, b+8, p, 4);

g2(b+12, w8, b+16, p, 4); g1(b+8, w8, b+16, p, 8); return;}

This function is dedicated to compute the case where n =
4 in the FFT algorithm. The functions f, g1, g2 are small
assembly functions which recombine related statements for
higher efficiency. We also developed similar functions for
the cases n = 5 to 8. However, for n ≥ 6, these straight-
line functions are less efficient than the ones using nested
loops, for the reasons discussed above. Figure 5 shows that
for small degrees, the inlined version may gain about 10%
running time. This is significant, since our experiments show
that 50% is already spent in performing integer divisions.
Parallelism. Parallelism is a fundamental technique used
to achieve high performance. In the FFT-based polynomial
multiplication, the DFT of the input polynomials are inde-
pendent, hence, they can be computed simultaneously. An-
other example is the (standard) Chinese remaindering algo-
rithm, where the computations w.r.t. each modulo can be
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performed simultaneously. This can be achieved by thread-
level parallelism. Under the Linux environment, we directly
use the native Posix Thread Library to conduct parallel pro-
gramming, since AXIOM’s compiler is not able to provide
this kind of optimization. The parallelized version of the
FFT-based multiplication is 7% to 10% faster than the non-
parallelized one on a dual CPU machine. This part of work
is still work in process; the performance is still not satisfying,
since we expect a 20–30 percent speed up.

5. PERFORMANCES

5.1 FFT multiplication
We compared our implementations with their counter-

parts in NTL and Magma. For NTL-v5.4, we used the
functions FFTMul in the classes zz_p and ZZ_p, respectively
for small and big primes. For Magma-v2.11-2, we used the
general multiplication function “*” over GF(p), the prime
field of order p. The input polynomials are randomly gener-
ated, with no zero term. Figures 6 and 7 give our timings.
Our AXIOM implementation is faster than NTL over small
primes, but slower than NTL over big primes; it is faster
than Magma and other known computer algebra systems in
both cases. One possible reason is that NTL re-arranges the
computations in a “cache-friendly” way. Our generic Aldor

implementation is comparable to Magma’s one, though gen-
erally slower in our range of degrees.

5.2 Multivariate multiplication
We compute the product of multivariate polynomials via

the Kronecker substitution (see the appendix). Recall that
we use vector-based recursive representation for multivari-
ate polynomials, and one-dimensional arrays for univariate
ones. So, the forward substitution simply copies coefficients
from the coefficient tree of a multivariate polynomial to the
coefficient array of a univariate polynomial. We use a re-
cursive depth first tree walk to compute all the univariate
polynomial exponents from the corresponding multivariate
monomials’ exponents; at the same time, according to this
correspondence we conduct the forward substitution. We
use the same idea for the backward substitution The com-
parisons between Magma and our AXIOM code are given
in Figures 8 to 10, where “degree” denotes the degree of the
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Figure 6: Multiplication modulo a 27-bit prime.
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Figure 7: Multiplication modulo a 64-bit prime.

univariate polynomials obtained through Kronecker’s sub-
stitution. We used random inputs, with no zero term.

Our FFT-based multivariate polynomial multiplication
over Z/pZ outperforms Magma’s in these cases. From Fig-
ure 8, we may infer that Magma is in the “classical multi-
plication” stage; our FFT-based implementation is already
faster. From Figures 9, 10 we observe that both our and
Magma’s FFT’s show the usual FFT staircase-like curves.

5.3 Power series inversion
We compare here our power series inversion, in the opti-

mized Aldor version, with NTL and Magma implementa-
tions. Magma offers a built-in InverseMod function (called
“builtin” in the figure), but the behavior of this generic
function is that of an extended GCD computation. We
also tested the Magma PowerSeriesRing domain inversion
(called “powerseries” in the figure), and our own implemen-
tation of the Newton iteration. Figure 11 shows the relative
performances: NTL is the fastest in this case, and Aldor

is second, within a factor of 2.

5.4 Fast Extended Euclidean Algorithm
Section 3.2 reported the relative performance between the

existing standard Euclidean algorithm in Aldor and our im-
plementation of the fast algorithm. We also compared our
generic fast algorithm with the existing implementations in
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Figure 8: Bivariate multiplication, 27-bit prime.
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Figure 9: Bivariate multiplication, 64-bit prime.

NTL and Magma. Unlike ours, the NTL implementation
is not over a generic field but over a finite field, and uses
improvements like FFT-based polynomial matrix multipli-
cation. Magma’s performance differ, according to whether
we use the GCD or XGCD commands: we report on both. Fig-
ure 12 shows the relative performances; our input were de-
gree d polynomials, with a GCD of degree d/2. Again, NTL
is the fastest and Aldor is second, within a factor of 2.

6. CONCLUSION AND FUTURE WORK
The work reported in here is the beginning of a larger

scale effort; it has raised several new objectives. Regarding
the low-level development, we are implementing the Trun-
cated Fourier Transform [15] and developing cache-friendly
code for this algorithm, using the strategies of [20]. The
GCD computation deserves low-level work as well: we wish
to develop a version making the best use of FFT, and of
techniques such as the middle product. Having in mind to
implement algorithms such as the coprime factorization al-
gorithm of [8], we still need several basic algorithms on uni-
variate and multivariate polynomials: Chinese remaindering
techniques and (sub)resultant algorithms. These tools form
the basic algorithms for a further goal, polynomial systems
solving algorithms.
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8. APPENDIX
In this section, we describe, or give references to, the basic algo-

rithms we implemented. All rings and fields are commutative with 1;
we denote by M a multiplication time function [12, Ch. 8].

A 1: Fast Fourier Transform. Let A be a ring, and n ∈ N. The
Discrete Fourier Transform (DFT) of a ∈ A[X] is the evaluation of a

at the powers 1, ω, . . . , ωn−1, where ω is a primitive nth root of unity
in A [12, Ch. 8]. When n is a power of 2, and when deg a ≤ n, the Fast
Fourier Transform, or FFT [6], performs this operation in complexity
O(n log(n)). We implemented the iterative version of the FFT given
in [7], assuming that ω is known. Hence, for rings supporting FFT,
with known primitive roots, we can take M(n) ∈ O(n log(n)).

A 2: Power series inversion. We used the algorithm for modular
inversion using Newton iteration [12, Ch. 9]. This algorithm takes

as input a polynomial (or power series) f with coefficients in a ring
A, with f(0) = 1, and an integer ℓ ∈ N, and outputs the polynomial

g ∈ A[X] such that fg ≡ 1 mod xℓ. The complexity is 3M(ℓ) + O(ℓ)
operations in A.

A 3: Half-GCD. We now discuss (extended) GCD over a field.
Let K be our base field, let a, b be in K[X], with deg b ≤ deg a,
and write d = deg a. The half-GCD algorithm [1] returns a matrix
M = Mhgcd(a, b) such that if (t, s) are defined by (t, s)T = M(a, b)T,
then we have deg t ≥ d/2 > deg s, and t and s are consecutive poly-
nomials of degrees straddling d in the Euclidean remainder sequence
associated to a and b. We implemented the following adaptation
of Yap’s [29] version of the half-GCD algorithm that yields monic
remainders. The complexity, and that of the subsequent GCD algo-
rithm, are in O(M(d) log(d)) operations in K.

Mhgcd(a,b) ==

1 d := deg(a); m := ⌈ d
2
⌉;

2 if deg(b) < m then return
`

1 0
0 1

´

3 a↑ := a quo xm

4 b↑ := b quo xm

5 M1 := Mhgcd(a↑, b↑)
6

`

t
s

´

:= M1 ( a
b )

7 if s = 0 then return M1

8 (q, r) := QuotientRemainder(t, s)
9 if r = 0 then

9.1 M2 :=
`

0 1
1 −q

´

9.2 return M2M1

10 v := LeadingCoefficient(r)−1

11 r := rv
12 M2 :=

`

0 1
v −vq

´

13 ℓ := 2m − deg(s)

14 s↑ := s quo xℓ

15 r↑ := r quo xℓ

16 M3 := Mhgcd(s↑, r↑)
17 return M3M2M1

Using the half-GCD algorithm, one deduces the GCD algorithm itself.
Taking as input a and b, with deg b ≤ deg a, it outputs the matrix M
of cofactors such that M(a, b)T equals (g, 0)T, where g is the monic
GCD of a and b.

Mgcd(a,b) ==
1 M1 := Mhgcd(a, b);
2

`

t
s

´

:= M1 ( a
b )

3 if s = 0 then return M1

4 (q, r) := QuotientRemainder(t, s)
5 if r = 0 then

5.1 M2 :=
`

0 1
1 −q

´

5.2 return M2 × M1

6 v := LeadingCoefficient(r)−1

7 M2 :=
`

0 1
v −vq

´

8 r := rv
9 M3 := Mgcd(s, r)
10 return M3M2M1

A 4: Kronecker’s substitution. Let A be a ring and let
X1, . . . , Xn be indeterminates over A. Given positive integers
α = (α1 = 1, α2, . . . , αn), we define a ring homomorphism Ψα :
A[X1, . . . , Xn] → A[X1], by letting Ψα(Xi) = X

αi
1 . This homo-

morphism is used to reduce multivariate to univariate multiplication,
as follows. Let f, g ∈ A[X1, X2, . . . , Xn] and let p = fg. For all
1 ≤ i ≤ n we let di = deg(f, Xi) + deg(g, Xi), and we define δ0 = 0
and δi =

P

i
j=1

αjdj , with αj = δj−1 + 1. We can then compute p
using the following simple algorithm:

MultivariateProduct(f,g) ==
1 uf := Ψα(f)
2 ug := Ψα(g)
3 ufg := uf ug

4 p := Ψ−1
α (ufg)

5 return p

This algorithm runs in M((d1 + 1) · · · (dn + 1)) operations in A.


