Implementation Techniques For Fast Polynomial Arithmetic In A High-level

POLYTECHNIQUE

Akpodigha Filatei!, Xin Li", Marc Moreno Mazal, and |

Programming Environment

*: LIX, Ecole polytechnique, 91128 Palaiseau, France.
7: ORCCA, University of Western Ontario, London, Canada.

CAIMS-MITACS, June, 2006.

Hric Schost™

@ Q NSERC
MITACS CRSNG

—~
Maplesoft

)

Introduction

It is well known that symbolic computations may incur high time and space
consumption. Hence, designing and implementing high-performance algo-
rithms in this field is a challenge. Controlling expression swell and speeding
up efficiency critical routines is a clear need: This is the goal of the so-called
modular algorithms and fast arithmetic operations [4].

Modular algorithms is an active and successful research area. Fast arith-
metic operations are known since the 1960’s but very few symbolic computa-
tion software implement them until today. In fact, it was believed that they
were not relevant in practice. In the last decade, however, successtul imple-
mentations of fast arithmetic operations were realized in middle or low-level
programming languages [5,6].

Achieving high-performance with high-level programming environments is
also desirable for the working mathematician: they help reducing develop-
ment cycles and validating code; they provide important features like generic
programming. The cost of this convenience is often less efficient code.
AXIOM [2] and Aldor [1] are such environments that were designed for
expressing mathematical properties and algorithms in a powerful manner.
They are the frameworks that we have chosen to develop implementation
techniques for fast arithmetic in a high-level programming environment [3].

Main Results

We distinguished two cases: the generic case and the non-generic case; we
investigated them using Aldor and AXIOM respectively:.

The generic case: In Aldorwe developed generic code for fast algorithms,
such as Fast Fourier Transform (FFT)-based univariate polynomial multi-
plication for an arbitrary field of coefficients.

The non-generic case: In AXIOM we focused on dense polynomials
over finite fields, since they are central in modular methods.

We developed highly efficient implementation of efficiency-critical operations,
FFT-based univariate polynomial multiplication and power series inversion.
In the generic case, our code is comparable (slower by a factor be-
tween 2 and 3, see Figures |7.8]) with the best known packages, NTL |[6]
and Magma [5], which are non-generic implementations in lower-level lan-
guages (C, C++). In the non-generic case, our code is comparable, and
often better, than that of NTL and Magma, see Figures |2,7].

,,,,,,,, 2

! ! ! "
SR et | | | MAGMA —
" 1.8

Q)
lllllll

Time [sec]

AXIOM —— e]

e —

e , . I

PP ISR R | N N § S S

0

Degree

Figure-1 Figure-2

Based on these, we translated from the book other fast algorithms: (1) in

| | | | |
0 2000 4000 6000 8000 10000 12000

Aldor, the Fast Extended Euclidean Algorithm (Fast EFA) and the Fast
Chinese Remaindering Algorithm (Fast CRA), (2) in AXIOM, multivariate
polynomial multiplication using Kronecker’s trick. Figure [1| compares our
Aldor implementations of the Standard and Fast CRA’s. Figure [2| com-
pares our AXIOM bivariate polynomial multiplication to that of Magma.
These benchmarks illustrate the fact that we have developed a framework
for implementing fast algorithms in high-level programming environments.

Fast Polynomial Arithmetic

Fast algorithms for polynomial arithmetic are algorithms:
e for operations such as multiplication, division, GCD, CRA,
e with a running time complexity quasi-linear.

Figure [1] shows a comparison between a fast and a standard algorithm for
the CRA. Fast algorithms are challenging to implement. They usually re-
quire change of data representation (e.g. for the FFT-based multiplication)
and have large constant in their complexity estimates.

The (Generic Case

18000
3 . . ;
_Naive - | ! | | | | |
Optimized L6000 [
25 ~ Poly Multiplication | |
11— E i i .
-6- f: 12000 |
()] N
o 1.5 B 10000
£ g | | | | | | |
el]
O e I e
o ; ‘ ‘ ; ; ; :
1K 2K 3K 4K 5K 6K 7K 8K 2000 '
Degree (K=1000) Degree (K=1000)
Figure-3 Figure-4

We write optimizer-friendly and garbage collector (GC)-friendly code without
compromising the high-level nature of our implementations.

Figures [3] and |4] compare running time and memory consumption for dif-
ferent implementations of power series inversion, a critical operation in the
fast FEA [4]. On both figures, the upper curve corresponds to a direct im-
plementation, whereas the curve below corresponds to our optimized code.

The Non-Generic Case

J
90 T T T T T T T T T 0.1 T
SUP --------- ; ; ; ; ; ; ; ; FPU C—
UMA —— f f f f f f f SSE2 EXXXXA
60 | : : : : :
§ S50 F §
= : : : : : : ! : : o : : : :
0 B i : T]]]]] 0 [>4] W_'
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 1,000 2,000 4,000 8,000 16,000 32,000
Degree Degree

Obtaining fast implementations of algorithms over finite fields (such as Z/pz,
for a prime p) requires low-level considerations of data structures, machine
arithmetic, memory traflic, compiler optimization. AXIOM is an ideal envi-
ronment for a multi-level language implementation strategy:.

In Figure [5]: (1) the upper curve corresponds to classical univariate poly-
nomial multiplication (modulo a prime integer) implemented in the AXIOM
programming language (2) the lower curve is our Assembly implementation
for the same operations called from the AXIOM level.

Figure 6] shows the importance of architecture-aware implementations with

two implementations of FF'T-based multiplication: in the case of the dark

columns, SSFE2 registers are used, whereas for the white columns, we rely on
“traditional” F'PU registers.

Benchmarks

e We compared our implementations with NTL [6] and Magma [5].

e Figure |7] shows timings for the FF'T-based univariate multiplication.

e Figure |8] reports on polynomial GCD computations via the Fast EFA.
e More experiments are reported in [3].

e Further goal: a highly efficient polynomial systems solver written in a high-
level programming environment.

0.3 T T T T T T 35
§ § § § § WAGMA XGCD
sl ALDOR
0.25 AXIOM R e NTL i
: : : : : : : 2.5
’g\ : : : . : : : 'g
': 0.15 T A TS N A - T e g | | | | | | |
=
0.05 s 0.5 [R B e B e "'“h'l'“i'l'”",,"'mnmn;'||'|1|'\l\'l1|l'l'*
| : ||3||II\I|IIIlllllils‘ll“l“l“lll”"”‘N 3 3
: RITTII L U i | | |
L 0 W Tramat AT
0 ' ' ' ' ' ' 1K 2K 3K 4K 5K 6K 7K 8K
0 5000 10000 15000 20000 25000 30000 35000 Degree (K=1000)
Degree

1] Aldor web site: http://www.aldor.org.

2] AXIOM web site: http://page.axiom-developer.org.

3] A. Filatei, X. Li, M. Moreno Maza and E. Schost, Implementation Techniques for Fast
Polynomial Arithmetic in a High-level Programming Environment, Proc. ISSAC’06, ACM
Press, 20006.

[4] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge University
Press, 1999.

[5] The Computational Algebra Group in the School of Mathematics and Statistics at the
University of Sydney, Magma, http://magma.maths.usyd.edu.au/magma/.

6] V. Shoup, NTL: A Library for doing Number Theory, http://www.shoup.net/ntl/.

