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Introduction

It is well known that symbolic computations may incur high time and space
consumption. Hence, designing and implementing high-performance algo-
rithms in this field is a challenge. Controlling expression swell and speeding
up efficiency critical routines is a clear need: This is the goal of the so-called
modular algorithms and fast arithmetic operations [4].

Modular algorithms is an active and successful research area. Fast arith-
metic operations are known since the 1960’s but very few symbolic computa-
tion software implement them until today. In fact, it was believed that they
were not relevant in practice. In the last decade, however, successtul imple-
mentations of fast arithmetic operations were realized in middle or low-level
programming languages [5,6].

Achieving high-performance with high-level programming environments is
also desirable for the working mathematician: they help reducing develop-
ment cycles and validating code; they provide important features like generic
programming. The cost of this convenience is often less efficient code.
AXIOM [2] and Aldor [1] are such environments that were designed for
expressing mathematical properties and algorithms in a powerful manner.
They are the frameworks that we have chosen to develop implementation
techniques for fast arithmetic in a high-level programming environment [3].

Main Results

We distinguished two cases: the generic case and the non-generic case; we
investigated them using Aldor and AXIOM respectively:.

The generic case: In Aldorwe developed generic code for fast algorithms,
such as Fast Fourier Transform (FFT)-based univariate polynomial multi-
plication for an arbitrary field of coefficients.

The non-generic case: In AXIOM we focused on dense polynomials
over finite fields, since they are central in modular methods.

We developed highly efficient implementation of efficiency-critical operations,
FFT-based univariate polynomial multiplication and power series inversion.
In the generic case, our code is comparable (slower by a factor be-
tween 2 and 3, see Figures |7.8]) with the best known packages, NTL |[6]
and Magma [5], which are non-generic implementations in lower-level lan-
guages (C, C++). In the non-generic case, our code is comparable, and
often better, than that of NTL and Magma, see Figures |2,7].
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Based on these, we translated from the book other fast algorithms: (1) in
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Aldor, the Fast Extended Euclidean Algorithm (Fast EFA) and the Fast
Chinese Remaindering Algorithm (Fast CRA), (2) in AXIOM, multivariate
polynomial multiplication using Kronecker’s trick. Figure [1| compares our
Aldor implementations of the Standard and Fast CRA’s. Figure [2| com-
pares our AXIOM bivariate polynomial multiplication to that of Magma.
These benchmarks illustrate the fact that we have developed a framework
for implementing fast algorithms in high-level programming environments.

Fast Polynomial Arithmetic

Fast algorithms for polynomial arithmetic are algorithms:
e for operations such as multiplication, division, GCD, CRA,
e with a running time complexity quasi-linear.

Figure [1] shows a comparison between a fast and a standard algorithm for
the CRA. Fast algorithms are challenging to implement. They usually re-
quire change of data representation (e.g. for the FFT-based multiplication)
and have large constant in their complexity estimates.
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We write optimizer-friendly and garbage collector (GC)-friendly code without
compromising the high-level nature of our implementations.

Figures [3] and |4] compare running time and memory consumption for dif-
ferent implementations of power series inversion, a critical operation in the
fast FEA [4]. On both figures, the upper curve corresponds to a direct im-
plementation, whereas the curve below corresponds to our optimized code.

The Non-Generic Case
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Obtaining fast implementations of algorithms over finite fields (such as Z/pz,
for a prime p) requires low-level considerations of data structures, machine
arithmetic, memory traflic, compiler optimization. AXIOM is an ideal envi-
ronment for a multi-level language implementation strategy:.

In Figure [5]: (1) the upper curve corresponds to classical univariate poly-
nomial multiplication (modulo a prime integer) implemented in the AXIOM
programming language (2) the lower curve is our Assembly implementation
for the same operations called from the AXIOM level.

Figure 6] shows the importance of architecture-aware implementations with

two implementations of FF'T-based multiplication: in the case of the dark

columns, SSFE2 registers are used, whereas for the white columns, we rely on
“traditional” F'PU registers.

Benchmarks

e We compared our implementations with NTL [6] and Magma [5].

e Figure |7] shows timings for the FF'T-based univariate multiplication.

e Figure |8] reports on polynomial GCD computations via the Fast EFA.
e More experiments are reported in [3].

e Further goal: a highly efficient polynomial systems solver written in a high-
level programming environment.
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