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PREFACE

In 1960 Abraham Robinson (1918–1974) solved the three hundred year old
problem of giving a rigorous development of the calculus based on infinitesi-
mals. Robinson’s achievement was one of the major mathematical advances
of the twentieth century. This is an exposition of Robinson’s infinitesimal cal-
culus at the advanced undergraduate level. It is entirely self-contained but is
keyed to the 2000 digital edition of my first year college text Elementary Cal-
culus: An Infinitesimal Approach [Keisler 2000] and the second printed edition
[Keisler 1986]. Elementary Calculus: An Infinitesimal Approach is available
free online at www.math.wisc.edu/∼Keisler/calc. This monograph can be used
as a quick introduction to the subject for mathematicians, as background ma-
terial for instructors using the book Elementary Calculus, or as a text for an
undergraduate seminar.

This is a major revision of the first edition of Foundations of Infinitesimal
Calculus [Keisler 1976], which was published as a companion to the first (1976)
edition of Elementary Calculus, and has been out of print for over twenty years.
A companion to the second (1986) edition of Elementary Calculus was never
written. The biggest changes are: (1) A new chapter on differential equations,
keyed to the corresponding new chapter in Elementary Calculus. (2) The ax-
ioms for the hyperreal number system are changed to match those in the later
editions of Elementary Calculus. (3) An account of the discovery of Kanovei
and Shelah [KS 2004] that the hyperreal number system, like the real number
system, can be built as an explicitly definable mathematical structure. Ear-
lier constructions of the hyperreal number system depended on an arbitrarily
chosen parameter such as an ultrafilter.

The basic concepts of the calculus were originally developed in the seven-
teenth and eighteenth centuries using the intuitive notion of an infinitesimal,
culminating in the work of Gottfried Leibniz (1646-1716) and Isaac Newton
(1643-1727). When the calculus was put on a rigorous basis in the nineteenth
century, infinitesimals were rejected in favor of the ε, δ approach, because
mathematicians had not yet discovered a correct treatment of infinitesimals.
Since then generations of students have been taught that infinitesimals do not
exist and should be avoided.

vii



viii Preface

The actual situation, as suggested by Leibniz and carried out by Robinson, is
that one can form the hyperreal number system by adding infinitesimals to the
real number system, and obtain a powerful new tool in analysis. The reason
Robinson’s discovery did not come sooner is that the axioms needed to describe
the hyperreal numbers are of a kind which were unfamiliar to mathematicians
until the mid-twentieth century. Robinson used methods from the branch of
mathematical logic called model theory which developed in the 1950’s.

Robinson called his method nonstandard analysis because it uses a nonstan-
dard model of analysis. The older name infinitesimal analysis is perhaps more
appropriate.

The method is surprisingly adaptable and has been applied to many areas
of pure and applied mathematics. It is also used in such fields as econom-
ics and physics as a source of mathematical models. (See, for example, the
books [AFHL 1986] and [ACH 1997]). However, the method is still seen as
controversial, and is unfamiliar to most mathematicians.

The purpose of this monograph, and of the book Elementary Calculus, is to
make infinitesimals more readily available to mathematicians and students. In-
finitesimals provided the intuition for the original development of the calculus
and should help students as they repeat this development. The book Ele-
mentary Calculus treats infinitesimal calculus at the simplest possible level,
and gives plausibility arguments instead of proofs of theorems whenever it is
appropriate. This monograph presents the subject from a more advanced view-
point and includes proofs of almost all of the theorems stated in Elementary
Calculus.

Chapters 1–14 in this monograph match the chapters in Elementary Calcu-
lus, and after each section heading the corresponding sections of Elementary
Calculus are indicated in parentheses.

In Chapter 1 the hyperreal numbers are first introduced with a set of axioms
and their algebraic structure is studied. Then in Section 1G the hyperreal
numbers are built from the real numbers. This is an optional section which is
more advanced than the rest of the chapter and is not used later. It is included
for the reader who wants to see where the hyperreal numbers come from.

Chapters 2 through 14 contain a rigorous development of infinitesimal cal-
culus based on the axioms in Chapter 1. The only prerequisites are the tra-
ditional three semesters of calculus and a certain amount of mathematical
maturity. In particular, the material is presented without using notions from
mathematical logic. We will use some elementary set-theoretic notation famil-
iar to all mathematicians, for example the function concept and the symbols
∅, A ∪B, {x ∈ A : P (x)}.

Frequently, standard results are given alternate proofs using infinitesimals.
In some cases a standard result which is beyond the scope of beginning calculus
is rephrased as a simpler infinitesimal result and used effectively in Elementary
Calculus; some examples are the Infinite Sum Theorem, and the two-variable
criterion for a global maximum.



Preface ix

The last chapter of this monograph, Chapter 15, is a bridge between the
simple treatment of infinitesimal calculus given here and the more advanced
subject of infinitesimal analysis found in the research literature. To go be-
yond infinitesimal calculus one should at least be familiar with some basic
notions from logic and model theory. Chapter 15 introduces the concept of
a nonstandard universe, explains the use of mathematical logic, superstruc-
tures, and internal and external sets, uses ultrapowers to build a nonstandard
universe, and presents uniqueness theorems for the hyperreal number systems
and nonstandard universes.

The simple set of axioms for the hyperreal number system given here (and
in Elementary Calculus) make it possible to present infinitesimal calculus at
the college freshman level, avoiding concepts from mathematical logic. It is
shown in Chapter 15 that these axioms are equivalent to Robinson’s approach.

For additional background in logic and model theory, the reader can consult
the book [CK 1990]. Section 4.4 of that book gives further results on nonstan-
dard universes. Additional background in infinitesimal analysis can be found
in the book [Goldblatt 1991].

I thank my late colleague Jon Barwise, and Keith Stroyan of the University
of Iowa, for valuable advice in preparing the First Edition of this monograph.
In the thirty years between the first and the present edition, I have benefited
from equally valuable and much appreciated advice from friends and colleagues
too numerous to recount here,





CHAPTER 1

THE HYPERREAL NUMBERS

We will assume that the reader is familiar with the real number system and
develop a new object, called a hyperreal number system. The definition of
the real numbers and the basic existence and uniqueness theorems are briefly
outlined in Section 1F, near the end of this chapter. That section also explains
some useful notions from modern algebra, such as a ring, a complete ordered
field, an ideal, and a homomorphism. If any of these terms are unfamiliar, you
should read through Section 1F. We do not require any knowledge of modern
algebra except for a modest vocabulary.

In Sections 1A–1E we introduce axioms for the hyperreal numbers and ob-
tain some first consequences of the axioms. In the optional Section 1G at the
end of this chapter we build a hyperreal number system as an ultrapower of
the real number system. This proves that there exists a structure which sat-
isfies the axioms. We conclude the chapter with the construction of Kanovei
and Shelah [KS 2004] of a hyperreal number system which is definable in set
theory. This shows that the hyperreal number system exists in the same sense
that the real number system exists.

1A. Structure of the Hyperreal Numbers (§1.4, §1.5)

In this and the next section we assume only Axioms A, B, and C below.

Axiom A
R is a complete ordered field.

Axiom B
R∗ is an ordered field extension of R.

Axiom C
R∗ has a positive infinitesimal, that is, an element ε such that 0 < ε and

ε < r for every positive r ∈ R.

In the next section we will introduce two powerful additional axioms which
are needed for our treatment of the calculus. However, the algebraic facts

1



2 1. The Hyperreal Numbers

about infinitesimals which underlie the intuitive picture of the hyperreal line
follow from Axioms A–C alone.

We call R the field of real numbers and R∗ the field of hyperreal num-
bers.

Definition 1.1. An element x ∈ R∗ is
infinitesimal if |x| < r for all positive real r;
finite if |x| < r for some real r;
infinite if |x| > r for all real r.

Two elements x, y ∈ R∗ are said to be infinitely close, x ≈ y, if x − y is
infinitesimal. (Thus x is infinitesimal if and only if x ≈ 0).

Notice that a positive infinitesimal is hyperreal but not real, and that the
only real infinitesimal is 0.

Definition 1.2. Given a hyperreal number x ∈ R∗, the monad of x is the
set

monad(x) = {y ∈ R∗ : x ≈ y}.
The galaxy of x is the set

galaxy(x) = {y ∈ R∗ : x− y is finite}.

Thus monad(0) is the set of infinitesimals and galaxy(0) is the set of finite
hyperreal numbers.

In Elementary Calculus, the pictorial device of an infinitesimal microscope is
used to illustrate part of a monad, and an infinite telescope is used to illustrate
part of an infinite galaxy. Figure 1 shows how the hyperreal line is drawn. In
Section 2B we will give a rigorous treatment of infinitesimal microscopes and
telescopes so the instructor can use them in new situations.
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We now describe the algebraic structure of R∗.
Theorem 1.3. The set galaxy(0) of finite elements is a subring of R∗, that

is, sums, differences, and products of finite elements are finite.

Proof. Suppose x and y are finite, say

|x| < r, |y| < s

where r and s are real. Then

|x+ y| < r + s, |x− y| < r + s, |xy| < rs,

so x+ y, x− y, and xy are finite. a
Corollary 1.4. Any two galaxies are either equal or disjoint.

Proof. For each x ∈ R∗, the galaxy of x is the coset of x modulo galaxy(0),

galaxy(x) = {x+ a : a ∈ galaxy(0)}.
a

Theorem 1.5. The set monad(0) of infinitesimal elements is a subring of
R∗ and an ideal in galaxy(0). That is:

(i) Sums, differences, and products of infinitesimals are infinitesimal.
(ii) The product of an infinitesimal and a finite element is infinitesimal.



4 1. The Hyperreal Numbers

Proof. Let ε, δ ≈ 0. For each positive real r, |ε| < r/2, |δ| < r/2, whence
|ε+ δ| < r, |ε− δ| < r. Hence ε+ δ and ε− δ are infinitesimal.

Let b be finite, say |b| < t, 1 ≤ t ∈ R. Then for any positive real r we have
|ε| < r/t, |εb| < (r/t)t = r. Therefore εb is infinitesimal. a

Corollary 1.6. Any two monads are equal or disjoint. The relation x ≈ y
is an equivalence relation on R∗.

Proof. For each x ∈ R∗, monad(x) is the coset of x modulo monad(0),

monad(x) = {x+ ε : ε ∈ monad(0)}.

From the definition of monad and x ≈ y we see that

x ≈ y if and only if monad(x) = monad(y),

so x ≈ y is an equivalence relation. a

Theorem 1.7. (i) x is infinite if and only if x−1 is infinitesimal.
(ii) monad(0) is a maximal ideal in galaxy(0). That is, there is no ideal I

in galaxy(0) such that monad(0) $ I $ galaxy(0).

Proof. (i) The following are equivalent:

|x| ≥ r for all positive real r.

|x−1| ≤ r−1 for all positive real r.

x−1 is infinitesimal.

(ii) Let I be an ideal containing monad(0) and let b ∈ I \ monad(0). By
(i), b−1 is not infinite since b = (b−1)−1 is not infinitesimal. Then b−1 ∈
galaxy(0), so 1 = b · (b−1) ∈ I. Then for any c ∈ galaxy(0), 1 · c = c ∈ I, so
I = galaxy(0). a

Corollary 1.8. (i) There exist negative infinitesimals in R∗.
(ii) R∗ has positive and negative infinite elements.

Proof. Axiom C says that there exists a positive infinitesimal ε. The
elements −ε, 1/ε, and −1/ε are respectively negative infinitesimal, positive
infinite, and negative infinite. a

Actually, one can go on to show that there are infinitely many infinitesimals
and infinitely many galaxies in R∗. Moreover, each galaxy is partitioned into
infinitely many monads. Each monad has a complicated structure; for exam-
ple, the mapping H 7→ x + (H−1) maps the infinite elements of R∗ one-one
onto monad(x) \ {x}.

We caution the reader that monad(0) is an ideal in galaxy(0) but is only a
subring, not an ideal, in R∗. In other words, the product of an infinitesimal
and an infinite element need not be infinitesimal. In fact, given a positive
infinitesimal ε, we see that
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ε2 · 1/ε is infinitesimal,
ε · 1/ε is finite but not infinitesimal,
ε · 1/ε2 is infinite.

This corresponds to the intuitive principle that 0 · ∞ is an “indeterminate
form”.

1B. Standard Parts (§1.6)

We now state and prove the Standard Part Principle. This is the first place
where we use the fact that the real numbers are complete. This principle
was stated without proof in §1.6 of Elementary Calculus, but a proof was
given in the Epilogue. It was often used in Elementary Calculus instead of
the Completeness Property, which made some concepts more accessible to
beginning students.

Theorem 1.9. (Standard Part Principle) Every finite x ∈ R∗ is infinitely
close to a unique real number r ∈ R. That is, every finite monad contains a
unique real number.

Proof. Let x ∈ R∗ be finite.
Uniqueness: Suppose r and s are real and r ≈ x, s ≈ x. Since ≈ is an

equivalence relation we have r ≈ s, whence r − s ≈ 0. But r − s is real, so
r − s = 0 and r = s.

Existence: Let X = {s ∈ R : s < x}. X is nonempty and has an upper
bound because there is a positive real number r such that |x| < r, whence
−r < x < r, so −r ∈ X and r is an upper bound of X. By Axiom A, R is
a complete ordered field, so the set X has a least upper bound t. For every
positive real r we have

x ≤ t+ r, x− t ≤ r
and

t− r ≤ x, −(x− t) ≤ r.
It follows that x− t ≈ 0, so x ≈ t. a

Definition 1.10. Given a finite x ∈ R∗, the unique real r ≈ x is called the
standard part of x, in symbols r = st(x). If x is infinite, st(x) is undefined.

Corollary 1.11. Let x and y be finite.
(i) x ≈ y if and only if st(x) = st(y).
(ii) x ≈ st(x).
(iii) If r ∈ R then st(r) = r.
(iv) If x ≤ y then st(x) ≤ st(y).

Proof. (iv) We have

x = st(x) + ε, y = st(y) + δ
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for some infinitesimal ε and δ. Assume x ≤ y. Then

st(x) + ε ≤ st(y) + δ,

st(x) ≤ st(y) + (δ − ε).
For any positive real r,

δ − ε < r,

st(x) < st(y) + r,

and therefore
st(x) ≤ st(y).

a

The next theorem gives the basic algebraic rules for standard parts.

Theorem 1.12. The standard part function is a homomorphism of the ring
galaxy(0) onto the field of real numbers. That is, for finite x and y,

(i) st(x+ y) = st(x) + st(y),
(ii) st(x− y) = st(x)− st(y),
(iii) st(xy) = st(x)st(y).

Proof. Let x = r + ε, y = s + δ where r = st(x), s = st(y). Then ε and δ
are infinitesimal.

(i)

st(x+ y) = st((r + ε) + (s+ δ))

= st((r + s) + (ε+ δ))

= r + s.

(ii) Similar to (i).
(iii)

st(xy) = st((r + ε)(s+ δ))

= st(rs+ rδ + sε+ εδ))

= rs,

since rδ + sε+ εδ is infinitesimal.
Thus st(·) is a homomorphism of galaxy(0) into R. It is obviously onto R,

because for r ∈ R, st(r) = r. a
Corollary 1.13. Let x and y be finite.
(i) If st(y) 6= 0 then st(x/y) = st(x)/st(y).

(ii) If x ≥ 0 and y = n
√
x then st(y) = n

√
st(x).

Proof. (i) This follows from the computation

st(x) = st((x/y) · y) = st(x/y) · st(y).

(ii) We have yn = x and y ≥ 0. Taking standard parts,

st(x) = st(yn) = (st(y))n,

and st(y) ≥ 0, so st(y) = n
√

st(x). a
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1C. Axioms for the Hyperreal Numbers (§Epilogue)

The properties of a hyperreal number system are given by five axioms. The
first three of these axioms were stated in Section 1A. Before giving a precise
statement of the remaining two axioms, we describe the intuitive idea. The
real and hyperreal numbers are related by a ∗ mapping such that:

(1) With each relation X on R there is a corresponding relation X∗ on R∗,
called the natural extension of X.

(2) The relations on R have the same “elementary properties” as their nat-
ural extensions on R∗.

The difficulty in making (2) precise is that we must explain exactly what an
“elementary property” is. The properties “X ⊆ Y ”, “X is a function”, and
“X is a symmetric binary relation” are elementary. On the other hand, the
Archimedean Property and the Completeness Property must not be elemen-
tary, because no proper extension of R is an Archimedean or complete ordered
field. In most expositions of the subject an “elementary property” is taken to
be any sentence in first order logic. However, it is not appropriate to begin
a calculus course by explaining first order logic to the students because they
have not yet been exposed to the right sort of examples. It is better to learn
calculus first, and at some later time use the ε, δ conditions from calculus as
meaningful examples of sentences in first order logic. Fortunately, the notion
of a sentence of first order logic is not necessary at all in stating the axioms. It
turns out that a simpler concept which is within the experience of beginning
students is sufficient. This is the concept of a (finite) system of equations and
inequalities. We shall see in Chapter 15 at the end of this monograph that we
get equivalent sets of axioms using either the simple concept of a system of
equations and inequalities or the more sophisticated concept of a sentence of
first order logic.

The main objects of study in elementary calculus are partial functions of n
real variables. Our plan is to have an axiom corresponding to (1) above but
for partial functions instead of relations, and then an axiom corresponding to
(2) above where an “elementary property” means a system of equations and
inequalities in these functions.

In the next few paragraphs we will explain exactly what is meant by a system
of equations and inequalities.
Rn denotes the set of all n-tuples of elements of R. A real function of n

variables is a mapping f from a subset of Rn into R.
The letters x, y, z, . . . are called variables. We think of them as varying

over the set R of real numbers. A real number c ∈ R is also called a real
constant. Expressions built up from variables and constants by applying real
functions are called terms. For example,

x, c, x+ c, f(x), g(c, x, f(y))
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are terms. Here is a precise definition of a term.
A term is an expression which can be built up using the following rules:

• Every variable is a term.
• Every real constant is a term.
• If τ1, . . . , τn are terms and f is a real function of n variables, then
f(τ1, . . . , τn) is a term.

A term which contains no variables is called a constant term. A constant
term is either undefined or has value equal to some real number. In particular,
f(c) is undefined if c is not in the domain of f , and has value d if f(c) = d.
The value of a constant term is computed step by step; thus the value of

g(f(5) + 3, f(f(2)))

is computed by first computing f(5), then f(5) + 3, then f(2), then f(f(2)),
and then g(f(5) + 3, f(f(2))). If at any stage in the computation we reach an
undefined part, the whole constant term is considered to be undefined. For
example, since

√
−6 is undefined in the reals, the constant terms

√
−6−

√
−6

and
√
−6 ·

√
−6 are also undefined in the reals (if we were working over the

complex numbers, these terms would be defined and have real values 0 and −6
respectively, but in this monograph we will always be working over the reals.)

By an equation we mean an expression σ = τ where σ and τ are terms.
By an inequality we mean an expression of one of the forms

σ ≤ τ, σ < τ, σ 6= τ

where σ and τ are terms. By a formula we mean an equation or inequality
between two terms, or a statement or the form “τ is defined” or of the form
“τ is undefined”. A system of formulas is a nonempty finite set of formulas.

The last notion we need is that of a solution of a system of formulas. Con-
sider a system S of formulas whose variables are x1, . . . , xn. By a real solu-
tion of S we mean an n-tuple (c1, . . . , cn) of real constants such that when
the xi are replaced by ci in S, each term within an equation or inequality in
S is defined, and each formula in S is true.

The notion of a system of formulas is easily motivated in an elementary
calculus course, because the first step in solving a “story problem” is to set
the problem up as a system of formulas.

The statements of the forms “τ is defined” and “τ is undefined” are allowed
for convenience, but they are not really needed because one can always use
an equation to say that a term is defined or is undefined. To see this, let
τ(x1, . . . , xn) be a term with the variables x1, . . . , xn. Now let g(x1, . . . , xn)
be the real function such that for each n-tuple of real constants (c1, . . . , cn),

g(c1, . . . , cn) =

{
1, if τ(c1, . . . , cn) is defined,

0, if τ(c1, . . . , cn) is undefined.
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Then τ(c1, . . . , cn) is defined if and only if (c1, . . . , cn) is a solution of the equa-
tion g(x1, . . . , xn) = 1, and τ(c1, . . . , cn) is undefined if and only if (c1, . . . , cn)
is a solution of the equation g(x1, . . . , xn) = 0.

The following axioms describe a hyperreal number system as a triple (∗,R,R∗),
where R is called the field of real numbers, R∗ the field of hyperreal num-
bers, and ∗ the natural extension mapping.

Axiom A
R is a complete ordered field.

Axiom B
R∗ is an ordered field extension of R.

Axiom C
R∗ has a positive infinitesimal.

Axiom D (Function Axiom)
For each real function f of n variables there is a corresponding hyperreal

function f∗ of n variables, called the natural extension of f . The field
operations of R∗ are the natural extensions of the field operations of R.

By a hyperreal solution of a system of formulas S with the variables
x1, . . . , xn we mean an n-tuple (c1, . . . , cn) of hyperreal numbers such that
all the formulas in S are true when each function is replaced by its natural
extension and each xi is replaced by ci.

Axiom E (Transfer Axiom)
Given two systems of formulas S, T with the same variables, if every real

solution of S is a solution of T , then every hyperreal solution of S is a solution
of T .

1D. Consequences of the Transfer Axiom

The Transfer Axiom E is much more powerful than it looks. We will post-
pone a full explanation of its scope to Chapter 15 at the end of this monograph,
because this explanation requires notions from logic. In this section, will give
some easy but general consequences of the Transfer Axiom which will facilitate
our development of the calculus.

Our first corollary shows that the Transfer Axiom still holds if T has fewer
variables than S. If T has variables x1, . . . , xk, we say that a tuple
(c1, . . . , ck, . . . , cn) contains a solution of T if (c1, . . . , ck) is a solution of
T .
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Corollary 1.14. Given two systems of formulas S, T such that the vari-
ables in T form a subset of the variables in S. If every real solution of S
contains a solution of T , then every hyperreal solution of S contains a solu-
tion of T .

Proof. Let the variables of S be x1, . . . , xn. Form the system of formulas
T ′ by adding to T the trivial equations x1 = x1, . . . , xn = xn. T ′ has the
same meaning as T but has the same variables as S. Every real solution
of S is a solution of T ′ because it contains a solution of T . By Transfer,
every hyperreal solution of S is a hyperreal solution of T ′, and thus contains
a hyperreal solution of T . a

Corollary 1.15. Any two systems of formulas with the same variables
which have the same real solutions have the same hyperreal solutions. (This
was called the Solution Axiom in the 1976 edition).

Proof. Suppose S and T are systems of formulas with the same real so-
lutions. Then every real solution of S is a solution of T . By Transfer, every
hyperreal solution of S is a solution of T . Similarly, every hyperreal solution
of T is a solution of S. a

Often a real function f is defined by a rule of the form

f(x1, . . . , xn) = y if and only if S

where S is a system of formulas with the same variables. If a real function
f is defined by a rule of this kind, then by the above theorem, the natural
extension f∗ is defined by the same rule applied to the hyperreal numbers.

For example, the square root function on the reals is defined by the rule
√
x = y if and only if {y2 = x, 0 ≤ y}.

By Transfer, the natural extension of the square root function is defined by
the same rule where x and y vary over the hyperreal numbers.

Corollary 1.16. (i) If a system S of formulas is true for all real numbers,
it is also true for all hyperreal numbers.

(ii) If a system of formulas has no real solutions, it has no hyperreal solu-
tions.

Proof. (i) Let S have the variables x1, . . . , xn and let T be the system of
equation x1 = x1, . . . , xn = xn. Since S is true for all real numbers, S has
the same real solutions as T . By Corollary 1.15, S has the same hyperreal
solutions as T , and therefore S is true for all hyperreal numbers.

(ii) The proof is similar but uses the inequality xi 6= xi instead of the
equation xi = xi. a

Corollary 1.17. Let f be a real function of n variables and let c1, . . . , cn
be real constants. If f(c1, . . . , cn) is defined then f∗(c1, . . . , cn) = f(c1, . . . , cn).
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Proof. Let f(c1, . . . , cn) = c. The system of formulas

f(c1, . . . , cn) = c, x = x

is true for all real numbers x. By Corollary 1.16 it is true for all hyperreal
numbers. Therefore f∗(c1, . . . , cn) = c. a

From now on, we will usually drop the asterisk on the natural extension f∗

and write f(c1, . . . , cn) for the value of f∗ at (c1, . . . , cn), whether the ci’s are
real or hyperreal. By Corollary 1.17, this will cause no trouble. Occasionally,
we will still put in the asterisk if we wish to call attention to the fact that we
are working with the natural extension rather than the original real function.

The axioms in Elementary Calculus were stated in a more leisurely way that
avoided the phrase “ordered field”. Axioms A, C, D, and E are the same in
Elementary Calculus as here. But instead of Axiom B, Elementary Calculus
had the weaker axiom that R∗ is an extension of R and the relation <∗ satisfies
the Transitive Law

a <∗ b and b <∗ c implies a <∗ c

and the Trichotomy Law, which says that forall a, b, c ∈ R∗, exactly one of

a <∗ b, a = b, b <∗ a

holds. We will now use the Transfer Axiom to show that the axioms in Ele-
mentary Calculus are equivalent to the present Axioms A—E.

Proposition 1.18. Assume Axioms A, C, D, E, and also that R∗ with the
relation <∗ and the functions +,−, ·,−1 is an extension of R which satisfies
the Trichotomy Law. Then R∗ is an ordered field, so Axiom B holds.

Proof. First, observe that the proof of Corollary 1.16 did not use Axiom
B, so it follows from the remaining axioms. By definition, an ordered field is
a structure with a relation ≤ and operations +,−, ·,−1 that satisfies the laws
stated Section 1E. Each of the laws for a field is an equation, except for the
inequality 0 6= 1. Since R is a field by Axiom A, each of these laws is true for
R. By Corollary 1.16, each of these laws is true for R∗, so R∗ is a field. Except
for the Trichotomy Law, each of the order laws is of the form “if S then T”
where S, T are systems of formulas. For example, the Sum Law says that if
a < b and c = c then a+ c < b+ c. Since R is an ordered field, these laws are
true for R. By Transfer, these laws are also true for R∗. By hypothesis, the
Trichotomy Law is also true for R∗. Therefore R∗ is an ordered field. a

Hereafter, we will usually leave out the stars on the hyperreal order relations
<∗,≤∗ in a system of formulas.

The next theorem extends the Transfer Axiom to the case where the system
of formulas T has more variables than S. It will be used frequently in this
monograph, and gives a way to show that a hyperreal number with a certain
property exists.
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Definition 1.19. Let T be a system of formulas with variables
x1, . . . , xk, . . . , xn. A partial real solution of T is a k-tuple (c1, . . . , ck) of
real constants which can be extended to a real solution (c1, . . . , ck, . . . , cn) of
T . A partial hyperreal solution is defined similarly.

Theorem 1.20. (Partial Solution Theorem) Let S be a system of formulas
with the variables x1, . . . , xk and T a system of formulas with the variables
x1, . . . , xk, . . . , xn. The following are equivalent.

(i) Every real solution of S is a partial real solution of T .
(ii) Every real solution of S is a partial hyperreal solution of T .
(iii) Every hyperreal solution of S is a partial hyperreal solution of T .

Proof. We prove (i) ⇒ (iii) ⇒ (ii) ⇒ (i). To simplify notation let S have
the single variable x and T have the two variables x, y.

Assume (i). For each real solution x0 of S choose a real number y0 = f(x0)
such that (x0, y0) is a real solution of T . Then

Every real solution of S is a solution of “f(x) is defined”.(1)

Every real solution of S ∪ {y = f(x)} is a solution of T.(2)

By Transfer, (1) and (2) also hold for the hyperreal numbers. Let x1 be a
hyperreal solution of S. By (1), f(x1) is defined; let y1 = f(x1). By (2),
(x1, y1) is a hyperreal solution of T . Thus x1 is a partial hyperreal solution of
T . This shows that (i) implies (iii).

(iii) trivially implies (ii). Assume (ii), and let x0 be a real solution of S.
Suppose x0 is not a partial real solution of T . Let T (x0, y) be the system of
formulas obtained by replacing the variable x by the constant x0 in T . Then
T (x0, y) has no real solutions. By Corollary 1.16, T (x0, y) has no hyperreal
solutions. But then x0 is not a partial hyperreal solution of T , contradicting
our assumption (ii). We conclude that x0 is a partial real solution if T , so (ii)
implies (i). a

In the nonstandard approach to calculus, the Completeness Property of the
real numbers is seldom used directly. It is always possible, and usually easier,
to use the Standard Part Principle (Theorem 1.9) instead. This is explained by
the following theorem, which shows that in the presence of the other axioms,
the Completeness Property can be replaced by the Standard Part Principle
and the Archimedean Property.

The set of natural numbers (non-negative integers) is denoted by N. An
ordered field F is said to have the Archimedean Property if every element
of F is less than some natural number. Equivalently, the set N of natural
numbers has no upper bound in F .

Lemma 1.21. In any ordered field F , the set N of natural numbers does not
have a least upper bound.
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Proof. Suppose x is an upper bound of N. Then for any y ∈ N we have
y+ 1 ∈ N, so y+ 1 ≤ x and hence y ≤ x− 1. Therefore x− 1 is also an upper
bound of N. By the order laws we have x−1 < x, so x cannot be a least upper
bound of N. a

Corollary 1.22. Every complete ordered field has the Archimedean Prop-
erty.

Proof. In a complete ordered field, N cannot have an upper bound because,
by the preceding lemma, N does not have a least upper bound. a

Corollary 1.23. The ordered field R∗ of hyperreal numbers does not have
the Archimedean Property.

Proof. By Corollary 1.8, R∗ has a positive infinite element H. By defi-
nition, H is an upper bound of R and N ⊆ R, so H is an upper bound of
N. a

Theorem 1.24. Assume Axioms B, C, D, E, the Standard Part Principle
1.9, and that R is an ordered field with the Archimedean Property. Then R
has the Completeness Property, so Axiom A holds.

Proof. First observe that Axiom A was not used in the proof of the Partial
Solution Theorem, so this theorem follows from the remaining Axioms B, C,
D, and E. Let X be a nonempty subset of R with an upper bound. Let f be
the function

f(y) =

{
1, if y is an upper bound of X,

0, otherwise.

We will find a real number b such that f(x) = 0 for all real x < b, and
f(y) = 1 for all real y > b. Since X is nonempty and has an upper bound,
there are real numbers a, c with

a < c, f(a) = 0, f(c) = 1.

Let t be any positive real number and consider the points

a, a+ t, a+ 2t, . . . , a+ nt, . . . .

By the Archimedean Principle there is an n such that (c − a)/t < n. Then
c < a+nt. Since f(c) = 1, c is an upper bound of X. Then a+nt is an upper
bound of X, so f(a + nt) = 1. Therefore there is a least positive integer n0
such that f(a+ n0t) = 1. Hence

f(a+ n0t− t) = 0, f(a+ n0t) = 1.

Then c is an upper bound of X but a+ n0t− t is not, so

a− t ≤ a+ n0t− t < c

and thus

a ≤ a+ n0t < c+ t.
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Taking u = a+ n0t, we see that every real solution of

0 < t(3)

is a partial real solution of

f(u− t) = 0, f(u) = 1, a ≤ u < c+ t.(4)

Let t1 be positive infinitesimal. Then t1 is a hyperreal solution of (3). By
the Partial Solution Theorem, t1 is a partial hyperreal solution of (4). So there
is a hyperreal number u1 with

f(u1 − t1) = 0, f(u1) = 1, a ≤ u1 ≤ c+ t1.

Then u1 is finite. By the Standard Part Principle, u1 has a standard part
b = st(u1).

We show that for any real x < b and y > b, f(x) = 0 and f(y) = 1. Every
real solution of

x < z, f(z) = 0(5)

contains a solution of

f(x) = 0.(6)

By Corollary 1.14, every hyperreal solution of (5) contains a solution of (6).
Since f(u1− t1) = 0, f(x1) = 0 for all hyperreal x1 < u1− t1. In particular, if
x is real and x < b = st(u1), then x < u1− t1 so f(x) = 0. A similar argument
shows that f(y) = 1 for all real y > b. It follows that b is the least upper
bound of X. a

1E. Natural Extensions of Sets

Our axioms provide a natural extension f∗ of each real function f . We now
define the natural extension of a set of reals. Later on we will extend our
discussion to relations on the reals.

Definition 1.25. Let Y be a set of reals, Y ⊆ R, and let CY be the char-
acteristic function of Y , defined by

CY (x) =

{
1 if x ∈ Y,
0 if x /∈ Y.

The natural extension of Y is the set

Y ∗ = {x ∈ R∗ : CY (x) = 1}.

Proposition 1.26. For any set Y of reals, the natural extension Y ∗ is the
unique set of hyperreal numbers such that every system of formulas which has
Y as its set of real solutions has Y ∗ as its set of hyperreal solutions.
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Proof. It is clear that there is at most one such set. Suppose a system of
formulas S has Y as its set of real solutions. Then S has the same set of real
solutions as the equation CY (x) = 1. By Corollary 1.15, S has the same set
of hyperreal solutions as CY (x) = 1, which by definition is the set Y ∗. a

Given a term τ and a set Y ⊆ R, we will sometimes write τ ∈ Y for the
formula CY (τ) = 1, and τ /∈ Y for the formula CY (τ) = 0.

Examples Since [a, b] = {x ∈ R : a ≤ x, x ≤ b}, we have

[a, b]∗ = {x ∈ R∗ : a ≤ x, x ≤ b}.
Since (a, b) = {x ∈ R : a < x, x < b}, we have

(a, b)∗ = {x ∈ R∗ : a < x, x < b}.

Proposition 1.27. Let X,Y ⊆ R.
(i) X ⊆ X∗ and X∗ ∩ R = X.
(ii) The natural extension mapping preserves Boolean operations, i.e.,

(X ∩ Y )∗ = X∗ ∩ Y ∗,
(X ∪ Y )∗ = X∗ ∪ Y ∗,
(X \ Y )∗ = X∗ \ Y ∗,

X ⊆ Y if and only if X∗ ⊆ Y ∗.
(iii) For any real function f of one variable,

(domain(f))∗ = domain(f∗),

(range(f))∗ = range(f∗).

Proof. We prove (iii). Let X be the domain of f . Then X is the set of all
real solutions of the formula

f(x) is defined.

By Proposition 1.26, X∗ is the set of all hyperreal solutions of this formula,
which is the domain of f∗.

Let Y be the range of f . For each y ∈ Y choose a real number x = g(y)
such that f(x) = y. Then Y is the set of all real solutions of the equation

f(g(y)) = y,(7)

so by Proposition 1.26, Y ∗ is the set of all hyperreal solutions of (7). It follows
that

Y ∗ ⊆ range(f∗).

Moreover, every real solution of the equation f(x) = y contains a solution
of (7). By Corollary 1.14, every hyperreal solution of the equation f(x) = y
contains a solution of (7). Therefore

range(f∗) ⊆ Y ∗.
a
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We will now explain the connection between hyperreal numbers and topo-
logical properties of sets of reals. By a real neighborhood of a real point
x ∈ R we mean an open interval of the form

(x− r, x+ r)

where r is a positive real number. x belongs to the interior of Y if some
neighborhood of x is included in Y . An open set is a set which is equal to
its interior. x belongs to the closure of Y if every neighborhood of x meets
Y . A closed set is a set Y which is equal to its closure.

Theorem 1.28. Let c ∈ R and Y ⊆ R. Y includes a neighborhood of c (i.e.,
c is in the interior of Y ) if and only if Y ∗ includes the monad of c.

Proof. Suppose Y contains a neighborhood (c− r, c+ r) of c. Then every
real solution of

|c− x| < r

belongs to Y . By Transfer, every hyperreal solution belongs to Y ∗, and thus
the monad of c is included in Y ∗.

Now suppose Y does not contain a neighborhood of c. Then each real
solution of

x > 0(8)

is a partial real solution of

y /∈ Y, |c− y| < x.(9)

Let x1 be a positive infinitesimal. Then x1 is a hyperreal solution of (8). By
the Partial Solution Theorem 1.20, x1 is a partial hyperreal solution of (9).
Thus there is a hyperreal y1 with

y1 /∈ Y ∗, |c− y1| < x1.

Then y1 belongs to the monad of c but not to Y ∗. a

Corollary 1.29. The closure of a set Y ⊆ R of reals is equal to the set

{st(x) : x is finite and x ∈ Y ∗}.
Thus Y is closed if and only if st(x) ∈ Y for all finite x ∈ Y ∗.

Proof. Let Z = R \ Y , so Z∗ = R∗ \ Y ∗. The following are equivalent:
c ∈ closure of Y .
c /∈ interior of Z.
The monad of c is not included in Z∗.
There is an x ∈ Y ∗ such that x ≈ c.
c = st(x) for some finite x ∈ Y ∗. a

Corollary 1.30. A real function f is defined at every point of some neigh-
borhood of c if and only if f∗ is defined at every point of the monad of c.

Proof. By Theorems 1.27 (iii) and 1.28. a
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A set Y ⊆ R is bounded if Y is included in some closed real interval [a, b].

Theorem 1.31. Let Y ⊆ R. Then Y is bounded if and only if every element
of Y ∗ is finite.

Proof. If Y is bounded, Y ⊆ [a, b], then every element y ∈ Y is a solution
of

a ≤ y, y ≤ b.(10)

By Transfer, every y1 ∈ Y ∗ is a solution of (10), and hence is finite.
Now suppose Y is not bounded. Then either Y has no upper bound or no

lower bound, say Y has no upper bound. Thus each real number x is a partial
real solution of

x < y, y ∈ Y.(11)

Let x1 be a positive infinite hyperreal number. By the Partial Solution The-
orem, x1 is a partial hyperreal solution of (11), so there is a y1 such that
x1 < y1, y1 ∈ Y ∗. Thus y1 is a positive infinite element of Y ∗. a

We now extend our discussion to relations on the reals. The plane, or real
plane, is the set R2 of ordered pairs of real numbers, and the hyperreal plane
is the set (R∗)2 of ordered pairs of hyperreal numbers. In n variables we have
the real n-space Rn and the hyperreal n-space (R∗)n. By a real relation in
n variables we mean a subset of the real n-space Rn.

Definition 1.32. Let Y be a real relation in n variables. The characteristic
function of Y is the function CY defined by

CY (x1, . . . , xn) =

{
1 if (x1, . . . , xn) ∈ Y,
0 if (x1, . . . , xn) /∈ Y.

The natural extension of Y is the hyperreal relation

Y ∗ = {x ∈ (R∗)n : CY (x) = 1}.

Proposition 1.26 has the following analogue for relations.

Proposition 1.33. Let Y be a real relation in n variables. The natural
extension Y ∗ of Y is the unique subset Y ∗ ⊆ (R∗)n such that every system of
formulas which has Y as its set of real solutions has Y ∗ as its set of hyperreal
solutions.

Definition 1.34. The distance between two points

x = (x1, . . . , xn), y = (y1, . . . , yn)

of Rn or (R∗)n is defined by

|x− y| =
√

(x1 − y1)
2

+ · · ·+ (xn − yn)
2
.

A real neighborhood of a point x ∈ Rn is a set of the form

Nr(x) = {y ∈ Rn : |x− y| < r}
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where 0 < r ∈ R. A point y is infinitely close to x, in symbols y ≈ x, if
|x− y| is infinitesimal. The monad of x is defined as the set

monad(x) = {y ∈ (R∗)n : x ≈ y}.
x is finite if each xi is finite.

With the above definitions, all the results in this section hold for subsets of
the real and hyperreal n-spaces.
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1F. Appendix. Algebra of the Real Numbers

This appendix is a summary of some basic notions from algebra which leads
up to the characterization of the real number system (Theorem 1.38). The
details, and the proofs of the theorems stated in this appendix, can be found
in most undergraduate texts on modern algebra. Following the normal math-
ematical practice, we work within Zermelo-Fraenkel set theory.

(Commutative) Ring: A ring is a structure (R, 0,+,−, ·) such that 0 ∈ R,
+, · are binary functions on R, − is a unary function on R, and the following
laws hold for all a, b, c ∈ R.

Commutative Laws a+ b = b+ a, a · b = b · a
Associative Laws a+ (b+ c) = (a+ b) + c, a · (b · c) = (a · b) · c
Identity Law a+ 0 = a
Inverse Law a+ (−a) = 0
Distributive Law a · (b+ c) = a · b+ a · c

We write a− b for a+ (−b).

Subring: A subring of a ring R is a subset S of R which contains 0 and is
closed under +,−, ·. It follows that S itself is a ring.

Ideal: An ideal in a ring R is a subring I of R such that whenever a ∈ I
and r ∈ R, a · r ∈ I.

Coset: Given a ring R and a subring S, the coset of an element r ∈ R
modulo S is the set

coset(r) = {r + s : s ∈ S}.
Equivalence Relation: An equivalence relation on a set A is a binary

relation ≡ on A such that for all a, b, c ∈ A,

Reflexive Law a ≡ a
Symmetry Law a ≡ b implies b ≡ a
Transitive Law a ≡ b and b ≡ c implies a ≡ c

Proposition 1.35. If S is a subring of a ring R, then the relation a−b ∈ S
is an equivalence relation on R. Moreover,

If a− b ∈ S then coset(a) = coset(b),
If a− b /∈ S then coset(a) ∩ coset(b) = ∅.

Homomorphism: A homomorphism from a ring R into a ring S is a function
h : R→ S such that for all a, b ∈ R,

h(0) = 0, h(a+ b) = h(a) + h(b), h(−a) = −h(a), h(a · b) = h(a) · h(b).

Isomorphism: An isomorphism from a ring R to a ring S is a homomor-
phism h : R→ S such that h maps R one to one onto S.
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Field: A field is a structure (F, 0, 1,+,−, ·,−1 ) such that (F, 0,+,−, ·) is a
ring, 1 ∈ F , −1 is a function from F \ {0} into F , and the following laws hold
for all a 6= 0 in F :

Nontriviality 1 6= 0
Identity Law 1 · a = a
Inverse Law a · (a−1) = 1

Subfield: A subfield of a field F is a subset G of F which contains 0, 1 and
is closed under the functions +,−, ·,−1. It follows that G itself is a field.

Field Extension: Given a field G, a field extension of G is a field F such
that G is a subfield of F . A proper field extension of G is a field extension F
such that and F 6= G.

Ordered Field: An ordered field is a field F with a binary relation <
such that the following laws hold for all a, b, c ∈ F .

Transitive Law If a < b and b < c then a < c.
Trichotomy Law Exactly one of the relations a < b, a = b, b < a hold.
Sum Law If a < b and c = c then a+ c < b+ c.
Product Law If a < b and 0 < c then a · c < b · c.

Examples
Z, the ring of integers.
Q, the ordered field of rational numbers.
R, the ordered field of real numbers.
C, the field of complex numbers.
GF (2), the field with exactly two elements 0, 1, where 1 + 1 = 0.

Z is a subring of Q, Q is a subfield of every ordered field (including R), and
R is a subfield of C. The set of even integers is an ideal in Z. The mapping
h : Z→ GF (2) given by

h(n) =

{
0 if n is even

1 if n is odd

is a homomorphism of Z onto GF (2).

As usual, ab means a · b, a/b means a · (b−1), and a ≤ b means that either
a < b or a = b. The absolute value of a is defined by

|a| =

{
a if 0 ≤ a
−a if a < 0
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Proposition 1.36. The following algebraic rules hold in every ordered field.
a · (−b) = (−a) · b = −(a · b)
a · 0 = 0, 0 < 1
−(−a) = a, (a−1)−1 = a if a 6= 0
−(a− b) = b− a, (a/b)−1 = b/a if a, b 6= 0
| − a| = |a|, |a · b| = |a| · |b|
If a < b then −b < −a.
If 0 < a < b then 0 < b−1 < a−1.

Proposition 1.37. In an ordered field, if b, d 6= 0 then

a

b
+
c

d
=
a · d+ b · c

b · d
,

a

b
· c
d

=
a · c
b · d

Complete Ordered Field: An ordered field F is complete if every
nonempty subset X ⊆ F which has an upper bound in F has a least upper
bound in F .

Order Isomorphic: Two ordered fields F,G are order isomorphic if there
is an isomorphism h from F onto G such that for any a, b ∈ F , a < b if and
only if h(a) < h(b).

Theorem 1.38. There is a complete ordered field, and any two complete
ordered fields are order isomorphic.

This is an important theorem which shows that there is exactly one complete
ordered field up to order isomorphism. The complete ordered field is called
the field R of real numbers. The theorem has two parts, existence and
uniqueness. The uniqueness part, that any two complete ordered fields are
order isomorphic, is easy to prove. Given two complete ordered fields F and
G, one may assume that F and G have the same subfields of rational numbers.
Then the order isomorphism is the mapping h such that h(x) = y if and only
if for every rational number q, q < x if and only if q < y. It also follows that
this isomorphism is unique.

There are several well-known ways to prove the existence part, that there
exists a complete ordered field. Each of these proofs shows somewhat more;
it gives what is called a definable complete ordered field. For beginning
calculus students, this is usually done informally in pre-calculus courses, where
the real numbers are constructed by taking a positive real number to be a
natural number followed by a decimal point and an infinite sequence of decimal
digits which does not end in a sequence of 9’s. In more advanced courses this
is done more carefully in other ways, such as constructing the real numbers as
the set of equivalence classes of Cauchy sequences of rationals.

We now turn to the natural numbers. The existence of the set of natural
numbers, and the Principle of Induction, are part of the underlying set theory.
We identify natural numbers with elements of an ordered field in the usual
way.
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Natural Number: The set N = {0, 1, 2, . . . } of natural numbers in an
ordered field F is the smallest subset X of F such that 0 ∈ X, and x ∈ X
implies x+ 1 ∈ X. Thus N is the set of all elements of F formed by adding 1
to itself zero or more times.

Principle of Induction: If 0 ∈ Y , and n ∈ Y implies n + 1 ∈ Y , then
N ⊆ Y .

Corollary 1.39. Every nonempty subset of N has a least element.

Archimedean Property: An ordered field F has the Archimedean Prop-
erty if every element x ∈ F is less than some natural number n ∈ N.

We saw in Section 1D that R has the Archimedean Property but R∗ does
not. The next theorem generalizes these facts.

Theorem 1.40. An ordered field G has the Archimedean property if and
only if it is order isomorphic to a subfield of R.

Since we often refer to intervals in the real line, we review the definition and
notation here.

Interval: A real interval is a set I of real numbers such that if a, b ∈ I and
a < c < b, then c ∈ I.

It follows from the Completeness Property that every real interval is of one
of the types below:

Bounded closed intervals

[a, b] = {x : a ≤ x ≤ b}.

Bounded open intervals

(a, b) = {x : a < x < b}.

Bounded half-open intervals

[a, b), (a, b].

Unbounded open intervals

(a,∞) = {x : a < x},

(−∞, b) = {x : x < b},

(−∞,∞) = R.

Unbounded half-open intervals

[a,∞), (−∞, b].
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1G. Building the Hyperreal Numbers

This is an optional section for the reader who wants to see where the hyper-
real numbers come from. It will not be needed in the body of the monograph,
until Chapter 15 at the end (which is also optional).

The existence and uniqueness theorem for complete ordered fields, Theorem
1.38, has an analogue for the hyperreal number systems. Moreover, as discov-
ered by Kanovei and Shelah [KS 2004], there are definable hyperreal number
systems, just as there are definable complete ordered fields. In practice, this
does not matter for the calculus course, where one just uses the axioms, but
it is important for the foundations of the subject.

In this section we will first build a hyperreal number system the easy way,
using what is called an ultrapower. This does not give a definable object,
because it depends on an arbitrary choice of an ultrafilter. We will then
describe a more elaborate method, the iterated ultrapower, which does give a
definable hyperreal number system.

The uniqueness theorem for hyperreal number systems will be postponed
until the last chapter, Chapter 15. The reason for this is that to have unique-
ness one needs one more axiom in addition to Axioms A–E for the hyperreal
numbers, called the Saturation Axiom. Saturation has an appeal similar to
completeness, and is important in more advanced applications of hyperreal
numbers. But the Saturation Axiom is not needed at the beginning calculus
level, and so it was not included in our present list. For this reason we say “a
hyperreal number system” rather than “the hyperreal system”.

The Ultrapower. We will now build a hyperreal number system as an
ultrapower of the real number system. This will prove that there exists a triple
(∗,R,R∗) which satisfies Axioms A—E. We will then be able to conclude that
any statement about the real numbers which follows from the axioms is true
of the real numbers. The hyperreal numbers can be regarded as a tool which
facilitate the study of the real numbers.

Historically, ultrapowers were first applied to the natural numbers by Skolem
[Skolem 1934]. Hewitt [Hewitt 1948] studied ultrapowers of the real num-
ber field, and the ultrapower was applied to arbitrary structures by  Loś in
[ Loś 1955]. Since then ultrapowers have had a variety of applications in sev-
eral areas of mathematics.

We will use a form of the Axiom of Choice called Zorn’s Lemma. A nonempty
set X of sets is called a chain if for any two sets x, y ∈ X, either x ⊆ y or
y ⊆ x.

Zorn’s Lemma. Let Y be a nonempty set of sets such that for any chain
X ⊆ Y , the union of X belongs to Y . Then Y has a maximal element y, that
is, a set y ∈ Y such that no member of Y properly contains y.
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We begin with the definition of an ultrafilter over an infinite set I. We call
I the index set.

Definition 1.41. A filter U over I is a set of subsets of I such that:

(i) U is closed under supersets; if X ∈ U and X ⊆ Y ⊆ I then Y ∈ U .
(ii) U is closed under finite intersections; if X ∈ U and Y ∈ U then X∩Y ∈

U .
(iii) I ∈ U but ∅ /∈ U .

An ultrafilter over I is a filter U over I with the additional property that
for each X ⊆ I, exactly one of the sets X, I \X belongs to U .

A free ultrafilter is an ultrafilter U such that no finite set belongs to U .

Theorem 1.42. For every infinite set I, there exists a free ultrafilter over
I.

Proof. The set of all cofinite (complements of finite) subsets of I is a filter
over I (called the Frèchet filter). Let A be the set of all filters F over I such
that F contains all cofinite subsets of I. Then A is nonempty and A is closed
under unions of chains. By Zorn’s Lemma, A has a maximal element U (in
fact, infinitely many maximal elements). U is a filter and contains no finite set,
because U contains all cofinite sets but ∅ /∈ U . To show that U an ultrafilter,
we consider an arbitrary set X ⊆ I and prove that there is a filter V ⊇ U
which contains either X or I \X, so by maximality, X ∈ U or I \X ∈ U .

Case 1: For all Y ∈ U , X ∩ Y is infinite. X and each Y ∈ U belong to the
set

V = {Z ⊆ I : Z ⊇ X ∩ Y for some Y ∈ U}.
V is a filter over I, because V is obviously closed under supersets and finite
intersections, and the hypothesis of Case 1 guarantees that each Z ∈ V is
infinite.

Case 2: For some Y ∈ U , X∩Y is finite. Then for every W ∈ U , (I \X)∩W
is infinite, for otherwise Y ∩W ∈ U would be finite. Case 1 applies to I \X,
so the set

V = {Z ⊆ I : Z ⊇ (I \X) ∩ Y for some Y ∈ U}
is a filter over I such that V ⊆ U , I \X ∈ V . a

Hereafter we let U be a free ultrafilter over I. Let RI be the set of all
functions a : I → R. The elements a ∈ RI will be called I-sequences, and we
write ai for the value of a at an element i ∈ I..

Definition 1.43. Two I-sequences a, b in RI are said to be U-equivalent,
in symbols a =U b, if

{i : ai = bi} ∈ U.

Lemma 1.44. The relation =U is an equivalence relation on the set RI .
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Proof. The Reflexive and Symmetric Laws for =U are obvious. We prove
the Transitive Law. Assume a =U b and b =U c. Let

X = {i : ai = bi}, Y = {i : bi = ci}, Z = {i : ai = ci}.
Then X ∈ U and Y ∈ U , so X ∩Y ∈ U . But X ∩Y ⊆ Z, so Z ∈ U , and hence
a =U c. a

Our next step is to define the ultrapower
∏
U R, which will be the set R∗ of

hyperreal numbers built from U . The idea is to take the set of all U -equivalence
classes of I-sequences and modify it by replacing the U -equivalence class of a
constant I-sequence by the constant itself. This makes

∏
U R an extension of

R.

Definition 1.45. Let a be an I-sequence. If a is U -equivalent to a constant
I-sequence 〈r, r, . . . 〉 where r ∈ R, we define aU = r. Otherwise, we define aU
to be the U -equivalence class of a,

aU = {b : a =U b}.
The ultrapower of the set R modulo U is the set∏

U

R = {aU : a ∈ RI}.

Lemma 1.46. (i) R ⊆
∏
U R.

(ii) a =U b if and only if aU = bU .

Proof. (i) We have 〈r, r, . . . 〉U = r ∈ R∗ for each r ∈ R.
(ii) This follows from the fact that =U is an equivalence relation. a

Definition 1.47. The natural extension of the order relation < is the rela-
tion <∗ on

∏
U R such that for all a, b ∈ RI ,

aU <∗ bU if and only if {i : ai < bi} ∈ U.

Lemma 1.48. The relation <∗ is well-defined, that is, if a =U c and b =U d
then

{i : ai < bi} ∈ U iff {i : ci < di} ∈ U.

Proof. Suppose {i : ai < bi} ∈ U . Then

{i : ci < di} ⊇ {i : ai < bi} ∩ {i : ai = ci} ∩ {i : bi = di}.
The right side belongs to U , so the left side belongs to U , as required. a

Definition 1.49. An element x ∈
∏
U R is positive infinite if n <∗ x for

every natural number n.

Definition 1.50. A set I is countable if there is a one to one function a
from I onto N.

Lemma 1.51. Suppose the index set I is countable. Then there are positive
infinite elements in

∏
U R.
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Proof. Let a be a one to one function from I onto N. Then aU ∈
∏
U R.

However, for each n ∈ N, the set {i : n < ai} is cofinite hence belongs to U .
Therefore n <∗ aU , so aU is positive infinite. a

Definition 1.52. We use vector notation for n-tuples in the obvious way.
Let f be a real function of n variables. The natural extension of f is the
function f∗ of n variables on

∏
U R such that whenever ai, . . . , an, c ∈ RI , we

have

f∗(~aU ) = cU if and only if {i : f(~a)i = ci} ∈ U.

Lemma 1.53. For each real function f of n variables, the natural extension

f∗ is well-defined. That is, whenever ~a =U
~b and c =U d we have

{i : f(~a)i = ci} ∈ U if and only if {i : f(~b)i = di} ∈ U.

The proof is similar to that of Lemma 1.48.

Definition 1.54. The hyperreal number system built from the ultrafilter U
is the structure (∗,R,R∗) where R∗ =

∏
U R, <∗ is the natural extension of <,

and f∗ is the natural extension of f for each real function f .

Theorem 1.55. For each free ultrafilter U on a countable index set I, the
hyperreal number system (∗,R,R∗) built from U satisfies Axioms A–E.

Proof. Axiom A, that R is a complete ordered field, is satisfied by defini-
tion.

Axiom D, the Function Axiom, follows from Lemmas 1.48 and 1.53, which
show that <∗ and f∗ are well-defined.

We now prove the Transfer Axiom E. From the definition of the natural
extensions <∗ and f∗, a tuple ~x = ~aU of hyperreal numbers is a solution of an
equation or inequality S if and only if

{i : ~ai is a solution of S} ∈ U.

Since X ∩ Y ∈ U if and only if X ∈ U and Y ∈ U , it follows that this also
holds for each finite system of formulas S. Suppose every real solution of a
system of formulas S is a solution of T , and let ~x = ~aU be a hyperreal solution
of S. Then

{i : ~ai is a solution of S} ⊆ {i : ~ai is a solution of T} ∈ U,

so ~x is a solution of T . This proves the Transfer Axiom.
Axiom B says that R∗ is an ordered field extension of R. By definition,

the set R∗ is an extension of the set R, and it follows from I ∈ U that <∗ is
an extension of < and that for each real function f , f∗ is an extension of f .
Each of the ordered field axioms except for the Trichotomy Law is a statement
saying that every real solution of some system of formulas S is a solution of
T , and hence follows from the Transfer Axiom. For the Trichotomy Law, let
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x = aU and y = bU . It is easy to see from the definition of an ultrafilter that
exactly one of the sets

{i : ai < bi}, {i : ai = bi}, {i : bi < ai}

belongs to U . Therefore exactly one of

x <∗ y, x = y, y <∗ x

holds, as required.
Finally Axiom C, that R∗ has a positive infinitesimal, follows from Lemma

1.51 and the fact that in a hyperreal ordered field reciprocals of positive infinite
elements are positive infinitesimals. a

Examples of Infinitesimals. When we build a hyperreal number system
as an ultrapower, we can take the index set I to be any countable set. Let us
now take I to be the set of natural numbers N. The elements of R∗ \R are now
U -equivalence classes of sequences of reals, and we can give explicit examples
of sequences of reals whose equivalence classes are hyperreal numbers with
various properties.

Positive infinitesimals:〈
1,

1

2
,

1

3
,

1

4
, . . . ,

1

n+ 1
, . . .

〉
U〈

1,
1

2
,

1

4
,

1

8
, . . . , 2−n, . . .

〉
U

Infinite hyperintegers:

〈1, 2, 3, 4, . . . , n, . . . 〉U
〈1, 2, 6, 24, . . . , n!, . . . 〉U

Elements of the monad of π:〈
3, 3.1, 3.14, . . . ,

[10nπ]

10n
. . .

〉
U〈

π − 1, π − 1

2
, π − 1

3
, . . . , π − 1

n
, . . . ,

〉
U

The next theorem verifies these assertions.

Theorem 1.56. Let 〈a1, a2, a3, . . . 〉 be a sequence of real numbers and let
r ∈ R

(i) 〈a1, a2, a3, . . . 〉U ≈ r for every free ultrafilter U over N if and only if
limn→∞ an = r.

(ii) 〈a1, a2, a3, . . . 〉U is positive infinite for every free ultrafilter U over N if
and only if limn→∞ an =∞.
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Proof. We prove (i). First assume that limn→∞ an = r. Then for each
positive real ε, we have |an− r| < ε for all but finitely many n ∈ N, and hence

{n ∈ N : |an − r| < ε} ∈ U.
Then |aU −∗ r|∗ <∗ ε. Since ε is arbitrary, we have aU ≈ r.

Now suppose it is not the case that limn→∞ an = r. By the ε, δ condition
5.9 there is a real ε > 0 such that the set

X = {n ∈ N : |an − r| ≥ ε}
is infinite. Using the proof of Theorem 1.42 one can show that there is a free
ultrafilter U over N such that X ∈ U . Then |aU −∗ r|∗ ≥∗ ε, so aU 6≈ r. a

Here are some examples of sequences a such that the behavior of aU in R∗
depends on the ultrafilter U .

The equivalence class

〈1,−1, 1,−1, . . . , (−1)n, . . . 〉U
is equal to 1 if {n : n is even} ∈ U , and is equal to −1 if {n : n is odd} ∈ U .

The equivalence class〈
1,

1

2
, 3, 1,

1

5
, 6, 1,

1

7
, 8, . . .

〉
U

is either one, infinitesimal, or infinite, depending on which congruence class
modulo 3 belongs to U .

For each r ∈ [−1, 1] there is a free ultrafilter U over N such that

〈sin 0, sin 1, sin 2, . . . , sinn, . . . 〉U ≈ r.
The following theorem can be used to verify these examples. Its proof is

similar to the proof of Theorem 1.56.

Theorem 1.57. Let a : N→ R and r ∈ R.
(i) 〈a0, a1, a2, . . . 〉U ≈ r for some free ultrafilter U over N if and only if a

has a subsequence converging to r.
(ii) 〈a0, a1, a2, . . . 〉U is positive infinite for some free ultrafilter U over N if

and only if a has a subsequence diverging to ∞.

A Definable Hyperreal Number System. The ultrapower of the real
number system produces a hyperreal number system (∗,R,R∗) which satisfies
Axioms A–E, but which depends on a free ultrafilter U over a countable index
set I.

We will next show how to modify the ultrapower to get a hyperreal number
system which satisfies Axioms A–E and is definable in set theory. Our purpose
here is only to explain why there is a definable hyperreal system. The details
will not be needed in the rest of this monograph. For this reason, we will skip
the proofs of some lemmas along the way.
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First, we give some comments about the notion of being definable. In set
theory, we say that a set X is definable by a first order formula θ(v) if we can
prove that X is the unique set such that θ(X) holds. For example, the sets
N of natural numbers, P(N) of sets of natural numbers, and R of equivalence
classes of Cauchy sequences of rationals, are definable. A definable structure,
such as an ordered field or a hyperreal number system, can be thought of
as a structure that be described explicitly by a formula. By contrast, the
ultrapower construction gives us a nonempty class of isomorphic structures,
each depending on an ultrafilter U .

We remark that definable sets can have elements which are not definable. In
fact, there must be real numbers r ∈ R and sets of natural numbers X ∈ P(N)
which are not definable, because there are only countably many statements in
the language of set theory, but the sets R and P(N) have uncountably many
elements.

It should be no surprise that something similar happens when we build a
definable hyperreal number system. The set of all free ultrafilters over the
set N is definable, but some (and possibly every) free ultrafilter over N is not
definable. We are going to build a big but definable hyperreal number system
from the set of all free ultrafilters over N. The idea will be to amalgamate all
ultrapowers of R with index set N together into one large structure.

The starting point is a product operation on finite sequences of ultrafilters,
which can be used to amalgamate finitely many ultrapowers.

Let U, V be ultrafilters over index sets I, J . The product U ⊗ V is the set

U ⊗ V = {Z ⊆ I × J : {j : {i : 〈i, j〉 ∈ Z} ∈ U} ∈ V }.

Warning: in general, U ⊗ V will be different from V ⊗ U . The finite product
U1 ⊗ · · · ⊗ Un is defined inductively by

U1 ⊗ · · · ⊗ Un = (U1 ⊗ · · · ⊗ Un−1)⊗ Un.

Lemma 1.58. Given free ultrafilters U1, . . . , Un over index sets I1, . . . , In,
the product U1 ⊗ · · · ⊗ Un is a free ultrafilter over I1 × · · · × In.

The next ingredient is a definable function which maps a linearly ordered
set onto the set of all free ultrafilters over N. This is the key idea that was
introduced in the paper of Kanovei and Shelah [KS 2004].

To get this function we need ordinal numbers in the sense of Von Neumann.
These are defined in such a way that each ordinal number is equal to the
set of all smaller ordinals numbers. Let c be the least ordinal number whose
cardinality is the continuum 2ℵ0 , that is, the least ordinal number which can
be mapped onto the set P(N).

We define A to be the set of all functions a : c → P(N) such that range(a)
is a free ultrafilter Ua over N. The set A is nonempty because, by Theorem
1.42, free ultrafilters over N exist.
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For X,Y ∈ P(N), we write X <p Y if and only if
∑
n∈X 3−n <

∑
n∈Y 3−n.

We define the lexicographic order <A on A as follows. For a, b ∈ A, a <A b if
and only if a(α) <p b(α) where α is the least ordinal such that a(α) 6= b(α).

Lemma 1.59. <p is a linear ordering of P(N), <A is a linear ordering of
A, and {Ua : a ∈ A} is the set of all free ultrafilters over N.

We now build a whole definable family of hyperreal number systems, one
for each nonempty finite subset σ of A. Arrange σ in increasing order,

σ = {a1 <A . . . <A an}.

Let

Uσ = Ua1 ⊗ · · · ⊗ Uan
be the product of the corresponding ultrafilters, and let R(σ) be the ultrapower
of R modulo Uσ. By Theorem 1.55, the ultrapower yields a hyperreal number
system ((σ),R,R(σ)) with an order relation <(σ) and a natural extension f (σ)

for each real function f . We also put R(∅) = R where ∅ is the empty set.
For each pair of finite subsets σ ⊆ τ of A, there is a natural embedding

hστ : R(σ) → R(τ). To illustrate, we give the definition of hστ in the case that
σ = {a1 <A a3} and τ = {a1 <A a2 <A a3}. Uσ is an ultrafilter over N × N
and Uτ is an ultrafilter over N × N × N. Given an element xUσ ∈ R(σ) where
x : N× N→ R, hστ (xUσ ) is the element yUτ ∈ R(τ) such that

y(n1, n2, n3) = x(n1, n3).

In particular, hσσ is the identity map on R(σ).

Lemma 1.60. Let τ be a finite subset of A.
(i) If σ ⊆ ρ ⊆ τ then hστ is the composition hστ (x) = hρτ (hσρ(x)).

(ii) For each x ∈ R(τ), there is a unique smallest subset σ ⊆ τ such that x
is in the range of hστ .

(iii) If σ ⊆ τ then for each system of formulas S and tuple ~x in R(σ), ~x is
a solution of S in R(σ) if and only if hστ (~x) is a solution of S in R(τ).

The proofs of Lemmas 1.58 and 1.60 can be found in Section 6.5 of the book
[CK 1990].

With the above lemmas, we can now amalgamate the hyperreal fields R(σ)

into one large hyperreal field R•. The intuitive idea is to identify each element
x ∈ R(σ) with its image hστ (x) ∈ R(τ), and then take R• to be the union of
the sets R(σ). Formally, we can carry out this idea by introducing, for each
finite σ ⊆ A and x ∈ R(σ), a new object called the thread of x, defined by

hσ(x) = {(ρ, y) : ρ ⊆ σ, hρσ(y) = x} ∪ {(τ, y) : σ ⊆ τ, hστ (x) = y}.

One can easily check that

Lemma 1.61. If τ is a finite subset of A and σ ⊆ τ , then hσ is the compo-
sition hσ(x) = hτ (hστ (x)).
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We then define R• to be the set of all threads,

R• = {hσ(x) : σ ⊆ A and x ∈ R(σ)},
and define the natural extensions <• and f• in the obvious way on R•. This
gives the desired result.

Theorem 1.62. The hyperreal structure (•,R,R•) is definable and satisfies
Axioms A–E.





CHAPTER 2

DIFFERENTIATION

Permanent Assumption Throughout this monograph it will be understood
that f, g, . . . denote real functions.

We will use the hyperreal numbers as a tool to define the notions of limit,
derivative, continuity, and integral for real functions.

Section 2B contains a rigorous treatment of infinitesimal microscopes and
telescopes suggested by Keith Stroyan [Stroyan 1997]. The remaining material
in this chapter is also given in Elementary Calculus but is repeated here to
make this monograph complete.

2A. Derivatives (§2.1, §2.2)

Definition 2.1. A real number S is said to be the slope of a real function
f at a real point a if

S = st

(
f(a+4x)− f(a)

4x

)
for every nonzero infinitesimal 4x.

The derivative of a real function f is the real function f ′ such that:
f ′(x) = slope of f at x if it exists,
f ′(x) is undefined otherwise.

We will show in Chapter 5 that this definition is equivalent to the standard
definition of derivative. We say that f is differentiable at a if the slope of f
at a exists. Here are some easy consequences of the definition.

Corollary 2.2. f is differentiable at a real number a if and only if
(a) f(x) is defined for all x ≈ a, and
(b) The quotient (f(a +4x)− f(a))/4x is finite and has the same standard
part for all nonzero 4x ≈ 0.

Corollary 2.3. If f is differentiable at a real point a, then f(x) is defined
for all real x in some neighborhood of a.

Proof. By part (a) above and Corollary 1.30. a
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To take full advantage of the Leibniz notation we use independent and de-
pendent variables. We first make these notions precise. If we are given a
system of formulas which has the same solution set as the simple equation
y = f(x), we say that y is a function of x, or that y depends on x, and
we call x the independent variable and y the dependent variable. There
can also be more than one independent variable. When y depends on x, we
introduce one new independent variable 4x and two new dependent variables
4y and dy. 4y is called the increment of y and its dependence on x and
4x is given by the equation

4y = f(x+4x)− f(x).

Thus when f ′(x) exits, its value is

f ′(x) = st

(
4y
4x

)
.

We call dy the differential of y, and its dependence on x and 4x is given by

dy = f ′(x)4x,
with the understanding that dy exists only when f ′(x) exists. As usual we
write

dx = 4x,
so we have the familiar equations

dy = f ′(x) dx, f ′(x) =
dy

dx
.

Geometrically, we define the tangent line to the curve y = f(x) at a real
point (a, b) on the curve to be the line through (a, b) with slope f ′(a). Thus

4y = change in y along curve,
dy = change in y along tangent line.

Usually we will be interested in the case where 4x is infinitesimal. Remem-
ber that the increment 4y and differential dy are dependent variables which
depend on x and 4x. The next theorem shows the relationship between dy
and 4y when 4x ≈ 0.

Definition 2.4. Let 4x be a nonzero infinitesimal. We say that u and v
are infinitely close compared to 4x, in symbols

u ≈ v (compared to 4x),

if
u

4x
=

v

4x
.

The relation ≈ (compared to 4x) is obviously an equivalence relation on
the hyperreal numbers. It is closely related to the classical large and small oh
notation. In the present hyperreal setting, for each nonzero infinitesimal 4x,
we can define

O(4x) = {u : u/4x is finite},
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o(4x) = {u : u/4x is infinitesimal}.
Both O(4x) and o(4x) are ideals in galaxy(0), and

o(4x) ⊆ O(4x) ⊆ monad(0).

One can see from the definitions that

u ≈ v (compared to 4x) iff u− v ∈ o(4x).

Theorem 2.5. (Increment Theorem) Suppose x is real, y = f(x), f ′(x)
exists, and 4x is a nonzero infinitesimal. Then

4y = f ′(x)4x+ ε4x = dy + ε4x

for some infinitesimal ε. In other words,

4y ≈ dy (compared to 4x).

Proof. Take

ε− 4y
4x
− f ′(x).

Then ε ≈ 0. Multiplying by 4x,

ε4x = 4y − f ′(x)4x,

4y = f ′(x)4x+ ε4x.
a

2B. Infinitesimal Microscopes and Infinite Telescopes

In Elementary Calculus we frequently used the pictorial devices of infinites-
imal microscopes and infinite telescopes to illustrate definitions and theorems
about hyperreal numbers. The following precise definition was suggested by
Keith Stroyan [Stroyan 1997] and may help the reader to consistently apply
the device in new situations.

Given a point P (a, b) in the hyperreal plane and a positive hyperreal number
ε, the ε-disc around P is defined as the set of all hyperreal points (x, y) at
distance at most ε from P , that is,

(x− a)2 + (y − b)2 ≤ ε2.

Definition 2.6. Let P (a, b) be a point in the hyperreal plane and δ be a
positive infinitesimal. The δ-infinitesimal microscope aimed at P is the
mapping M from the 2δ-disc around P onto the 2-disc around the origin given
by the formula

M(a+ δx, b+ δy) = (x, y) where x2 + y2 ≤ 4.
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Thus M maps (a, b) to (0, 0), magnifies distances by 1/δ, and preserves
directions.

The 2δ-disc around P is called the field of view of the microscope. A
drawing of a δ-infinitesimal microscope will distinguish two points if and only
if the distance between them is not infinitesimal compared to δ. Thus a point
(x, y) is infinitely close to (a, b) if and only if it is in the field of view of some
infinitesimal microscope aimed at (a, b). As an example we discuss the use of
infinitesimal microscopes in giving a picture of the slope of a function.

By the Increment Theorem 2.5, for each real point a we have f ′(a) = S if
and only if for every nonzero infinitesimal 4x, the curve at a+4x is infinitely
close to the tangent line at a+4x compared to 4x, that is,

f(a+4x) = f(a) + S4x (compared to 4x).

It follows that f ′(a) = S at a real point a if and only if the curve y = f(x)
looks like a straight line with slope S in the field of view of any infinitesimal
microscope aimed at the point (a, f(a)). This is illustrated in Figure 2a.

One would also like to use infinitesimal microscopes to illustrate the dif-
ference between the tangent line and the curve when the slope exists. In
Elementary Calculus we simply used artistic license and drew a picture like
Figure 2b with the curvature exaggerated. A more sophisticated but accurate
picture can be drawn by using a more powerful (4x)2-infinitesimal microscope
within a (4x)-infinitesimal microscope, as in Figure 2c. The curve and tan-
gent line are indistinguishable in the (4x)-infinitesimal microscope but can
usually be distinguished in the (4x)2-infinitesimal microscope aimed at the
hyperreal point (a+4x, f(a+4x)).
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We now turn to the notion of an infinite telescope.

Definition 2.7. Let (a, b) be a point in the hyperreal plane which is infin-
itely far from the origin, that is, a2 + b2 is infinite. By the infinite telescope
aimed at (a, b) we mean the mapping T from the 2-disc around (a, b) onto the
2-disc around the origin given by

T (a+ x, b+ y) = (x, y).

Thus T simply translates the 2-disc around (a, b) to the 2-disc around the
origin, and preserves distances and directions. In Elementary Calculus, limits
of the form

lim
x→∞

f(x) = L

are illustrated with an infinitesimal microscope within an infinite telescope
aimed at a point (H,L) where H is positive infinite. See Chapter 5 of this
monograph for the hyperreal definition of infinite limits.

2C. Properties of Derivatives (§2.3, §2.4)

The familiar rules for derivatives can be obtained quite easily from the rules
for standard parts in Section 1B.

Given a term τ , we write dτ for dy, and dτ/dx for dy/dx, where y is the
dependent variable given by the equation y = τ . This often saves space. For
example, we can write d(u+ v) without introducing a new variable y = u+ v.

Theorem 2.8. Suppose u and v depend on the independent variable x. Then
for any real value of x where du/dx and dv/dx exist, we have

(i) (Sum Rule)

d(u+ v)

dx
=
du

dx
+
dv

dx
.

(ii) (Constant Rule) For any real number c,

d(cu)

dx
= c

du

dx
.

(iii) (Product Rule)

d(uv)

dx
= u

dv

dx
+ v

du

dx
.

(iv) (Quotient Rule) If v 6= 0,

d(u/v)

dx
=
v(du/dx)− u(dv/dx)

v2
.

Proof. For each part we let 4x be a nonzero infinitesimal.
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Sum Rule: Let y = u+ v. Then

4y = (u+4u) + (v +4v)− (u+ v) = 4u+4v,
4y
4x

=
4u
4x

+
4v
4x

,

st

(
4y
4x

)
= st

(
4u
4x

+
4v
4x

)
= st

(
4u
4x

)
+ st

(
4v
4x

)
,

dy

dx
=
du

dx
+
dv

dx
.

Constant Rule: Let y = cu. Then

4y = c(u+4u)− cu = c4u,
4y
4x

= c
4u
4x

,

st

(
4y
4x

)
= st

(
c
4u
4x

)
= c · st

(
4u
4x

)
,

dy

dx
= c

du

dx
.

Product Rule: Let y = uv.

4y = (u+4u)(v +4v)− uv = u4v + v4u+4u4v,
4y
4x

= u
4v
4x

+ v
4u
4x

+4u4v
4x

,

st

(
4y
4x

)
= st

(
u
4v
4x

+ v
4u
4x

+4u4v
4x

)
,

st

(
4y
4x

)
= u · st

(
u
4v
4x

)
+ v · st

(
4u
4x

)
+ 0 · st

(
4v
4x

)
,

dy

dx
= u

dv

dx
+ v

du

dx
.
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Quotient Rule: Let y = u/v, v 6= 0.

4y =
u+4u
v +4v

− u

v

=
(u+4u)v − (v +4v)u

v(v +4v)

=
v4u− u4v
v(v +4v)

,

4y
4x

=
v(4u/4x)− u(4v/4x)

v(v +4v)
,

st

(
4y
4x

)
=
v · st(4u/4x)− u · st(4v/4x)

v2
,

dy

dx
=
v(du/dx)− u(dv/dx)

v2
.

a

Theorem 2.9. (Power Rule) If x is a positive real number and r is any
rational number, then

d(xr)

dx
= rxr−1.

Proof. Case 1: r is a positive integer. The proof is an easy induction using
the Product Rule.

Case 2: r = 1/n for some positive integer n. Let y = x1/n and let 4x be a
nonzero infinitesimal. Consider

4y = (x+4x)1/n − x1/n.
4y 6= 0 because x+4x 6= x. 4y is infinitesimal because

st(4y) = st((x+4x)1/n)− st(x1/n) = x1/n − x1/n = 0.

Now

x = yn,

dx

dy
= nyn−1,

4x
4y
≈ nyn−1.

Therefore
4y
4x
≈ 1

nyn−1
=

1

n
x(1/n)−1,

dy

dx
=

1

n
x(1/n)−1.

Case 3: r is a positive rational. This follows from Cases 1 and 2 using the
fact that

xm/n = x(1/n)m.
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Case 4: r is a negative rational. This follows from Case 3 using the Quotient
Rule. a

If r = m/n where n is odd, the above Power Rule also holds for negative
values of x. If r = m/n where n is even, then xr is undefined in the real
number system when x is negative .

2D. Chain Rule (§2.6, §2.7)

The Chain Rule can be proved in a natural way using the Increment Theo-
rem.

Theorem 2.10. (Chain Rule) Let f and G be real functions and let g be the
composition

g(t) = G(f(t)).

For any real value of t where f ′(t) and G′(f(t)) exist, g′(t) also exists and

g′(t) = G′(f(t))f ′(t).

Proof. Let x = f(t), y = g(t) = G(x). Let 4t 6= 0 be infinitesimal. By the
Increment Theorem 2.5 for x = f(t), 4x is infinitesimal. By the Increment
Theorem for y = G(x),

4y = G′(x)4x+ ε4x
for some infinitesimal ε. Dividing by 4t and taking standard parts,

4y
4t

= G′(x)
4x
4t

+ ε
4x
4t

,

dy

dt
= G′(x)

dx

dt
+ 0,

g′(t) = G′(f(t))f ′(t).

a

The Chain Rule with dependent variables is stated in the following form.
Let x = f(t), y = g(t) = G(x), and suppose g′(t) and G′(x) exist. Then

dy

dt
=
dy

dx

dx

dt

where dx/dt and dy/dt are computed with t as the independent variable, and
dy/dx is computed with x as the independent variable.

As in the standard calculus treatment, the Chain Rule is not trivial because
dy has one meaning when x is the independent variable, dy = G′(x)dx, and a
different meaning when t is the independent variable, dy = g′(t)dt.

Higher derivatives are defined in the usual way. Thus

f ′′ is the derivative of f ′,

f (n+1) is the derivative of f (n).
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The n-th differential of y can be considered separately and is defined by

dny = f (n)(x)dxn

where dxn means (dx)n. Notice that when dx is infinitesimal, dx2 is a much
smaller infinitesimal and d2y is the product of the real number f ′′(x) and dx2.



CHAPTER 3

CONTINUOUS FUNCTIONS

In this chapter we go beyond the treatment given in Chapter 3 of Elementary
Calculus. Several proofs which were omitted or only sketched there are given
fully here.

3A. Limits and Continuity (§3.3, §3.4)

We will now use hyperreal numbers to define the notions of a limit and of
a continuous function. In Chapter 5 we will show that these definitions are
equivalent to the standard definitions.

Definition 3.1. Let L, c be real numbers. L is the limit of f(x) as x
approaches c, in symbols

L = lim
x→c

f(x),

if whenever x ≈ c but x 6= c, we have f(x) ≈ L. If there is no such L we say
that the limit does not exist.

In Elementary Calculus we made the intuitive statement that whenever
limx→c f(x) = L, we can see the entire part of the hyperreal graph of f(x),
where x ≈ c but x 6= c, in an infinitesimal microscope aimed at (c.L). This is
a simplification that does not conform to the precise definition of infinitesimal
microscope given in Section 2B, because an ε-infinitesimal microscope only has
a field of radius 2ε. A more exact statement is as follows: limx→c f(x) = L if
and only if whenever x ≈ c but x 6= c, the point (x, f(x)) belongs to the field
of some infinitesimal microscope aimed at (c, L).

Limits can often be formed by computing standard parts. We see from the
definition that if st(f(x)) = L for all x infinitely close but not equal to c, then

lim
x→c

f(x) = L.

Corollary 3.2. If limx→c f(x) exists then f(x) is defined for all real x 6= c
in some neighborhood of c.

Proof. Let Y = domain(f)∪{c}. Then Y ∗ = domain(f∗)∪{c}, by Propo-
sition 1.27. By the definition of limit, f(x) must be defined for all x 6= c in

43
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the monad of c, so Y ∗ contains the monad of c. Then by Theorem 1.28, Y
contains a neighborhood of c, so f(x) must be defined for all real x 6= c in that
neighborhood. a

The next corollary follows at once from the definitions.

Corollary 3.3. The slope of f at a is given by the limit

f ′(a) = lim
4x→0

f(a+ δx)− f(a)

4x
.

The limit with respect to a set Y ⊆ R is defined as follows.

Definition 3.4. Let L and c be real numbers. L is the limit of f(x) as x
approaches c in Y ,

L = lim
x→c,x∈Y

f(x),

if whenever x ∈ Y ∗ and x ≈ c but x 6= c, we have f(x) ≈ L.

Important special cases are the one-sided limits, defined by

lim
x→c−

f(x) = lim
x→c,x<c

f(x),

lim
x→c+

f(x) = lim
x→c,x>c

f(x).

The following result is easy.

Proposition 3.5. limx→c f(x) exists if and only if both one-sided limits
exist and are equal,

lim
x→c−

f(x) = lim
x→c+

f(x).

The rules for standard parts lead at once to the following rules for limits.

Theorem 3.6. (Rules for Limits) Suppose the limits

lim
x→c

f(x), lim
x→c

g(x)

both exist.
(i) For any constant k, limx→c(kf(x)) = k limx→c f(x).
(ii) limx→c(f(x) + g(x)) = limx→c f(x) + limx→c g(x).
(iii) limx→c f(x)g(x) = (limx→c f(x))(limx→c g(x)).
(iv) If limx→c g(x) 6= 0, limx→c(f(x)/g(x)) = (limx→c f(x))/(limx→c g(x)).

Proof. To illustrate we prove (ii). Let x ≈ c but x 6= c. Then by Theorem
1.12,

lim
x→c

(f(x)+g(x)) = st(f(x)+g(x)) = st(f(x))+st(g(x)) = lim
x→c

f(x)+ lim
x→c

g(x).

a

Definition 3.7. f is continuous at a real point c if f(c) is defined and
whenever x is infinitely close to c, f(x) is infinitely close to f(c).
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As an immediate consequence of the definitions, we have the usual condition
for continuity in terms of limits.

Corollary 3.8. f is continuous at a real point c if and only if f(c) is
defined and limf→c f(x) = f(c).

Corollary 3.9. If f is continuous at c, then f(x) is defined for all real x
in some neighborhood of c.

Proof. By Corollary 3.2, f(x) is defined for all x 6= c in some neighborhood
of c. By definition, f(x) is also defined at x = c. a

It follows from Theorem 3.6 that sums, products, and quotients of continu-
ous functions are continuous, provided that the denominator is not 0.

Theorem 3.10. If f is differentiable at c then f is continuous at c.

Proof. Let f be differentiable at c. Then f(c) is defined. Let x ≈ c but
x 6= c. Then

f(x)− f(c)

x− c
is finite and x − c is infinitesimal. It follows that f(x)− f(c) is infinitesimal,
so f(x) ≈ f(c). a

Proposition 3.11. Compositions of continuous functions are continuous.
That is, if f is continuous at c, and G is continuous at f(c), then g(x) =
G(f(x)) is continuous at c.

Proof. Let x ≈ c. Then f(x) ≈ f(c), so

g(x) = G(f(x)) ≈ G(f(c)) = g(c).

a

We now define continuity and uniform continuity on a set Y of real numbers.

Definition 3.12. Let Y be a subset of the domain of f . f is continuous
on Y if whenever c ∈ Y , x ≈ c, and x ∈ Y ∗, we have f(x) ≈ f(c).
f is uniformly continuous on Y if whenever x, y ∈ Y ∗ and x ≈ y, we

have f(x) ≈ f(y).

Corollary 3.13. If f is uniformly continuous on Y then f is continuous
on Y .

Proof. Suppose c ∈ Y, x ∈ Y ∗, x ≈ c. By Theorem 1.27, Y ⊆ Y ∗, so
c ∈ Y ∗. Then, since f is uniformly continuous on Y , f(x) ≈ f(c), and therefore
f is continuous on Y . a

A set Y of reals is said to be compact if it is closed and bounded. For
example, each closed interval [a, b] is compact.

Corollary 3.14. A set Y of reals is compact if and only if for every y ∈
Y ∗, y is finite and st(y) ∈ Y .
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Proof. By Corollary 1.29 and Theorem 1.31. a

Theorem 3.15. Let Y be a compact set of reals. If f is continuous on Y
then f is uniformly continuous on Y .

Proof. Suppose f is continuous on Y . Let x, y ∈ Y ∗ and x ≈ y. By
Corollary 3.14, x is finite and c ∈ Y where c = st(x). Since x ≈ y, c = st(y).
By the continuity of f on Y ,

f(x) ≈ f(c), f(y) ≈ f(c).

Thus f(x) ≈ f(y), and f is uniformly continuous on Y . a

If f is uniformly continuous on a set Y then f is obviously uniformly con-
tinuous on any subset of Y . The following theorem allows us to extend the
domain of a uniformly continuous function from an interval to the whole real
line.

Theorem 3.16. (i) Let f be uniformly continuous on an interval I. Then
there is a function g which agrees with f on I and is uniformly continuous on
the whole real line.

(ii) Suppose the derivative f ′ of f is uniformly continuous on an interval I.
Then there is a function g which agrees with f on I such that g′ is uniformly
continuous on the whole real line.

Proof. We give the proof for the case where I is a half-open interval of the
form [a, b). The other cases are similar.

(i) We first show that limx→b− f(x) exists. Let x < b and x ≈ b. Assume for
the moment that f(x) is infinite. Then every real u < b is a partial hyperreal
solution of

u < y, y < b, |f(u)− f(y)| ≥ 1.(12)

Let u1 < b, u1 ≈ b. By the Partial Solution Theorem 1.20 there is a hyperreal
y1 such that (12) holds. But then u1 ≈ y1 but not f(u1) ≈ f(y1), contradicting
the uniform continuity of f . Therefore f(x) could not have been infinite. So
f(x) is finite, and has a standard part B. For all y < b with y ≈ x we have
f(y) ≈ f(x) and hence f(y) ≈ B. This shows that B = limx→b− f(x). Now
let g be the function

g(x) =


f(a), if x < a

f(x), if x ∈ [a, b)

B, if x ≥ b.

Then g agrees with f on [a, b) and is uniformly continuous on the whole real
line.

(ii) From the proof of (i), the limits

B = lim
x→b−

f(x), C = lim
x→b−

f ′(x)
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both exist. The function

g(x) =


f(a) + f ′(a)(x− a) if x < a

f(x), if x ∈ [a, b)

B + C(x− b), if x ≥ b

agrees with f on [a, b) and has a uniformly continuous derivative on the whole
real line. a

3B. Hyperintegers (§3.8)

Hyperintegers are a basic tool in several areas of the calculus, including
integration and infinite series. In this chapter they are used in the proofs of
the Intermediate and Extreme Value Theorems.

Recall from Section 1E that Z denotes the set of integers, and that x ∈ Z is
the formula CZ(x) = 1, where CZ is the characteristic function of Z.

Definition 3.17. The set of integers is denoted by Z. The natural extension
Z∗ of Z is called the set of hyperintegers.

Note that by Theorem 1.27 (i), Z∗ ∩ R = Z, that is, a real number is an
integer if and only if it is a hyperinteger.

In Elementary Calculus the hyperintegers were defined in a different way
using the function [x] = the greatest integer n ≤ x. We now show that the
two definitions are equivalent.

Theorem 3.18. Z∗ is the set of all hyperreal numbers y such that y = [x]
for some hyperreal x.

Proof. We first note that the set of integers Z is the set of all real solutions
of the equation y = [y]. By Proposition 1.26, the natural extension Z∗ is the
set of all hyperreal solutions of y = [y]. Thus if y ∈ Z∗ then y = [y], and hence
y = [x] for some hyperreal number x.

Now suppose that y = [x] for some hyperreal number x. The equation
[x] = [[x]] holds for all real numbers. By Transfer, it holds for all hyperreal
numbers. Therefore y = [x] = [[x]] = [y], so y = [y] and hence y ∈ Z∗. a

It follows that for each hyperreal number x, [x] is a hyperinteger. Moreover,
since [x] ≤ x < [x] + 1 for all real x, we see from the Transfer Axiom that
[x] ≤ x < [x] + 1 for all hyperreal x.

Theorem 3.19. (i) Z∗ is a subring of R∗. That is, sums, differences, and
products of hyperintegers are hyperintegers.

(ii) For each hyperreal number x, [x] is the greatest hyperinteger ≤ x, and

[x] ≤ x < [x] + 1.

(iii) There are positive infinite and negative infinite hyperintegers.
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(iv) Every finite hyperinteger is an integer, that is,

Z∗ ∩ galaxy(0) = Z.

Proof. (i) Every real solution of

x ∈ Z, y ∈ Z(13)

is a solution of

x+ y ∈ Z.(14)

Hence every hyperreal solution of (13) is a solution of (14), so the sum of two
hyperintegers is a hyperinteger. The proofs for differences and products are
similar.

(ii) For each real number x, [x] is the greatest integer ≤ x. Then [x] ≤ x for
all real x, and by Corollary 1.16, [x] ≤ x for all hyperreal x. Moreover, every
real solution of

n ∈ Z, n ≤ x(15)

is a solution of

n ≤ [x].(16)

By Transfer, every hyperreal solution of (15) is a solution of (16). This shows
[x] is the greatest hyperinteger ≤ x for every hyperreal x.

Finally, since the system of formulas

[x] ≤ x < [x] + 1

holds for all real x, it holds for all hyperreal x by Corollary 1.16.
(iii) Let H be a positive infinite hyperreal number. Then K = [H] + 1 is a

hyperinteger which is greater than H and hence is positive infinite.
(iv) Let K be a finite hyperinteger. Then st(K) is real, so there is an integer

n with
n ≤ st(K) < n+ 1.

It follows that
0 ≤ |n−K| < 1.

However, |n−K| is a hyperinteger by (i), so by (ii) we must have |n−K| = 0,
and thus n = K ∈ Z. a

A frequent construction in the calculus is the partition of a closed interval
[a, b] into infinitely many subintervals of equal infinitesimal length. When x
and y are hyperreal numbers, we call the set

[x, y]∗ = {x ∈ R∗ : x ≤ z ≤ y}
a hyperreal closed interval. If a ≤ x ≤ y ≤ b we call [x, y]∗ a hyperreal
subinterval of [a, b]∗. When 0 < 4x and 4x ≈ 0, we call [x, x +4x]∗ an
infinitesimal interval. Since no ambiguity can arise, we sometimes drop
the star on an infinitesimal interval, writing [x, x +4x] for [x, x +4x]∗. In
Elementary Calculus we always wrote [x, x+4x] instead of [x, x+4x]∗. Given
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a hyperinteger H > 0, the closed hyperreal interval [a, b]∗ may be partitioned
into subintervals of length δ = (b− a)/H. The partition points are

a, a+ δ, a+ 2δ, . . . , a+Kδ, . . . , a+Hδ = b

where K runs over the hyperintegers from 0 to H. If H is infinite, each
subinterval will have infinitesimal length δ = (b − a)/H, and the partition is
called an infinite partition of [a, b]∗, or sometimes an infinite partition of
[a, b]. A typical subinterval has the form

[a+Kδ, a+ (K + 1)δ]∗.

Corollary 3.20. Given a closed real interval [a, b] and a positive hyperin-
teger H, let δ = (b− a)/H. Then [a, b]∗ is the union of the subintervals

[a+Kδ, a+ (K + 1)δ)∗

where K ∈ Z∗ and 0 ≤ K < H.

Proof. Let x ∈ [a, b]∗. Let K = [(x− a)/δ]. Then K ∈ Z∗ and

K ≤ x− a
δ

< K + 1.

It follows that

0 ≤ K <
b− a
δ

= H, a+Kδ ≤ x < a+ (K + 1)δ.

a

3C. Properties of Continuous Functions (§3.5–§3.8)

We use hyperintegers to prove the Intermediate and Extreme Value Theo-
rems.

Theorem 3.21. (Intermediate Value Theorem) Suppose f is continuous on
the closed interval [a, b]. Then for every real number D between f(a) and f(b)
there is a point c ∈ [a, b] such that f(c) = D.

Proof. We may assume that f(a) ≤ f(b). The result is trivial if D = f(a)
or D = f(b), so we assume that a < b and f(a) < D < f(b). Consider a
positive integer n and the finite partition

a, a+ δ, a+ 2δ, . . . , a+ nδ = b

where δ = (b− a)/n. The value of f must cross D in one of the subintervals,
so there is an integer m such that

0 ≤ m < n, f(a+mδ) < D ≤ f(a+ (m+ 1)δ).(17)

Thus every real solution of the system of formulas

n ∈ Z, 0 < n, δ = (b− a)/n
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is a partial real solution of (17). Now let n1 be a positive infinite hyperinteger
and let δ1 = (b − a)/n1. By the Partial Solution Theorem, there exists m1

such that (17) holds. Let c = st(a + m1δ1). We show that a ≤ c ≤ b and
f(c) = D. We have

a ≤ a+m1δ1 ≤ a+ (m1 + 1)δ1 ≤ a+ n1δ1 = b.

Taking standard parts, a ≤ c ≤ b. Since f is continuous on [a, b],

f(c) = st(f(a+m1δ1)) ≤ D,

f(c) = st(f(a+ (m1 + 1)δ1)) ≥ D.
Therefore f(c) = D. a

Definition 3.22. A function f is called increasing if f(x) < f(y) when-
ever x < y and x, y ∈ domain(f).
f is called decreasing if f(x) > f(y) whenever x < y and x, y ∈ domain(f).

Here is a useful consequence about continuous one to one functions.

Theorem 3.23. Suppose f is a continuous one to one function whose do-
main is an interval I. Then f is either increasing or decreasing.

Proof. We prove:
(1) Whenever a < b < c in I, either f(a) < f(b) < f(c) or f(a) > f(b) >

f(c).
Proof of (1): Suppose a < b < c in I. Since f is one to one, the values

f(a), f(b), and f(c) are all different.
We consider two cases. Case 1: f(a) < f(b). In this case we must show that

f(b) < f(c). We do this by assuming instead that f(b) > f(c) and arriving
at a contradiction. Under this assumption, we may pick a value x such that
f(a) < x < f(b) and f(c) < x < f(b). By the Intermediate Value Theorem
3.21, there are points a1 ∈ (a, b) and c1 ∈ (b, c) such that f(a1) = x and
f(c1) = x. But then a1 < c1 but f(a1) = f(c1), contradicting our hypothesis
that f is one to one. This shows that f(a) < f(b) < f(c), and proves (1) in
Case 1.

Case 2: f(a) > f(b). A similar argument shows that f(a) > f(b) > f(c).
We next prove:
(2) Whenever a < b < c < d in I, either f(a) < f(b) < f(c) < f(d) or

f(a) > f(b) > f(c) > f(d).
Proof of (2): By (1), either f(a) < f(b) < f(c) or f(a) > f(b) > f(c).

If f(a) < f(b) < f(c), then we cannot have f(b) > f(c) > f(d), so by (1)
again, f(a) < f(b) < f(c) < f(d). Similarly, if f(a) > f(b) > f(c), then
f(a) > f(b) > f(c) > f(d).

We now use (2) to prove that f is either increasing or decreasing. Pick any
two points x < y in I. We again consider two cases.

Case A: f(x) < f(y). In this case we show that f is increasing. To do this,
let u < v in I. Arrange the points x, y, u, v in increasing order, giving us four
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points a < b < c < d in I with {x, y, u, v} ⊆ {a, b, c, d}. Since f(x) < f(y) and
x, y ∈ {a, b, c, d}, we cannot have f(a) > f(b) > f(c) > f(d). Then by (2), we
must have f(a) < f(b) < f(c) < f(d). Since u, v ∈ {a, b, c, d}, f(u) < f(v), so
f is increasing.

Case B: f(x) > f(y). A similar argument shows that f is decreasing. a

Definition 3.24. f has a maximum at c if f(c) ≥ f(x) for all x in the
domain of f . A minimum of f is defined analogously.

Proposition 3.25. Suppose f has a maximum at c. Then the natural ex-
tension f∗ also has a maximum at c, that is, f(c) ≥ f(x) for all hyperreal x
in the domain of f∗.

Proof. Every real solution of the formula

f(x) is defined

is a solution of f(c) ≥ f(x). By Transfer, every hyperreal solution of the first
formula is a solution of the second, so f∗ has a maximum at c. a

Definition 3.26. f has a local maximum at c if c has a real neighborhood
(c− r, c+ r) such that f(x) is defined and f(c) ≥ f(x) for all x ∈ (c− r, c+ r).
Local minima are defined in a similar way.

Theorem 3.27. f has a local maximum at c if and only if f(x) is defined
and f(c) ≥ f(x) for all hyperreal x ≈ c.

Proof. Suppose f has a local maximum at c. Then f(c) ≥ f(x) for all x
in some real neighborhood (c− r, c+ r) of c. By Proposition 3.25, f(c) ≥ f(x)
for all hyperreal x such that c− r < x < c+ r, and therefore f(c) ≥ f(x) for
all hyperreal x ≈ c.

Now suppose f does not have a local maximum at c. Case 1: There is no
real neighborhood of c on which f is defined. By Corollary 1.30, there is a
hyperreal number x ≈ c at which f(x) is undefined. Case 2: f is defined
on some real neighborhood (c − r, c + r) of c. Since f does not have a local
maximum at c, every real solution of

0 < s < r(18)

is a partial real solution of

c− s < x < c+ s, f(c) < f(x).(19)

Let s1 be positive infinitesimal. Then s1 is a hyperreal solution of (18). By
the Partial Solution Theorem , s1 is a partial hyperreal solution of (19). Hence
there exists x1 ≈ c with f(c) < f(x1). a

Theorem 3.28. (Extreme Value Theorem) Suppose that the domain of f is
a closed interval [a, b] and f is continuous on [a, b]. Then f has a maximum
and a minimum.
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Proof. The result is trivial if a = b, so we assume a < b. Let n be a
positive integer and consider the finite partition

a, a+ δ, a+ 2δ, . . . , a+ nδ = b

where δ = (b− a)/n. Let f(a+mδ) be the greatest of the values

f(a), f(a+ δ), . . . , f(a+ nδ),

and let g be the function on the set of positive integers such that m = g(n).
Then every real solution of

n ∈ Z, 0 < n, δ = (b− a)/n, m = g(n)(20)

is a solution of

a ≤ a+mδ ≤ b.(21)

Furthermore, every real solution of (20) plus

k ∈ Z, 0 ≤ k ≤ n(22)

is a solution of

f(a+mδ) ≥ f(a+ kδ).(23)

Let n1 be a positive infinite hyperinteger and let δ1 = (b − a)/n1 and m1 =
g(n1). We show that f has a maximum at

c = st(a+m1δ1).

The triple (n1, δ1,m1) is a hyperreal solution of (20), so by Transfer it is a
solution of (21). Thus

a ≤ a+m1δ1 ≤ b.
Taking standard parts,

a ≤ c ≤ b.
Consider any real number x ∈ [a, b]. By Corollary 3.20, x belongs to an
infinitesimal subinterval of [a, b] of the form

[a+ k1δ1, a+ (k1 + 1)δ1]∗

where k1 is a hyperinteger between 0 and n1. Then

x = st(a+ k1δ1).

The quadruple (n1, δ1,m1, k1) is a hyperreal solution of (22), and by Transfer
it is also a solution of (23). Thus

f(a+m1δ1) ≥ f(a+ k1δ1).

Since f is continuous on [a, b],

f(c) = st(f(a+m1δ1)) ≥ st(f(a+ k1δ1)) = f(x).

Thus f has a maximum at c. a
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Theorem 3.29. (Critical Point Theorem) Suppose the domain of f is an
interval I, f is continuous on I, and f has a maximum or minimum at a
point c in I. Then one of the following occurs:

(i) c is an endpoint of I,
(ii) f ′(c) is undefined,
(iii) f ′(c) = 0.

Proof. Assume neither (i) nor (ii) holds, so c is not an endpoint of I and
f ′(c) exists. We show that f ′(c) = 0, so that (iii) holds. Suppose f has a
maximum at c. Let 4x > 0 be infinitesimal. Then

f(c+4x) ≤ f(c), f(c−4x) ≤ f(c),

f(c+4x)− f(c)

4x
≤ 0 ≤ f(c−4x)− f(c)

4x
,

st

(
f(c+4x)− f(c)

4x

)
≤ 0 ≤ st

(
f(c−4x)− f(c)

4x

)
,

f ′(c) ≤ 0 ≤ f ′(c),
f ′(c) = 0.

a

We call a point c where (i), (ii), or (iii) occurs a critical point of f . A
critical point which is not an endpoint of I is called an interior critical point
of f .

Theorem 3.30. (Mean Value Theorem) Assume that a < b and f is con-
tinuous on the closed interval [a, b] and differentiable on (a, b). Then there is
a point c ∈ (a, b) such that the slope of f at c equals the average slope of f ,

f ′(c) =
f(b)− f(a)

b− a
.

The proof of the Mean Value Theorem from the Extreme Value and Critical
Point Theorems is elementary and uses standard methods only, so we will not
give it here. Here is a corollary of the Mean Value Theorem which is often
used in the calculus.

Corollary 3.31. (i) If f is continuous on an interval I and f ′(x) = 0
whenever x is in the interior of I, then f(x) is constant on I.

(ii) If f is continuous on an interval I and f ′(x) ≥ 0 whenever x is in the
interior of I, then f(x) ≤ f(y) whenever x ≤ y in I.

(iii) If f is continuous on an interval I and f ′(x) > 0 whenever x is in the
interior of I, then f is increasing in I.

The Intermediate, Extreme, and Mean Value Theorems have the following
useful consequences which involve hyperreal numbers. In these theorems we
start with a real function f with at least one variable x, but allow the possibility
of other variables as well. We state the results for the case that there is one
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extra variable. Given a function f(x, s) of two variables x, s, for each real
constant a we get a function f(x, a) of one variable x. The natural extension
f∗(x, s) is a hyperreal function of two variables x and s, and for each hyperreal
constant a, f∗(x, a) is a hyperreal function of one variable x.

In each of the following theorems we suppose that f(x, s) is a real function
of two variables such that for each real constant a, f(x, a) considered as a
function of x is continuous on an interval I.

Theorem 3.32. (Hyperreal Intermediate Value Theorem) For each hyper-
real constant a and each x < y in I∗, if u is a hyperreal number between
f∗(x, a) and f∗(y, a), then there is a hyperreal z such that x ≤ z ≤ y and
f∗(z, a) = u.

Theorem 3.33. (Hyperreal Extreme Value Theorem) For each hyperreal con-
stant a and each x < y in I∗, f∗(z, a) has a maximum and minimum on the
hyperreal closed interval [x, y]∗. That is, there is a hyperreal number z between
x and y such that whenever x ≤ u ≤ y, f∗(z, a) ≥ f∗(u, a).

Theorem 3.34. (Hyperreal Mean Value Theorem) Suppose that for each
real a, f(x, a) as a function of x is differentiable on the interior of I, and
let g(x, a) = f ′(x, a). Then for each hyperreal constant a and each x < y in
I∗, there is a hyperreal number z such that

x < z < y and g∗(z, a) =
f∗(y, a)− f∗(x, a)

y − x
.

Proof. To illustrate the method we prove the Hyperreal Extreme Value
Theorem. By the real Extreme Value Theorem, for each a, on every closed real
subinterval [x0, y0] of I, f(z, a) has a maximum at some point z0 = g(x0, y0, a).
Thus each real solution of

x0 ∈ I, y0 ∈ I, x0 ≤ u0 ≤ y0, a = a(24)

is a solution of

x0 ≤ g(x0, y0, a) ≤ y0, f(g(x0, y0, a), a) ≥ f(u0, a).(25)

By Transfer, every hyperreal solution of (24) is also a solution of (25). There-
fore for each hyperreal constant a, f∗(z, a) has a maximum in [x, y]∗ at z =
g∗(x, y, a). a

We conclude this section with two applications of the Hyperreal Mean Value
Theorem.

Theorem 3.35. (Second Derivative Test)
(i) If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c.
(ii) If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.

Proof. We prove (i). Since f ′′(c) exists, f and f ′ are defined on some
real neighborhood of c. Let x ≈ c. By Theorem 3.27 it suffices to prove that
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f(c) ≥ f(x). We assume f(c) < f(x) and arrive at a contradiction. Say c < x.
By the Hyperreal Mean Value Theorem there is a hyperreal point t such that

c < t < x, f ′(t) =
f(x)− f(c)

x− c
.

Then f ′(t) > 0. Since f ′(c) = 0, we have

f ′(t)− f ′(c)
t− c

=
f ′(t)

t− c
> 0.

Taking standard parts,

f ′′(c) = st

(
f ′(t)− f ′(c)

t− c

)
≥ 0.

This contradicts the hypothesis f ′′(c) < 0. The case c > x is similar. We
conclude that f(c) ≥ f(x). a

Definition 3.36. A real function f is said to be uniformly differentiable
at a real point c if f ′(c) exists and whenever x ≈ c and 4x is nonzero infini-
tesimal,

f ′(c) ≈ f(x+4x)− f(x)

4x
.

Note that uniform differentiability implies differentiability. Uniform differ-
entiability will be useful when we study inverse functions in Chapter 7 and
partial derivatives in Chapter 11. The next theorem compares uniform differ-
entiability with continuous differentiability.

Theorem 3.37. (i) If f is continuously differentiable at c, then f is uni-
formly differentiable at c.

(ii) f is uniformly differentiable at every point of an open interval I, then
f is continuously differentiable at every point of I.

Proof. (i) Assume f is continuously differentiable at c. Then f ′ is con-
tinuous at c, and by Corollary 3.9, f ′ is defined and hence f is differentiable
at every point of some open neighborhood I of c. Let x ≈ c and let 4x be
nonzero infinitesimal. By Theorem 1.28, x, x +4x ∈ I∗. By the Hyperreal
Mean Value Theorem there is a hyperreal number t between x and x + 4x
such that

f ′(t) =
f(x+4x)− f(x)

4x
.

Since t ≈ x ≈ c, we have f ′(c) ≈ f ′(t), so f is uniformly differentiable at c.
(ii) Assume f is uniformly differentiable at every point of an open interval

I. Every real solution of

x ∈ I, ε > 0(26)

is a partial hyperreal solution of

0 < 4x < ε,

∣∣∣∣f ′(x)− f(x+4x)− f(x)

4x

∣∣∣∣ < ε,(27)
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for we may take 4x to be infinitesimal. Let x1 ≈ c ∈ I and let ε1 be positive
infinitesimal. Since I is open, x1 ∈ I∗, hence (x1, ε1) is a hyperreal solution
of (26). By the Partial Solution Theorem, every hyperreal solution of (26) is
a partial hyperreal solution of (27), Therefore there is a 4x1 such that (27)
holds. Then

f ′(x1) ≈ f(x1 +4x1)− f(x1)

4x1
.

But 4x1 ≈ 0, so by (ii),

f ′(c) ≈ f(x1 +4x1)− f(x1)

4x1
.

Therefore f ′(x1) ≈ f ′(c), and (i) holds. a

The following corollary shows that if f has a continuous derivative then the
hyperreal formula for f ′(x) holds for finite hyperreal x as well as for real x.

Corollary 3.38. Suppose the derivative of f is continuous on an interval
I (not necessarily open), c ∈ I, c ≈ x ≈ x+4x, 4x 6= 0, and x, x+4x ∈ I∗.
Then

f ′(x) ≈ f(x+4x)− f(x)

4x
.

Proof. By Theorem 3.37, f is uniformly differentiable at c, so

f ′(x) ≈ f ′(c) ≈ f(x+4x)− f(x)

4x
.

a
Here is an example of a function f which is uniformly differentiable at 0 but

not continuously differentiable at 0. Let f(x) be the function with domain
[−1, 1] such that f(0) = 0, f(−x) = f(x) for each x, f(1/n) = n−2 for
every positive integer n, and the graph of f(x) is a straight line on each
subinterval [1/(n+ 1), 1/n]. Then f is uniformly differentiable at 0. But f is
not differentiable at 1/n for each positive integer n, so f ′ is not defined on an
open neighborhood of 0 and thus f ′ cannot be continuous at 0.

This example shows that uniform differentiability of f at c does not imply
that f is differentiable on some open neighborhood of c. But it does imply
that f is continuous on some open neighborhood of c.

Theorem 3.39. If f is uniformly differentiable at c, then f is continuous
on some open neighborhood I of c.

Proof. Let L = |f ′(c)|+ 1. It suffices to prove that on some real neighbor-
hood (c− r, c+ r) of c, we have the Lipschitz condition

|f(y)− f(x)| ≤ L|y − x| for all x, y ∈ (c− r, c+ r).(28)
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f is differentiable at c, so by Theorem 3.10 and Corollary 3.9, f is defined on
some open neighborhood of c. Suppose there is no real number r > 0 such
that (28) holds. Then every real solution of r > 0 is a partial solution of

|f(y)− f(x)| > L|y − x|, x, y ∈ (c− r, c+ r).(29)

Let r1 be a positive infinitesimal. By the Partial Solution Theorem, there are
hyperreal x1, y1 such that (29) holds. But then∣∣∣∣f(y1)− f(x1)

y1 − x1

∣∣∣∣ > |f ′(c)|+ 1, x1 ≈ c, y1 ≈ c,

contradicting the uniform differentiability of f at c. a





CHAPTER 4

INTEGRATION

In this chapter we use hyperreal numbers to develop the Riemann Integral.
To keep the theory as elementary as possible, we restrict ourselves to contin-
uous real functions.

Permanent Assumption We assume throughout this chapter that f and
g are real functions which are continuous on an interval I.

4A. The Definite Integral (§4.1)

Given a positive real function f , consider the region in the plane bounded
by the lines x = a, x = b, y = 0, and the curve y = f(x). We call this the
region under the curve y = f(x) from a to b. The area of this region may
be regarded as a real function A(a, b) of two variables. In this and the next
section we will define the definite integral∫ a

b

f(x) dx

and show that it is equal to the area of the region under y = f(x) from a to
b. Our plan is as follows. First we list some properties which the intuitive
concept of area has. Second we prove that the definite integral has these
properties. Third we prove that the definite integral is the only function with
these properties.

Definition 4.1. By an area function for f we mean a real function A(u, v),
whose domain is the set of ordered pairs of elements of I, such that

(i) A has the Addition Property:

A(a, c) = A(a, b) +A(b, c) for all a, b, c ∈ I.

(ii) A has the Rectangle Property:

m(b− a) ≤ A(a, b) ≤M(b− a)

whenever a < b in I and f has minimum value m and maximum value M on
[a, b].

59
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The Rectangle Property states that the area of the region is between the
areas of the inscribed and circumscribed rectangles. It follows at once from
the Addition Property that

A(a, a) = 0, A(b, a) = −A(a, b).

Thus to specify an area function we need only specify the values of A(a, b) for
a < b in I.

We now introduce the notion of a Riemann sum of a function with respect
to a partition of an interval. For simplicity we will consider only partitions of
[a, b] in which all subintervals except the last subinterval have the same length.

Definition 4.2. Let [a, b] be a subinterval of I and let 4x be a positive real

number. The Riemann sum
∑b
a f(x)4x is defined as the sum

b∑
a

f(x)4x = f(x0)4x+ f(x1)4x+ · · ·+ f(xn−1)4x+ f(xn)(b− xn)

where n is the largest integer such that a+ n4x < b, and

x0 = a, x1 = a+4x, . . . , xn = a+ n4x.

Geometrically, the interval [a, b] is partitioned into subintervals of equal
length 4x, except that if 4x does not evenly divide b− a then the last subin-
terval [xn, b] is shorter than 4x. The Riemann sum is equal to the sum of the
areal of the vertical strips over each subinterval with height equal to the value
of f(x) at the left end of the subinterval.

The Riemann sum
∑b
a f(x)4x is a real function of the three variables

a, b,4x. If a and b are held fixed it becomes a function of the single vari-
able 4x. If we replace the positive real 4x in this function by a positive
infinitesimal dx, the natural extension gives us the infinite Riemann sum.

Definition 4.3. Given a continuous real function f on I and a subinterval
[a, b] of I, let

S(4x) =

b∑
a

f(x)4x

be the finite Riemann sum. The infinite Riemann sum is the natural exten-
sion

S∗(dx) =

b∑
a

f(x) dx.

Since the finite Riemann sum is defined for all real 4x > 0, the infinite
Riemann sum is defined for all hyperreal dx > 0. Our plan is to define the
integral as the standard part of the infinite Riemann sum. First we must prove
that this sum is finite, so its standard part exists.

Lemma 4.4. Let a < b in I and let dx be positive infinitesimal. Then the

infinite Riemann sum
∑b
a f(x) dx is a finite hyperreal number.
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Proof. By the Extreme Value Theorem 3.28, f has a minimum value m
and a maximum value M on [a, b]. For each positive real 4x we have

b∑
a

m4x ≤
b∑
a

f(x)4x ≤
b∑
a

M4x,

and
b∑
a

m4x = m(b− a),

b∑
a

M4x = M(b− a).

Therefore every real solution of 4x > 0 is a solution of

m(b− a) ≤
b∑
a

f(x)4x ≤M(b− a).(30)

By Transfer, since dx > 0, dx is a hyperreal solution of (30), and therefore∑b
a f(x) dx is finite. a

Definition 4.5. Let a < b in I and let dx be positive infinitesimal. The
definite integral of f from a to b with respect to dx is the standard part of
the infinite Riemann sum,∫ b

a

f(x) dx = st

(
b∑
a

f(x) dx

)
.

Moreover, ∫ a

a

f(x) = 0,

∫ a

b

f(x) dx = −
∫ b

a

f(x) dx.

For each fixed positive infinitesimal dx, the definite integral
∫ w
u
f(x) dx is

a real function of two variables u and w. It does not depend on the dummy
variable x. We always use matching symbols for the dummy variable x and
the infinitesimal dx. This convention identifies the dummy variable when
integrating a function of two or more variables. For example,∫ 1

0

x2t dx =
1

3
t,

∫ 1

0

x2t dt =
1

2
x2.

We now develop some properties of the definite integral.

Theorem 4.6. Let a < b in I, let c be a real constant, and let dx be positive
infinitesimal. Then

(i)
∫ b
a
c dx = c(b− a)

(ii)
∫ b
a
c f(x) dx = c

∫ b
a
f(x) dx

(iii)
∫ b
a

(f(x) + g(x)) dx =
∫ b
a
f(x) dx+

∫ b
a
g(x) dx

(iv) If f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b
a
f(x) dx ≤

∫ b
a
g(x) dx
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Proof. For each case the proof has three steps. First, verify the analogous
formula for finite Riemann sums. Second, use the Transfer Axiom to prove
the formula for infinite Riemann sums. Third, take standard parts. a

The following theorem shows that the definite integral
∫ b
a
f(x) dx does not

depend on the infinitesimal dx.

Theorem 4.7. Let a < b in I and let dx and du be positive infinitesimals.
Then ∫ b

a

f(x) dx =

∫ b

a

f(u) du.

Proof. It suffices to prove that for every positive real number r,∫ b

a

f(x) dx ≤
∫ b

a

f(u) du+ r.

Let c = r/(b− a). We will show that

b∑
a

f(x) dx ≤
b∑
a

(f(u) + c) du,(31)

whence by Theorem 4.6,∫ b

a

f(x) dx ≤
∫ b

a

(f(u) + c) du =

∫ b

a

f(u) du+ r.

In Elementary Calculus, Formula (31) was justified intuitively. To give a rig-
orous proof of (31) we use the Partial Solution Theorem 1.20. Let 4x and 4u
be positive real numbers. If

b∑
a

f(x)4x >
b∑
a

(f(u) + c)4u,

there must be a point at which a rectangle in
∑b
a f(x)4x is above a rectangle

in
∑b
a(f(u) + c)4u. So there must be a pair of points x, u in [a, b] such that

x−4u ≤ u ≤ x+4x, f(x) > f(u) + c.

Thus every real solution of

4x > 0, 4u > 0,

b∑
a

f(x)4x >
b∑
a

(f(u) + c)4u(32)

is a partial real solution of

a ≤ x ≤ b, a ≤ u ≤ b, x−4u ≤ u ≤ x+4x, f(x) > f(u) + c.(33)

Now suppose (31) fails for dx and du, so

b∑
a

f(x) dx >

b∑
a

(f(u) + c) du.
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Then (dx, du) is a hyperreal solution of (32). By the Partial Solution Theorem
1.20, there is a hyperreal solution (dx, du, x1, u1) of (33). Since dx and du are
infinitesimal, (33) implies that x1 ≈ u1 and f(x1) 6≈ f(u1), contradicting the
continuity of f . We conclude that (31) is true. a

Corollary 4.8. ∫ b

a

f(x) dx = lim
4x→0+

b∑
a

f(x)4x.

Proof. By Theorem 4.7 and Definition 4.5, for every positive infinitesimal
dx = 4x we have∫ b

a

f(u) du =

∫ b

a

f(x) dx = st

(
b∑
a

f(x)4x

)
.

a

From now on when we write
∫ b
a
f(x) dx, it is to be understood that dx is

some positive infinitesimal. By Theorem 4.7, it doesn’t matter which one.

Theorem 4.9. The definite integral
∫ b
a
f(x) dx is an area function for f .

Proof. The Rectangle Property follows at once from Theorem 4.6, which
gives

m ≤ f(x) ≤M,

m(b− a) =

∫ b

a

mdx ≤
∫ b

a

f(x) dx ≤
∫ b

a

M dx = M(b− a).

By Theorem 4.7, it suffices to prove the Addition Property for one positive
infinitesimal dx. Let a < b < c in I. Let n be a positive integer and let
4x = (b − a)/n. Then b = n4x is an endpoint of one of the subintervals of
length 4x in the partition of [a, c], so

c∑
a

f(x)4x =

b∑
a

f(x)4x+

c∑
b

f(x)4x.(34)

Thus every real solution of

n ∈ Z, 0 < n, 4x = (b− a)/n(35)

is a solution of (34). Now let n1 be a positive infinite hyperinteger and let
dx = (b − a)/n1. (n1, dx) is a hyperreal solution of (35). By the Transfer
Axiom, dx is a solution of (34), so

c∑
a

f(x) dx =

b∑
a

f(x) dx+

c∑
b

f(x) dx.
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Since dx is positive infinitesimal, we may take standard parts and obtain the
Addition Property for f and dx,∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx.

a

4B. Fundamental Theorem of Calculus (§4.2)

We will prove that the definite integral is the only area function for f ,
and use that fact to prove the Fundamental Theorem of Calculus. We first
introduce lower and upper Riemann sums. For simplicity we consider only the
case where 4x evenly divides the interval [a, b].

Definition 4.10. Let 4x = (b − a)/n for some positive integer n. The
lower Riemann sum of f is the sum

b∑
a

m(x, x+4x)4x = m(x0, x1)4x+m(x1, x2)4x+ · · ·+m(xn−1, xn)4x,

and the upper Riemann sum of f is the sum

b∑
a

M(x, x+4x)4x = M(x0, x1)4x+M(x1, x2)4x+ · · ·+M(xn−1, xn)4x,

where

m(x, x+4x) = minimum value of f on [x, x+4x],

M(x, x+4x) = maxumum value of f on [x, x+4x],

xk = a+ k4x.

Geometrically, the lower Riemann sum is the sum of the inscribed rectangles,
and the upper Riemann sum is the sum of the circumscribed rectangles. For a
given real function f continuous on [a, b], the lower and upper Riemann sums

b∑
a

m(x, x+4x)4x,
b∑
a

M(x, x+4x)4x, 4x = (b− a)/n

are real functions of n, and are defined whenever n is a positive integer. By
Transfer, their natural extensions are defined for any positive hyperinteger.
Given a positive infinite hyperinteger H, we let dx = (b − a)/H and call the
natural extensions

b∑
a

m(x, x+ dx) dx,

b∑
a

M(x, x+ dx) dx

the infinite lower and upper Riemann sums of f with respect to dx.
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Lemma 4.11. The infinite lower and upper Riemann sums are infinitely
close to each other,

b∑
a

m(x, x+ dx) dx ≈
b∑
a

M(x, x+ dx) dx.

Proof. For each positive integer n with 4x = (b− a)/n, we have

b∑
a

m(x, x+4x)4x ≤
b∑
a

M(x, x+4x)4x,

so by Transfer,

b∑
a

m(x, x+ dx) dx ≤
b∑
a

M(x, x+ dx) dx.

We must show that for each positive real r,

b∑
a

M(x, x+ dx) dx <

b∑
a

m(x, x+ dx) dx+ r.(36)

The proof is like that of Theorem 4.7. Let c = r/(b− a). Consider a positive
integer n with 4x = (b− a)/n. If

b∑
a

M(x, x+4x)4x ≥
b∑
a

m(x, x+4x)4x+ r,

then there must be an x such that

M(x, x+4x) ≥ m(x, x+4x) + c.

But M(x, x+4x) = f(y) and m(x, x+4x) = f(z) for some y, z ∈ (x, x+4x).
Thus any real solution of

n ∈ Z, 0 < n, 4x = (b− a)/n,

b∑
a

M(x, x+4x)4x ≥
b∑
a

m(x, x+4x)4x+ r

(37)

is a partial real solution of

a ≤ y ≤ b, a ≤ z ≤ b, |y − z| ≤ 4x, f(y) ≥ f(z) + c.(38)

Now let dx = (b− a)/n1 where n1 is a positive infinite hyperinteger. Suppose
(36) fails,

b∑
a

M(x, x+ dx) dx ≥
b∑
a

m(x, x+ dx) dx+ r.

Then (n1, dx) is a hyperreal solution of (37). By the Partial Solution The-
orem, (n1, dx) is a partial hyperreal solution of (38), so there is a solution
(n1, dx, y1, z1) of (38). It follows that

y1 ≈ z1, f(y1) 6≈ f(z1),
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contradicting the continuity of f . We conclude that (36) holds. a

Theorem 4.12. The definite integral is the only area function for f .

Proof. Let A(u, v) and B(u, v) be area functions for f . Let a < b in I.
For each positive integer n with 4x = (b−a)/n, the Rectangle Property gives

m(xk, xk+1)4x ≤ A(xk, xk+1) ≤M(xk, xk+1)4x, k = 0, 1, . . . , n− 1,

and by the Addition Property,

b∑
a

m(x, x+4x)4x ≤ A(a, b) ≤
b∑
a

M(x, x+4x)4x.

Let n1 be a positive infinite hyperinteger and dx = (b− a)/n1. By Transfer,

b∑
a

m(x, x+ dx) dx ≤ A(a, b) ≤
b∑
a

M(x, x+ dx) dx.

Similarly,

b∑
a

m(x, x+ dx) dx ≤ B(a, b) ≤
b∑
a

M(x, x+ dx) dx.

By Lemma 4.11,
A(a, b) ≈ B(a, b),

and since A(a, b) and B(a, b) are real they must be equal. If b ≤ a they are
still equal because A(a, a) = B(a, a) = 0, and

A(b, a) = −A(a, b) = −B(a, b) = B(b, a).

a

Definition 4.13. Suppose the domain of f is an open interval I. A func-
tion F is said to be the antiderivative of f on I if f is the derivative of F
on I.

Theorem 4.14. (Fundamental Theorem of Calculus) Suppose I is an open
interval, a ≤ b in I, and F is the antiderivative of f on I. Then∫ b

a

f(x) dx = F (b)− F (a).

Proof. Let D(a, b) = F (b)−F (a). We show that D is an area function for
f . Since the definite integral is the only area function for f by Theorem 4.12,
it will follow that D is equal to the definite integral of f .

Addition Property:

D(a, c) = F (c)− F (a) = (F (b)− F (a)) + (F (c)− F (b)) = D(a, b) +D(b, c).

Rectangle Property: By the Mean Value Theorem 3.30 there is a point
c ∈ (a, b) such that

f(c) = F ′(c) =
F (b)− F (a)

b− a
,
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f(c)(b− a) = F (b)− F (a) = D(a, b).

By the Extreme Value Theorem 3.28, f has a minimum value m and a maxi-
mum value M on [a, b]. Then

m ≤ f(c) ≤M,

m(b− a) ≤ f(c)(b− a) ≤M(b− a),

m(b− a) ≤ D(a, b) ≤M(b− a).

Thus D has the Rectangle Property and hence D is an area function for f . a

Theorem 4.15. Suppose the domain of f is an open interval I, and F is
an antiderivative of f . Then the set of all antiderivatives of f is equal to the
set of all functions which differ from F by a constant.

Proof. For any constant C0, F (x) + C0 has the same derivative as F and
hence is an antiderivative of f . Suppose G is an antiderivative of f , and let
H(x) = F (x)−G(x). We prove that H is constant. We have

H ′(x) = F ′(x)−G′(x) = f(x)− f(x) = 0.

By the Mean Value Theorem 3.30, whenever a < b in I there is a point c in
(a, b) such that

0 = H ′(c) =
H(b)−H(a)

b− a
.

Therefore H(b) = H(a), and H is a constant function. a

Definition 4.16. The set of all antiderivatives of f is called the indefinite
integral of f , and is written

∫
f(x) dx.

The set of all functions which differ from F by a constant is denoted by

F (x) + C.

If F is an antiderivative of f , then Theorem 4.15 states that∫
f(x) dx = F (x) + C.

The techniques for evaluating integrals in this treatment are exactly the same
as in the standard calculus treatment. As usual, one can evaluate a definite
integral by finding an antiderivative and using the Fundamental Theorem of
Calculus. Notice that we have not yet proved that every continuous real func-
tion f has an antiderivative. This will be done in the next section.

4C. Second Fundamental Theorem of Calculus (§4.2)

In this section let I be an arbitrary interval and suppose f has domain I
and is continuous on I. We may regard the definite integral

∫ w
u
f(t) dt as a

real function of two variables defined for all u,w ∈ I. By the Function Axiom,∫ w
u
f(t) dt is also defined when u and w are hyperreal numbers in I∗.
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Theorem 4.17. (Second Fundamental Theorem of Calculus) Let a ∈ I and
define F (x) for all x ∈ I by

F (x) =

∫ x

a

f(t) dt.

(i) F is continuous on I.
(ii) F is an antiderivative of f on the interior of I.

Proof. (i) Let c ∈ I and let 4x be an infinitesimal such that c+4x ∈ I∗.
We must show that

F (c+4x) ≈ F (c).(39)

Suppose 4x > 0, and let b be a point in I such that c < c + 4x < b. By
the Extreme Value Theorem 3.28, f has a minimum value m and a maximum
value M in [c, b]. For each positive real number u < b− c we have

F (c+ u)− F (c) =

∫ c+u

c

f(t) dt,

mu ≤
∫ c+u

c

f(t) dt ≤Mu,

and hence
mu ≤ F (c+ u)− F (c) ≤Mu.

By Transfer we have

m4x ≤ F (c+4x)− F (c) ≤M4x,
and (39) follows. The case 4x < 0 is similar.

(ii) Let c be an interior point of I and let4x be nonzero infinitesimal. Again
suppose 4x > 0 and let b ∈ I, c < c + 4x < b. Consider a real number
u ∈ (0, b − c). By the Extreme Value Theorem 3.28, in the interval [c, c + u]
the function f has a minimum at some point y and a maximum at some point
z. Then

F (c+ u)− F (c) =

∫ c+u

c

f(t) dt,

f(y)u ≤
∫ c+u

c

f(t) dt ≤ f(z)u.

Then any real solution of

0 < u < b− c(40)

is a partial real solution of

c ≤ y ≤ c+ u, c ≤ z ≤ c+ u, f(y)u ≤ F (c+ u)− F (c) ≤ f(z)u.(41)

u = 4x is a hyperreal solution of (40). By the Partial Solution Theorem, it is
a partial hyperreal solution of (41). Thus there are hyperreal numbers y1, z1
such that

y1 ≈ c, z1 ≈ c, f(y1)4x ≤ F (c+4x)− F (c) ≤ f(z1)4x.
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Then

f(y1) ≤ F (c+4x)− F (c)

4x
≤ f(z1).

Using the continuity of f ,

f(c) = st(f(y1)) ≤ st
(
F (c+4x)− F (c)

4x

)
≤ st(f(z1)) = f(c),

whence

f(c) = st

(
F (c+4x)− F (c)

4x

)
.

A similar argument works when 4x < 0. It follows that

f(c) = F ′(c).

a

We now use the Second Fundamental Theorem to give a short alternate
proof of the Fundamental Theorem of Calculus in Section 4B. This proof does
not depend on the fact that the area function for f is unique.

Alternate Proof of the Fundamental Theorem of Calculus Let
G be an antiderivative of f . Since any two antiderivatives differ by a constant,

G(x) =

∫ x

a

f(t) dt+ C0

for some constant C0. Then

G(b)−G(a) =

(∫ b

a

f(t) dt+ C0

)
−
(∫ a

a

f(t) dt+ C0

)
=

∫ b

a

f(t) dt.





CHAPTER 5

LIMITS

5A. ε, δ Conditions for Limits (§5.8, §5.1)

We show that the infinitesimal definitions of limit, continuity, uniform conti-
nuity, differentiability, and uniform differentiability are equivalent to the stan-
dard ε, δ definitions. These equivalence theorems will be useful later on. In
this section, f is a real function. We start with the equivalence theorem for
finite limits.

Theorem 5.1. Let c, L be real numbers. The following are equivalent.
(i) limx→c f(x) = L. That is, whenever x ≈ c, we have f(x) ≈ L.
(ii) There exists a hyperreal δ > 0 such that whenever 0 < |x − c| < δ, we

have f(x) ≈ L.
(iii) The ε, δ condition: For every real ε > 0 there is a real δ > 0 such that

whenever x is real and 0 < |x− c| < δ, we have |f(x)− L| < ε.

Proof. (i) obviously implies (ii), with δ being any positive infinitesimal.
To prove (ii) implies (iii), assume (iii) fails for some real ε > 0. Then every
real δ > 0 is a partial real solution of

0 < |x− c| < δ, |f(x)− L| ≥ ε.(42)

Let δ1 > 0 be hyperreal. By the Partial Solution Theorem 1.20, there is a
hyperreal x1 such that (42) holds, and therefore

0 < |x1 − c| < δ1, f(x1) 6≈ L.

Thus if (iii) fails then (ii) fails, so (ii) implies (iii).
Assume (iii). Let x1 ≈ c. Let ε be any positive real number, and let δ be

the corresponding positive real number in the ε, δ condition. Then every real
solution of

0 < |x− c| < δ

is a solution of

|f(x)− L| < ε.

We have 0 < |x1 − c| < δ, and then by Transfer, |f(x1) − L| < ε. Since this
holds for all positive real ε, f(x1) ≈ L. a

71
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Condition (ii) in the above theorem is sometimes easier to verify than (i).
Here is the equivalence theorem for continuity.

Corollary 5.2. Let c a real number. The following are equivalent.
(i) f is continuous at c. That is, whenever x ≈ c, we have f(x) ≈ f(c).
(ii) There is a hyperreal δ > 0 such that whenever |x − c| < δ, we have

f(x) ≈ f(c).
(iii) The ε, δ condition: For every real ε > 0 there is a real δ > 0 such that

for all real x ∈ (c− δ, c+ δ), we have |f(x)− f(c)| < ε.

We next give the equivalence theorem for differentiability.

Corollary 5.3. Let c, S be real numbers. The following are equivalent.
(i) f ′(c) = S. That is, whenever 4x ≈ 0 but 4x 6= 0, we have

f(c+4x)− f(c)

4x
≈ S.

(ii) There is a hyperreal δ > 0 such that whenever 0 < |4x| < δ, we have

f(c+4x)− f(c)

4x
≈ S.

(iii) The ε, δ condition: For every real ε > 0 there is a real δ > 0 such that
whenever 4x is real and 0 < |4x| < δ, we have∣∣∣∣f(c+4x)− f(c)

4x
− S

∣∣∣∣ < ε.

Here is the equivalence theorem for uniform differentiability.

Theorem 5.4. Let c, S be real numbers. The following are equivalent.
(i) f ′(c) = S and f is uniformly differentiable at c.
(ii) There is a hyperreal δ > 0 such that whenever 0 < |4x| < δ and

|x− c| < δ, we have
f(x+4x)− f(x)

4x
≈ S.

(iii) The ε, δ condition: For every real ε > 0 there is a real δ > 0 such that
for all real 4x, x with 0 < |4x| < δ and |x− c| < δ, we have∣∣∣∣f(x+4x)− f(x)

4x
− S

∣∣∣∣ < ε.

Proof. The proof is similar to Theorem 5.1. (i) clearly implies (ii) where
δ is any positive infinitesimal. Assume (iii) fails for some real ε > 0. Then any
real δ > 0 is a partial real solution of

0 < |4x| < δ, |x− c| < δ,

∣∣∣∣f(x+4x)− f(x)

4x
− S

∣∣∣∣ ≥ ε.(43)

Let δ1 be hyperreal. By the Partial Solution Theorem there are hyperreal 4x1
and x1 such that (43) holds, and therefore (ii) fails. Thus (ii) implies (iii).
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Assume (iii), let 4x1 ≈ 0, 4x1 6= 0, and x1 ≈ c. Let ε > 0 be real and take
the corresponding real δ > 0. Then every real solution of

|x− c| < δ, 0 < |4x| < δ

is a solution of ∣∣∣∣f(x+4x)− f(x)

4x
− S

∣∣∣∣ < ε.

By Transfer, this also holds for 4x1 and x1, and therefore (i) holds. a

We now state, without proof, versions of Theorem 5.1 and Corollary 5.2
restricted to a set Y ⊆ R.

Theorem 5.5. Let Y ⊆ R and c ∈ Y , and let L be real. The following are
equivalent.

(i) limx→c,x∈Y f(x) = L. That is, whenever x ∈ Y ∗, x ≈ c, and x 6= c, we
have f(x) ≈ L.

(ii) There is a hyperreal δ > 0 such that whenever x ∈ Y ∗ and 0 < |x−c| < δ,
we have f(x) ≈ L.

(iii) The ε, δ condition: For every real ε > 0 there is a real δ > 0 such that
whenever x ∈ Y and 0 < |x− c| < δ, we have |f(x)− L| < ε.

Corollary 5.6. Let Y ⊆ R. The following are equivalent.
(i) f is continuous on Y . That is, whenever c ∈ Y, x ∈ Y ∗, x ≈ c, and

x 6= c, we have f(x) ≈ f(c).
(ii) For each c ∈ Y there exists a hyperreal δ > 0 such that whenever x ∈ Y ∗

and 0 < |x− c| < δ, we have f(x) ≈ f(c).
(iii) The ε, δ condition: For every real ε > 0 and c ∈ Y there is a real δ > 0

such that whenever x ∈ Y and 0 < |x− c| < δ, we have |f(x)− f(c)| < ε.

Our next result is an equivalence theorem for uniform continuity.

Theorem 5.7. Let Y ⊆ R. The following are equivalent.
(i) f is uniformly continuous on Y . That is, whenever x, y ∈ Y ∗ and x ≈ y,

we have f(x) ≈ f(y).
(ii) There is a hyperreal δ > 0 such that whenever x, y ∈ Y ∗ and |x−y| < δ,

we have f(x) ≈ f(y).
(iii) The ε, δ condition: For every real ε > 0 there is a real δ > 0 such that

whenever x, y ∈ Y and 0 < |x− y| < δ, we have |f(x)− f(y)| < ε.

Proof. (i) trivially implies (ii). Assume (iii) fails for some real ε > 0. Then
every real δ > 0 is a partial real solution of

x ∈ Y, y ∈ Y, |x− y| < δ, |f(x)− f(y)| ≥ ε.(44)

Hence every hyperreal δ1 > 0 is a partial hyperreal solution of (44). So there
exist x1, y1 ∈ Y ∗ such that |x1 − y1| < δ1 but f(x1) 6≈ f(y1). This shows that
the failure of (iii) implies the failure of (ii), so (ii) implies (iii).
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Assume (iii). Let x1, y1 ∈ Y ∗ and x1 ≈ y1. Let ε be any positive real and let
δ > 0 be the corresponding number in the ε, δ condition. Every real solution
of

x ∈ Y, y ∈ Y, |x− y| < δ(45)

is a solution of

|f(x)− f(y)| < ε.(46)

(x1, y1) is a hyperreal solution of (45). By Transfer, (x1, y1) is a hyperreal
solution of (46). Since this holds for all real ε > 0, f(x1) ≈ f(y1). a

We conclude this section with a discussion of infinite limits.

Definition 5.8. Let c and L be real numbers.
limx→∞ f(x) = L if f(H) ≈ L for every positive infinite H.
limx→c f(x) =∞ if f(x) is positive infinite whenever x ≈ c but x 6= c.

We state equivalence theorems for these limits without proof.

Theorem 5.9. The following are equivalent, where L is real.
(i) limx→∞ f(x) = L.
(ii) There is a hyperreal number K such that whenever H > K, we have

f(H) ≈ L.
(iii) The ε,M condition: For every real ε > 0 there is a real number M such

that whenever x is real and x > M , we have |f(x)− L| < ε.

Theorem 5.10. The following are equivalent, where c is real.
(i) limx→c f(x) =∞.
(ii) There is a hyperreal δ > 0 such that whenever 0 < |x − c| < δ, f(x) is

positive infinite.
(iii) The M, δ condition: For every real number M there is a real δ > 0 such

that whenever x is real and 0 < |x− c| < δ, we have f(x) > M .

Limits such as limx→∞ f(x) =∞, negative infinite limits, and infinite limits
restricted to a set Y ⊆ R, are defined analogously and have similar equivalence
theorems.

5B. L’Hospital’s Rule (§5.2)

In this section f and g are real functions. The proof of l’Hospital’s Rule
uses the Generalized Mean Value Theorem, whose proof is elementary and can
be found in Elementary Calculus.

Theorem 5.11. (Generalized Mean Value Theorem) Suppose f and g are
continuous on the closed interval [a, b] and differentiable on the open interval
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(a, b). Assume further that g′(x) 6= 0 for x ∈ (a, b). Then there is a point
t ∈ (a, b) such that

f ′(t)

g′(t)
=
f(b)− f(a)

g(b)− g(a)
.

Theorem 5.12. (L’Hospital’s Rule for 0/0). Suppose that for all x in some
real open interval (c, b), f ′(x) and g′(x) exist and g′(x) 6= 0. Assume that

lim
x→c+

f(x) = 0, lim
x→c+

g(x) = 0.

If limx→c+(f ′(x)/g′(x)) exists, then

lim
x→c+

f(x)

g(x)
= lim
x→c+

f ′(x)

g′(x)
.

Proof. Let limx→c+(f ′(x)/g′(x)) = L. We may set f(c) = 0 and g(c) = 0,
so f and g are continuous on [c, b). By the Generalized Mean Value Theorem,
every real solution of

c < x < b

is a partial real solution of

c < t < x,
f ′(t)

g′(t)
=
f(x)− f(c)

g(x)− g(c)
,

which simplifies to

c < t < x,
f ′(t)

g′(t)
=
f(x)

g(x)
.(47)

Now let x1 ≈ c and x1 > c. By the Partial Solution Theorem there exists t1
such that (47) holds. Thus

t1 6= c, t1 ≈ c,
f ′(t1)

g′(t1)
=
f(x1)

g(x1)
.

Since L = limt→c+(f ′(t)/g′(t)), we have

L ≈ f ′(t1)

g′(t1)
=
f(x1)

g(x1)
, L = lim

x→c+
f(x)

g(x)
.

a

L’Hospital’s Rule also holds when either c or L or both are replaced by ∞
or −∞, and for x → c− and x → c, with only routine changes in the proof.
The proof of l’Hospital’s Rule for ∞/∞ is more difficult.

Theorem 5.13. (L’Hospital’s Rule for ∞/∞) Suppose that for all x in
some real open interval (c, b), f ′(x) and g′(x) exist and g′(x) 6= 0. Assume
that

lim
x→c+

f(x) =∞, lim
x→c+

g(x) =∞.
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If limx→c+(f ′(x)/g′(x)) exists, then

lim
x→c+

f(x)

g(x)
= lim
x→c+

f ′(x)

g′(x)
.

Proof. We will use Theorem 5.1. Let L = limx→c+(f ′(x)/g′(x)). By the
Generalized Mean Value Theorem every real solution of

c < x < y < c+ r(48)

is a partial solution of

x < t < y,
f ′(t)

g′(t)
=
f(y)− f(x)

g(y)− g(x)
,

which we rewrite as

x < t < y,
f ′(t)

g′(t)
=

f(x)
g(x) −

f(y)
g(x)

1− g(y)
g(x)

.(49)

Let y1 ≈ c and y1 > c. Then f(y1) and g(y1) are positive infinite, and so is
their product K = f(y1)g(y1). By the M, δ condition for limx→c+ g(x) = ∞,
for every real M there is a real δ(M) such that every real solution of

c < x < c+ δ(M)

is a solution of g(x) > M . Let δ1 be such that 0 < δ1 ≤ δ(K) and c+ δ1 < y1.
Consider any x1 with c < x1 < c+ δ1. By Transfer, g(x1) > K. Moreover,

c < x1 < y1 < c+ x,

so by the Partial Solution Theorem there is a t1 such that (49) holds. Then

t1 ≈ c,
f ′(t1)

g′(t1)
≈ L.

Also, ∣∣∣∣f(y1)

g(x1)

∣∣∣∣ ≤ ∣∣∣∣f(y1)

K

∣∣∣∣ =

∣∣∣∣ f(y1)

f(y1)g(y1)

∣∣∣∣ ≈ 0

so (f(y1)/g(x1)) ≈ 0. Similarly (g(y1)/g(x1)) ≈ 0. Taking standard parts in
(49), we have

st

(
f ′(t1)

g′(t1)

)
= st

 f(x1)
g(x1)

− f(y1)
g(x1)

1− g(y1)
g(x1)

 ,

whence

L ≈ f ′(t1)

g′(t1)
≈ f(x1)

g(x1)
.

Since this holds for all c < x1 < c+ δ1, we see from Theorem 5.1 that

L = lim
x→c+

f(x)

g(x)
.

a



CHAPTER 6

APPLICATIONS OF THE INTEGRAL

6A. Infinite Sum Theorem (§6.1, §6.2, §6.6)

The Infinite Sum Theorem, which is a nonstandard version of Duhamel’s
Principle, is a simple and extremely useful criterion for a quantity to be equal
to the definite integral of a function. It can be used to justify many familiar
applications of the integral in geometry and physics. It captures the intuitive
idea of obtaining an integration formula by considering a typical infinitesimal
element and adding up.

Recall from Chapter 2 that given a nonzero infinitesimal 4x,

u ≈ v (compared to 4x)

means that
u

4x
≈ v

4x
.

Theorem 6.1. (Infinite Sum Theorem) Assume that
(i) h is a real function which is continuous on the interval [a, b].
(ii) B(u,w) is a real function which has the Addition Property,

B(u,w) = B(u, v) +B(v, w) for u < v < w in [a, b].

(iii) For any infinitesimal subinterval [x, x+4x]∗ of [a, b]∗,

B(x, x+4x) = h(x)4x (compared to 4x) .

Then

B(a, b) =

∫ b

a

h(x) dx.

We will write

4B = B(x, x+4x).

The Infinite Sum Theorem intuitively says that if each infinitesimal piece 4B
is infinitely close to h(x)4x (compared to 4x), then the sum B(a, b) of all the

4B’s is infinitely close to the Riemann sum
∑b
a h(x)4x.

77
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Proof. Let n1 be a positive infinite hyperinteger and let 4x1 = (b−a)/n1.
We will prove that for every positive real number r,

b∑
a

(h(x)− r)4x1 < B(a, b) <

b∑
a

(h(x) + r)4x1.

This will show that

b∑
a

h(x)4x1 − r(b− a) < B(a, b) <

b∑
a

h(x)4x1 + r(b− a),

so
b∑
a

h(x)4x1 ≈ B(a, b)

and ∫ b

a

h(x) dx = B(a, b).

Consider a positive integer n and let 4x = (b− a)/n. By the Addition Prop-
erty,

B(a, b) =

b∑
a

B(x, x+4x).

It follows that every real solution of

n ∈ Z, 0 < n, 4x = (b− a)/n, B(a, b) ≥
b∑
a

(h(x) + r)4x(50)

is a partial real solution of

a ≤ x < x+4x ≤ b, B(x, x+4x) ≥ (h(x) + r)4x.(51)

We may rewrite (51) as

a ≤ x < x+4x ≤ b, B(x, x+4x)

4x
≥ h(x) + r.(52)

By hypothesis (iii), there is no hyperreal number x1 such that (52) holds for
x1,4x1. By the Partial Solution Theorem 1.20, (50) cannot hold for n1,4x1,
so

B(a, b) <

b∑
a

(h(x) + r)4x1.

The proof that

B(a, b) >

b∑
a

(h(x)− r)4x1

is similar. a
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A standard form of the Infinite Sum Theorem can be found, for example, in
the book Buck [B], Section 3.5. This treatment also covers the two variable
case, which is given in Chapter 12 of this monograph. The Infinite Sum The-
orem is actually a sharp form of Theorem 4.12 which states that the definite
integral of f is the unique area function for f . As a first illustration of how
the Infinite Sum Theorem is used, we give a second proof of the uniqueness of
the area function.

Theorem 4.12 (Repeated) The definite integral is the only area function
for a continuous function f on [a, b].

Second Proof. We show that for any area function B(u, v) for f ,

B(a, b) =

∫ b

a

f(x) dx.

B(u, v) has the Addition Property. Consider any infinitesimal subinterval
[x, x+4x]∗ of [a, b]∗. By the Hyperreal Extreme Value Theorem 3.33, f has a
minimum value m and a maximum value M in [x, x+4x]∗. By the Rectangle
Property in Definition 4.1 and Transfer,

m4x ≤M4x, m ≤ 4B/4x ≤M.

Since f is continuous,

m ≈ f(x) ≈M,

so

f(x) ≈ 4B/4x,
f(x)4x ≈ 4B (compared to 4x) .

Then by the Infinite Sum Theorem,

B(a, b) =

∫ b

a

f(x) dx.

a

At this point we need the real constant π.

Definition 6.2. π is the area of the unit circle x2 + y2 = 1,

π =

∫ 1

−1
2
√

1− x2 dx.

It follows by a change of variables that the circle x2 + y2 = r2 of radius r
has area A = πr2.

We will now use the Infinite Sum Theorem to justify several formulas in ge-
ometry and physics. In each case we start with intuitively reasonable assump-
tions about the infinitesimal elements and apply the Infinite Sum Theorem to
get an integration formula. We first justify the formulas for volumes of solids
of revolution.
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Definition 6.3. Let D be a basic region in the plane of the form

D = {(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ g(x)}.
(i) The solid formed by revolving D about the x axis has volume

V =

∫ b

a

π(g(x))2 dx.

(ii) The solid formed by revolving D about the y axis has volume

V =

∫ b

a

2π x g(x) dx.

Justification. (i) We use the disc method. Let V (u,w) be the volume
of the solid generated around the x axis by the region between 0 and g over
[u,w]. We assume:

(a) V (u,w) has the Addition Property.
(b) Subset Property: If S and T are solids of revolution and S ⊆ T , the

volume of S is at most the volume of T .
(c) A right circular cylinder with base of radius r and thickness h has volume

πr2h.
We use (b) and (c) for solids generated by regions over an infinitesimal

subinterval [x, x+4x]∗ of [a, b]∗. The region between 0 and g over [x, x+4x]∗

generates an infinitely thin disc of volume 4V . g has minimum value m and
maximum value M in [x, x +4x]∗, so 4V has a inscribed cylinder of radius
m and a circumscribed cylinder of radius M . Both cylinders have thickness
4x, so by (b) and (c),

πm24x ≤ 4V ≤ πM24x.
By continuity, m ≈ g(x) ≈M , so

4V ≈ π(g(x))24x (compared to 4x) .

The Infinite Sum Theorem gives

V (a, b) =

∫ b

a

π(g(x))2 dx.

(ii) We use the cylindrical shell method. This time V (u,w) denotes the
volume generated about the y axis by the region between 0 and g over [u,w].
We assume the same properties (a)—(c). The region between 0 and g over
[x, x+4x]∗ generates a volume 4V shaped like an infinitely thin cylindrical
shell. By (a) and (c), the inscribed cylindrical shell has volume

π(x+4x)2m− πx2m = π(2x+4x)4xm.
Using a similar formula for the circumscribed shell and (b), we have

π(2x+4x)4xm ≤ 4V ≤ π(2x+4x)4xM,

π(2x+4x)m ≤ 4V/4x ≤ π(2x+4x)M.
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By continuity, m ≈ g(x) ≈M , so

4V/4x ≈ π(2x+4x)g(x) ≈ 2π x g(x),

4V ≈ 2π x g(x)4x (compared to 4x) .

The Infinite Sum Theorem gives

V (a, b) =

∫ b

a

2π x g(x) dx.

a

We give just one example from physics here. Other examples are sketched
in Elementary Calculus, and the detailed use of the Infinite Sum Theorem can
be readily worked out.

Definition 6.4. Suppose a plane object occupies the basic region

a ≤ x ≤ b, 0 ≤ y ≤ g(x)

and its density (mass per unit area) at (x, y) is a continuous function ρ(x) of
x alone. The mass of the object is

mass =

∫ b

a

g(x) ρ(x) dx.

Justification. Let m(u,w) be the mass of the piece of the object from
x = u to x = v. Our assumptions are:

(a) m(u,w) has the Addition Property.
(b) If the region occupied by a plane object S is a subset of the region

occupied by a plane object T , and the density of S is everywhere at most the
density of T , then the mass of S is at most the mass of T .

(c) The mass of a vertical rectangular object of constant density is the
product of the base, the height, and the density.

On an infinitesimal subinterval [x, x +4x]∗ of [a, b]∗, the continuous func-
tions g and ρ have minimum values gmin, ρmin and maximum values gmax, ρmax.
4m is an infinitely thin strip of width 4x. Using (b) and (c),

gmin ρmin4x ≤ 4m ≤ gmax ρmax4x.

By continuity,

gmin ≈ g(x) ≈ gmax, ρmin ≈ ρ(x) ≈ ρmax,

and hence

4m ≈ g(x) ρ(x)4x (compared to 4x) .

Applying the Infinite Sum Theorem,

m(a, b) =

∫ b

a

g(x) ρ(x) dx.

a
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6B. Lengths of Curves (§6.3, §6.4)

Definition 6.5. A real curve

y = f(x), x ∈ [a, b]

is said to be smooth if the derivative dy/dx is continuous on [a, b]. The
length of a smooth curve is defined as

s =

∫ b

a

√
1 +

(
dy

dx

)2

dx.

Justification. Let s(u,w) be the intuitive length of the curve segment
over the interval [u,w]. Our assumptions are:

(a) s(u,w) has the Addition Property.
(b) If the slope of a smooth curve is infinitely close to the slope of the chord

from P (x, y) to Q(x+4x, y +4y) at every point of [x, x+4x]∗, then

4s√
4x2 +4y2

≈ 1.

Here4s is the length of the curve segment over [x, x+4x]∗ and
√
4x2 +4y2

is the length of the chord.
On an infinitesimal subinterval [x, x+4x]∗, the infinitesimal curve segment

4s connects P (x, y) to Q(x+4x, y+4y). The chord from P to Q has slope
4y/4x. It follows from Corollary 3.38 on continuous derivatives that f ′(x) ≈
4y/4x. Since f ′ is continuous, f ′(u) ≈ 4y/4x for all u ∈ [x, x +4x]∗. By
(b) and (c),

4s√
4x2 +4y2

≈ 1.

Then

4s
4x

=
4s√

4x2 +4y2
·
√
4x2 +4y2
4x

=
4s√

4x2 +4y2

√
1 +

(
4y
4x

)2

≈

√
1 +

(
dy

dx

)2

Since dy/dx ≈ 4y/4x,

4s
4x
≈

√
1 +

(
4y
4x

)2

≈

√
1 +

(
dy

dx

)2

,

4s ≈

√
1 +

(
dy

dx

)2

4x (compared to 4x) .
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By the Infinite Sum Theorem,

s(a, b) =

∫ b

a

√
1 +

(
dy

dx

)2

dx.

a
As an application of the length formula we obtain the classical formula for

the area of a sector of a circle.

Theorem 6.6. On the circle x2 + y2 = r2 of radius r, let P be the point
(r, 0) and let Q be a point (x, y) in the first quadrant. Then the area A of the
sector POQ is given by the formula A = 1

2 rs, where s is the length of the arc
PQ.

Proof. Since the circle is vertical at P , we will take y as the independent
variable instead of x. In the first quadrant the circle has the equation

x =
√
r2 − y2.

Then

s =

∫ y

0

√
1 +

(
dx

dy

)2

dy,

dx

dy
= − y√

r2 − y2
= −y

x
,√

1 +

(
dx

dy

)2

=

√
1 +

y2

x2
=

√
x2 + y2

x
=
r

x
.

Let A be the area of the sector POQ,

A =

∫ y

0

√
r2 − u2 du− 1

2
x y.

Letting y vary, we have

dA

dy
=
√
r2 − y2 − 1

2

(
x+ y

dx

dy

)
= x− 1

2
x− 1

2
y
(
−y
x

)
=
x2 + y2

2x
=
r2

2x
.

Therefore

dA

dy
=

1

2
r

√
1 +

(
dx

dy

)2

.

Integrating from 0 to y we obtain

A =
1

2
r

∫ y

0

√
1 +

(
dx

dy

)2

dy =
1

2
r s.

a
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Corollary 6.7. The circle x2 + y2 = r2 has circumference 2πr.

Proof. This follows from the formula A = πr2 for the area of the circle.
By symmetry, the first quadrant of the circle has area A = 1

4πr
2. By Theorem

6.6, A = 1
2 rs where s is the arc length of the first quadrant. Solving for s we

get s = 1
2 πr. By symmetry again, the circumference is C = 4s = 2πr. a

We next define the length of a parametric curve.

Definition 6.8. A parametric curve is a pair of continuous functions

x = f(t), y = g(t), t ∈ [a, b].

It is said to be smooth if at every point t ∈ [a, b], f ′ and g′ are continuous
and at least one of f ′(t), g′(t) is nonzero. The path of the parametric curve
is the set

{(f(t), g(t)) : a ≤ t ≤ b}.
The length of a smooth parametric curve is the integral

s =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

The justification of the parametric length formula is exactly like the justifi-
cation of the length formula for curves of the form y = f(x). Notice that when
x = t, the parametric equation and length formula reduce to the special case

y = g(x), a ≤ x ≤ b, s =

∫ b

a

√
1 +

(
dy

dx

)2

dx.

Definition 6.9. A smooth parametric curve

C : x = f(t), y = g(t), t ∈ [a, b]

is said to be simple if C maps [a, b] one to one onto its path and there is no
t with f ′(t) = g′(t) = 0. C1 is a reparametrization of C if C and C1 are
simple parametric curves with the same path P .

The next theorem shows that the length of a simple parametric curve de-
pends only on its path.

Theorem 6.10. (Reparametrization Theorem) Let

C : x = f(t), y = g(t), t ∈ [a, b]

be a simple parametric curve.
(i) A parametric curve

C1 : x = F (u), y = G(u), u ∈ [A,B]

is a reparametrization of C if and only if there is a smooth function t = h(u)
mapping [A,B] onto [a, b] such that h′(u) is never zero and for all u ∈ [A,B],

F (u) = f(h(u)), G(u) = g(h(u)).

(ii) If C1 is a reparametrization of C then C and C1 have the same length.
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Proof. (i) Suppose C1 is a reparametrization of C. There are two cases
for the endpoints.

Case 1: F (A) = f(a), G(A) = g(a).
Case 2: F (A) = f(b), G(A) = g(b).
We give the proof in Case 1, where both curves move in the same direction.

Case 2 is similar, but with the curves moving in opposite directions. Since C
and C1 are one to one functions onto the same path P , there is a function h
mapping [A,B] onto [a, b] such that whenever t = h(u),

(F (u), G(u)) = (f(t), g(t)).

The function h is one to one because C and C1 are one to one.
We claim that h is continuous. To see this, we assume that u, v ∈ [A,B]∗

and st(u) = st(v), and prove that st(h(u)) = st(h(v)). Since F and f are
continuous, and F (u) = f(h(u)), we have

f(st(h(u))) = st(f(h(u))) = st(F (u)) = F (st(u)) = F (st(v)).

Using the same argument at v,

f(st(h(v))) = st(f(h(v))) = st(F (v)) = F (st(v)).

Thus f(st(h(u))) = f(st(h(v))). A similar fact holds for g, so

(f(st(h(u))), g(st(h(u)))) = (f(st(h(v))), g(st(h(v)))).

Since the curve C maps [a, b] one to one onto the path P , we have st(h(u)) =
st(h(v)) as required.

In Case 1 we have h(A) = a. Since h is continuous and maps [A,B] one to
one onto [a, b], it follows from Theorem 3.23 that h is increasing.

We now show that h is smooth and h′(u) is never zero. LetA ≤ u < u+4u ≤
B with 4u ≈ 0, and let 4x,4y, and 4t be the corresponding changes in
x = F (u), y = G(u), and t = h(u). Since F,G, and h are continuous, 4x,4y,
and 4t are infinitesimal. By Transfer, h∗ is increasing, so 4t > 0. Since C is
a simple curve, either F ′(st(u)) 6= 0 or G′(st(u)) 6= 0, say F ′(st(u)) 6= 0. The
function F is smooth, so its derivative F ′ is continuous. Then by Theorem

3.37, F ′(st(u)) ≈ 4x/4u, and therefore4x 6= 0. It follows that
√
4x2 +4y2

is positive infinitesimal. We thus have

4t
4u

=

√
4x2 +4y2/4u√
4x2 +4y2/4t

=

√
(4x/4u)2 + (4y/4u)2√
(4x/4t)2 + (4y/4t)2

=

√
F ′(st(u))2 +G′(st(u))2√
f ′(st(t))2 + g′(st(t))2

,

so for real u, h′(u) exists and

h′(u) =

√
F ′(u)2 +G′(u)2√

f ′(h(u))2 + g′(h(u))2
6= 0.

Since h, F ′, G′, f ′, and g′ are continuous, the derivative h′ is continuous.
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We now prove the converse. Since h′ is never zero, h maps [A,B] one to
one onto [a, b]. Therefore C1 maps [A,B] one to one onto the path P . By the
Chain Rule,

F ′(u) = f ′(h(u))h′(u), G′(u) = g′(h(u))h′(u).

Thus F ′ and G′ are continuous and are never both zero, so C1 is a simple
parametric curve.

(ii) We give the proof in Case 1, where (F (A), G(A)) = (f(a), g(a)). Let h
be as in part (i). Then h′(u) > 0, so

length of C =

∫ b

a

√
f ′(t)2 + g′(t)2 dt

=

∫ B

A

√
f ′(h(u))2 + g′(h(u))2 h′(u) du

=

∫ B

A

√
F ′(u)2 +G′(u)2 du = length of C1.

The proof in Case 2, where (F (A), G(A)) = (f(b), g(b)), is similar but with
h′(u) < 0 and the integral from B to A. a

We now justify the formula for the area of a surface of revolution. Our
starting point is the elementary formula

A = π(r1 + r2)`

for the surface area of a circular cone frustum of slant height ` and bases of
radius r1 and r2.

Definition 6.11. The surface area formed by revolving a smooth curve

y = f(x), a ≤ x ≤ b
about the y axis is

A =

∫ b

a

2π x

√
1 +

(
dy

dx

)2

dx.

The surface area formed by revolving the curve about the x axis is

A =

∫ b

a

2π y

√
1 +

(
dy

dx

)2

dx.

Justification. We justify the area formula for the surface of revolution
about the y axis. Let s(u, v) and A(u, v) be the length of the curve and the
area of the surface of revolution for u ≤ x ≤ v. Assume that A(u, v) has the
Addition Property. Let [x, x +4x]∗ be an infinitesimal subinterval of [a, b]∗.
When the line segment from (x, y) to (x+4x, y+4y) is revolved about the y

axis it generates an infinitely thin cone frustum of slant height
√
4x2 +4y2

and bases of radius x and x+4x. This frustum has surface area

π(x+ (x+4x))
√
4x2 +4y2.
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The curve y = f(x) has value and slope infinitely close to the line segment
from (x, y) to (x + 4x, y + 4y) throughout the interval [x, x + 4x]∗. It is
thus reasonable to assume that the surface area 4A = A(x, x+4x) and the
frustum area have a ratio infinitely close to one,

4A
π(x+ (x+4x))

√
4x2 +4y2

≈ 1.

Since 4y/4x ≈ dy/dx,

4A
π(x+ (x+4x))

√
4x2 +4y2

≈ 4A
2π x

√
4x2 +4y2

=
4A/4x

2π x

√
1 +

(
4y
4x

)2 ≈ 4A/4x

2π x

√
1 +

(
dy
dx

)2 .
Therefore

4A ≈ 2π x

√
1 +

(
dy

dx

)2

4x (compared to 4x) ,

and by the Infinite Sum Theorem,

A(a, b) =

∫ b

a

2π x

√
1 +

(
dy

dx

)2

dx.

The justification of the area formula for the surface of revolution about the x
axis is similar. a

Given a simple parametric curve

x = f(t), y = g(t), t ∈ [a, b],

the area of the surface of revolution about the y axis is defined by

A =

∫ b

a

2π x

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

6C. Improper Integrals (§6.7)

In Chapter 4 we only considered integrals of continuous functions over closed
intervals. Using improper integrals we can integrate functions with at most
finitely many discontinuities over arbitrary intervals.

Definition 6.12. Suppose f is continuous on the half-open interval [a, b).
The improper integral of f from a to b is defined as the limit∫ b

a

f(x) dx = lim
u→b−

∫ u

a

f(x) dx.
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If the limit exists, the integral is said to converge. Otherwise the integral is
said to diverge. If the limit is ∞ we say that the integral diverges to ∞ and
write ∫ b

a

f(x) dx =∞.

Other types of improper integrals are defined analogously. For example: If f
is continuous on (a, b], ∫ b

a

f(x) dx = lim
u→a+

∫ b

u

f(x) dx.

If f is continuous on [a,∞),∫ ∞
a

f(x) dx = lim
u→∞

∫ u

a

f(x) dx.

The definitions can be rephrased using the infinitesimal definition of limit.
We state four cases.

Let f be continuous on [a, b).∫ b
a
f(x) dx = L if and only if whenever u < b but u ≈ b,

∫ u
a
f(x) dx ≈ L.∫ b

a
f(x) dx =∞ if and only if whenever u < b but u ≈ b,

∫ u
a
f(x) dx is positive

infinite.

Let f be continuous on [a,∞).∫∞
a
f(x) dx = L if and only if whenever H is positive infinite,

∫H
a
f(x) dx ≈ L.∫∞

a
f(x) dx = ∞ if and only if whenever H is positive infinite,

∫H
a
f(x) dx is

positive infinite.

Theorem 6.13. If f is continuous on [a, b], then the improper integral of f
from a to b converges and equals the definite integral.

Proof. Let F (u) =
∫ u
a
f(x) dx. By the Second Fundamental Theorem of

Calculus 4.17, F is continuous on [a, b]. Therefore∫ b

a

f(x) dx = F (b) = lim
u→b−

F (u) = lim
u→b−

∫ u

a

f(x) dx.

a

Theorem 6.14. Let f be continuous and nonnegative for x in [a,∞). Then
the improper integral

∫∞
a
f(x) dx either converges to some finite value or di-

verges to ∞.

Proof. Let F (u) =
∫ u
a
f(x) dx. By the Second Fundamental Theorem of

Calculus, F is continuous on [a,∞). Since f is nonnegative, it follows from
Theorem 4.9 that F is nondecreasing on [a,∞).

Case 1: The range of F is bounded. Then it has a least upper bound L.
Let H be positive infinite. Since every real u ≥ a is a solution of F (u) ≤ L,
Transfer gives F (H) ≤ L. Consider a real number r < L. There is a real u ≥ a
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such that F (u) > r. Any real solution of v ≥ u is a solution of F (v) ≥ F (u),
and hence F (v) > r. Therefore F (H) > r. Since this holds for all real r < L,
we conclude that F (H) ≈ L, so

∫∞
a
f(x) dx = L.

Case 2: The range of F is not bounded. Again let H be positive infinite. For
every real r there is a real u ≥ a such that F (u) > r. Since F (H) ≥ F (u), we
have F (H) > r and hence F (H) is positive infinite. Thus

∫∞
a
f(x) dx =∞. a





CHAPTER 7

TRIGONOMETRIC FUNCTIONS

In the study of trigonometric functions we use the notion of arc length on
the unit circle, which depends on the integration formula for curve length from
Chapter 6,

s =

∫ b

a

√
1 +

(
dy

dx

)2

dx.

To prepare the way for this study we introduce inverse functions.

7A. Inverse Function Theorem (§7.3)

Given a binary relation X ⊆ R2 on the reals, the inverse relation of X is
the binary relation

Y = {(y, x) : (x, y) ∈ X}.
Obviously, if Y is the inverse relation of X then X is the inverse relation of
Y . If f and g are real functions and g is the inverse relation of f , we call g the
inverse function of f . Here are some simple facts about inverse functions.

Lemma 7.1. (i) A real function f has an inverse function if and only if f
is one to one.

(ii) g is the inverse function of f if and only if the equations

f(x) = y, g(y) = x

have the same solutions.
(iii) g is the inverse function of f if and only if

domain(g) = range(f)

and
g(f(x)) = x for all x ∈ domain(f).

We remark that if f is increasing, then f is one to one and therefore has an
inverse function. Similarly, if f is decreasing then f has an inverse function.

Theorem 7.2. Let f be increasing and continuous on its domain which is
an interval I, and let g be the inverse function of f . Then g is increasing, the
domain of g is an interval J , and g is continuous on J .

91



92 7. Trigonometric Functions

Proof. Let J be the domain of g. Suppose A,B ∈ J and A < B. Let
a = g(A), b = g(B). Then f(a) = A, f(b) = B. We cannot have b ≤ a because
that would imply that f(b) ≤ f(a), B ≤ A. Therefore a < b, so g is increasing.

Suppose C ∈ (A,B). By the Intermediate Value Theorem 3.28 for the
continuous function f , there is a point c ∈ (a, b) such that f(c) = C. Therefore
C belongs to the range of f , which is the domain J of g. This shows that J
is an interval. To show that g is continuous, let A ∈ J,X ∈ J∗, A ≈ X, and
put a = g(A), x = g(X). We must show that a ≈ x. C ∈ J and c = g(C)
implies c ∈ I and f(c) = C, so by Transfer we have x ∈ I∗ and f(x) = X.
Assume first that A < X. Since g is increasing, g∗ is increasing by Transfer,
so a < x. If a 6≈ x, then there is a real number c ∈ I such that a < c < x,
hence f(a) < f(c) < f(x), contradicting f(a) = A ≈ X = f(x). This shows
that a ≈ x. The case X > A is similar, so g is continuous on J . a

Theorem 7.3. (Inverse Function Theorem) Suppose f is continuous and
increasing on an open interval I, and g is the inverse function of f . For
any point x ∈ I where f is differentiable and f ′(x) 6= 0, g is differentiable at
y = f(x) and g′(y) = 1/f ′(x).

Proof. Let 4y be a nonzero infinitesimal. We must show that

g(y +4y)− g(y)

4y
≈ 1

f ′(x)
.

Let J be the range of f and the domain of g. Since I is an open interval, J is
an open interval. Thus y = f(x) is an interior point of J . Therefore g(y+4y)
is defined. We have x = g(y), and we put

4x = g(y +4y)− g(y).

By Theorem 7.2, g is continuous and increasing, so 4x is infinitesimal and not
zero. Also,

x+4x = g(y +4y), f(x+4x) = y +4y.
Then

f ′(x) ≈ f(x+4x)− f(x)

4x
=
4y
4x

,

and since f ′(x) 6= 0,

1

f ′(x)
≈ 4x
4y

=
g(y +4y)− g(y)

4y
.

a

We now apply the Inverse Function Theorem to show that in a simple para-
metric curve we may take the curve length itself as the independent variable.

Theorem 7.4. Let

C : x = f(t), y = g(t), t ∈ [a, b]
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be a simple parametric curve. Then C has a reparametrization

C1 : x = F (s), y = G(s), s ∈ [0, L]

such that s is equal to the length of the curve from 0 to s.

Proof. Let `(t) be the curve length from a to t,

`(t) =

∫ t

a

√
f ′(u)2 + g′(u)2 du.

By the Second Fundamental Theorem of Calculus, 4.17, `′(t) =
√
f ′(t)2 + g′(t)2.

This is always positive and continuous, and ` maps [a, b] onto [0, L] where L is
the length of C. By the Inverse Function Theorem 7.3, the inverse function h
of ` maps [0, L] onto [a, b] and has the derivative h′(s) = 1/`′(h(s)) > 0. Since
h and `′ are continuous, h′ is continuous. By the Reparametrization Theorem
6.10, the curve

C1 : x = f(h(s)), y = g(h(s)), s ∈ [0, L]

is a reparametrization of C, and the length of C1 from 0 to s is `(h(s)) = s. a

We will now prove a Local Inverse Function Theorem, due to Behrens (see
the book of Stroyan and Luxemburg [SL 1976]). It does not require the hy-
pothesis that f is continuous on a neighborhood, and will be convenient when
we study two variables later.

Recall from Chapter 3 that a real function f is uniformly differentiable at a
real point c if f ′(c) exists and whenever x ≈ c and 4x is nonzero infinitesimal,

f ′(c) ≈ f(x+4x)− f(x)

4x
.

Theorem 7.5. (Local Inverse Function Theorem) Suppose f is defined in
a neighborhood of a real point c, increasing, uniformly differentiable at c, and
that f ′(c) 6= 0. Then the inverse function g of f is uniformly differentiable at
d = f(c) and g′(d) = 1/f ′(c).

Proof. Since f is increasing, g is increasing. By Theorem 3.39, f is con-
tinuous on some real neighborhood I of c. Then by the Inverse Function
Theorem 7.3, g′(d) exists and g′(d) = 1/f ′(c). To show that g is uniformly dif-
ferentiable at d, suppose y ≈ d and 4y is nonzero infinitesimal. Let x = g(y)
and4x = g(y+4y)−g(y). Since g increasing and continuous,4x is a nonzero
infinitesimal. f is uniformly differentiable at c, so

f ′(c) ≈ f(x+4x)− f(x)

4x
.

From the definition of 4x we see that

g(y +4y) = g(y) +4x = x+4x,
so

y +4y = f(x+4x)
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and
4y = f(x+4x)− y = f(x+4x)− f(x).

Therefore

g′(d) = 1/f ′(c) ≈ 4x
f(x+4x)− f(x)

=
g(y +4y)− g(y)

4y
.

This shows that g is uniformly differentiable at d. a

7B. Derivatives of Trigonometric Functions (§7.1, §7.2)

We first define the trigonometric functions and then use the Inverse Function
Theorem 7.3 to show that they are differentiable.

Definition 7.6. Let 0 ≤ θ ≤ π/2 and let P (x, y) be the point at distance θ
counter-clockwise around the unit circle starting from (1, 0). We then define

x = cos θ, y = sin θ.

Lemma 7.7. For 0 ≤ θ ≤ π/2, the functions y = sin θ and x = cos θ are
differentiable, and

d(sin θ)

dθ
= cos θ,

d(cos θ)

dθ
= − sin θ.

Proof. We repeat the argument used for Theorem 7.4 but for the special

case x =
√

1− y2, 0 ≤ y < 1. We have

dx

dy
=

−y√
1− y2

,√
1 +

(
dx

dy

)2

=

√
1 +

y2

1− y2
=

1√
1− y2

.

Let θ be the arc length

θ =

∫ y

0

1√
1− u2

du.

By definition, x = cos θ and y = sin θ. For 0 ≤ y < 1, θ is increasing and has
the continuous derivative

dθ

dy
=

1√
1− y2

.

By the Inverse Function Theorem 7.3, y = sin θ is differentiable and

dy

dθ
=

1

dθ/dy
=
√

1− y2 = x = cos θ.

Similarly,
dx

dθ
=
dx

dy

dy

dθ
= −y = − sin θ.

a
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We extend the sine and cosine functions from the interval [0, π/2] to the
whole real line by defining

sin(θ + π/2) = cos θ,

sin(θ + π) = − sin θ.

One can easily check that the sine and cosine functions have period 2π. Given
the derivative formulas for 0 ≤ θ < π/2 in Lemma 7.7, we leave the proof of
the formulas for arbitrary θ to the reader.

Theorem 7.8.

d(sin θ)

dθ
= cos θ,

d(cos θ)

dθ
= − sin θ.

The other trigonometric functions are defined by

tan θ =
sin θ

cos θ
, cot θ =

cos θ

sin θ
,

sec θ =
1

cos θ
, csc θ =

1

sin θ
.

The inverse trigonometric functions are obtained by restricting the trigono-
metric functions to either [−π/2, π/2] or [0, π] and then taking the inverse
functions. For example,

arc sin x is the inverse of sin θ, − π/2 ≤ θ ≤ π/2,
arc tan x is the inverse of tan θ, − π/2 ≤ θ ≤ π/2,
arc sec x is the inverse of sec θ, 0 ≤ θ ≤ π.

The Inverse Function Theorem 7.3 shows that the inverse trigonometric
functions are differentiable except at the endpoints and leads in the usual way
to the formulas for the derivatives:

d(arc sin x)

dx
=

1√
1− x2

, |x| < 1,

d(arc tan x)

dx
=

1

1 + x2
, all x,

d(arc sec x)

dx
=

1

|x|
√
x2 − 1

, |x| > 1.

7C. Area in Polar Coordinates (§7.9)

We assume that the reader is familiar with the polar coordinate system. The
Infinite Sum Theorem 6.1 can be used to obtain a formula for area in polar
coordinates.
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Definition 7.9. By a basic polar region we mean a set of points with
polar coordinates of the form

{(r, θ) : a ≤ θ ≤ b, f(θ) ≤ r ≤ g(θ)},

where b ≤ a+ 2π, f and g are continuous on [a, b], and 0 ≤ f(θ) ≤ g(θ).

Thus the image of a basic polar region under the mapping

(r, θ) 7→ (r cos θ, r sin θ)

is a basic rectangular region. If the functions f and g are constants the region
is called a polar rectangle. The simplest kind of polar rectangle is a circular
sector

{(r, θ) : a ≤ θ ≤ b, 0 ≤ r ≤ c}.
Our starting point for polar areas is the following formula for the area of a
circular sector:

A =
1

2
c2(b− a).

This formula comes from the formula A = 1
2 rs for a circular sector where r is

the radius of the circle and s = (b − a)r is the length of the arc. Consider a
polar region of the simple form

D = {(r, θ) : a ≤ θ ≤ b, 0 ≤ r ≤ g(θ)}.

Definition 7.10. Let g(θ) be a nonnegative continuous real function for
a ≤ θ ≤ b, where b ≤ a + 2π. By a polar area function for g we mean a
function A(u, v) defined for u, v ∈ [a, b] with the following two properties.

(i) A(u,w) = A(u, v) +A(v, w).
(ii) If g has minimum value m and maximum value M on [u, v], then

1

2
m2(v − u) ≤ A(u, v) ≤ 1

2
M2(v − u).

Condition (ii) says that A(u, v) is between the areas of the inscribed and
circumscribed circular sectors for u ≤ θ ≤ v.

Theorem 7.11. The unique polar area function for g is the definite integral

A(a, b) =

∫ b

a

1

2
g(θ)2 dθ.

Proof. A(u, v) is a polar area function for g because∫ v

u

1

2
m2 dθ ≤

∫ v

u

1

2
g(θ)2 dθ ≤

∫ v

u

1

2
M2 dθ,∫ v

u

1

2
m2 dθ =

1

2
m2(v − u),

∫ v

u

1

2
M2 dθ =

1

2
M2(v − u).

To prove uniqueness let B(u, v) be a polar area function for g. Let [θ, θ+4θ]∗
be an infinitesimal subinterval of [a, b]∗. On [θ, θ + 4θ]∗, g has a minimum
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value m and a maximum value M . By the continuity of g, m ≈ g(θ) ≈ M .
Applying the Transfer Axiom to property (ii) we have

1

2
m24θ ≤ 4B ≤ 1

2
M24θ,

1

2
m2 ≤ 4B

4θ
≤ 1

2
M2,

4B
4θ
≈ 1

2
g(θ)2,

4B ≈ 1

2
g(θ)24θ (compared to 4θ) .

By (i), B has the Addition Property. Therefore by the Infinite Sum Theorem
6.1,

B(a, b) =

∫ b

a

1

2
g(θ)2 dθ.

a

The area formula for an arbitrary basic polar region, which is justified in a
similar way, is

A =

∫ b

a

1

2
(g(θ)2 − f(θ)2) dθ.





CHAPTER 8

EXPONENTIAL FUNCTIONS

The exponential and logarithmic functions have been introduced in a variety
of ways in calculus texts. Our approach here (and in Elementary Calculus)
is to define ax as the unique continuous function of x which has the value
am/n = n

√
am when x = m/n is rational. In this chapter we will use hyperreal

numbers to prove a general result on uniquely extending continuous functions,
and then apply the result to the case of the exponential functions.

8A. Extending Continuous Functions

Let us recall the hyperreal characterizations of the closure of a set of reals
and of uniform continuity. By Corollary 1.29, the closure of a set Y ⊆ R is
the set

Y = {st(y) : y is finite and y ∈ Y ∗}.
By Definition 3.12, a real function f is uniformly continuous on a set Y ⊆ R
if and only if for all x, y ∈ Y ∗, x ≈ y implies f(x) ≈ f(y).

We will see in the next section that the exponential function ax is not
uniformly continuous on the set Q of all rationals, but is uniformly continuous
on every bounded subset of Q.

Proposition 8.1. A real function f is uniformly continuous on every bounded
subset of Y if and only if for every finite x, y ∈ Y ∗, x ≈ y implies f(x) ≈ f(y).

Proof. This follows at once from the fact that x, y are finite elements of
Y ∗ if and only if x, y ∈ (Y ∩ [a, b])∗ for some interval [a, b]. a

Theorem 8.2. Let f be a real function which is uniformly continuous on
every bounded subset of its domain Y . Then f has a unique extension g whose
domain is the closure Y of Y and which is continuous on Y .

Proof. Let g be the real function on Y defined by

g(st(x)) = st(f(x)) for all finite x ∈ Y ∗.
This definition is unambiguous because if st(x) = st(y) then st(f(x)) =
st(f(y)). g extends f , because if r ∈ Y then

g(r) = g(st(r)) = st(f(r)) = f(r).
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We show that g is continuous at each point c ∈ Y . Let X be the bounded set

X = Y ∩ [c− 1, c+ 1].

We use the ε, δ condition for uniform continuity, Theorem 5.7. Consider a real
ε > 0. Since f is uniformly continuous on X, there is a real δ ∈ (0, 1) such that
whenever x, y ∈ X and |x−y| < δ, |f(x)−f(y)| < ε/2. By Transfer, whenever
x, y ∈ X∗ and |x− y| < δ, |f(x)− f(y)| < ε/2. Now let b ∈ Y and |b− c| < δ.
We have b = st(x), c = st(y) for some x, y ∈ Y ∗. Since |b− c| < δ < 1 we have

x, y ∈ X∗, |x− y| < δ.

Therefore
|f(x)− f(y)| < ε/2

|st(f(x))− st(f(y))| ≤ ε/2 < ε

|g(b)− g(c)| < ε.

Thus the ε, δ condition for continuity holds for g at c. The function g is unique
because for any continuous extension h of f to Y and any point c ∈ Y we have

h(c) = h(st(x)) = st(h(x)) = st(f(x)) = g(c)

where x ∈ Y ∗ and c = st(x), a

8B. The Functions ax and logb x (§8.1, §8.2)

In Elementary Calculus, hyperreal numbers were used to define and obtain
the basic properties of the exponential function. The natural extension of the
set Q of rationals is called the set Q∗ of hyperrationals. Here are some
properties of Q∗ which follow at once from the Transfer Axiom.

Proposition 8.3. (i) Q∗ is a subfield of R∗, that is, Q∗ is closed under
addition, subtraction, multiplication, and division by nonzero numbers.

(ii) Q∗ is dense in R∗, that is, if b < c in R∗ then there exists q ∈ Q∗ with
b < q < c.

(iii) For every x ∈ R∗ there is a q ∈ Q∗ such that x ≈ q. (This follows from
(ii)).

The closure of the set Q of rationals is the whole real line R. One way to
see this is by applying (iii) to x ∈ R. We will use the following properties of
rational exponents.

Lemma 8.4. Let a, b be positive real numbers and q, r be rational. Then:
(i) 1q = 1
(ii) aq+r = aqar, aq−r = aq/ar

(iii) aqr = (aq)r

(iv) aqbq = (ab)q

(v) a < b and q > 0 imply aq < bq

(vi) 1 < a and q < r imply aq < ar
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(vii) q ≥ 1 implies (a+ 1)q ≥ aq + 1.

Lemma 8.5. Let a > 0. The function f(x) = ax, x ∈ Q, is uniformly
continuous on every bounded subset of Q.

Proof. Assume first that a ≥ 1. Suppose q, r ∈ Q∗, q ≈ r, q < r. We must
show that aq ≈ ar. Let b = a(q−r)−1. By Lemma 8.4 (vi) and Transfer, b ≥ 0.
Moreover, by Lemma 8.4 (vii) and Transfer,

a = (b+ 1)1/(r−q) ≥ b

r − q
+ 1 ≥ 1,

so b/(r − q) is finite and hence b ≈ 0. Thus ar−q ≈ 1. For some integer n,
n ≤ q < n+ 1, and by Lemma 8.4 (vi). an < aq < an+1. Therefore aq is finite
and ar ≈ aq.

Now assume 0 < a < 1. Then a−1 > 1, so by the preceding paragraph,

ar =
(
a−1

)−r ≈ (a−1)−q = aq.

a

By Theorem 8.2 we may make the following definition.

Definition 8.6. Let a be a positive real number. The exponential func-
tion with base a, ax, is the unique extension of the function aq, q ∈ Q which
is continuous on the whole real line.

Theorem 8.7. The exponent rules (i)—(vii) of Lemma 8.4 hold for arbi-
trary real numbers q and r.

Proof. All the rules except (iii) are easily proved by using Lemma 8.4 and
the fact that there are hyperrational numbers q1 ≈ q and r1 ≈ r. We prove
(iii) for the case 1 < a and q, r > 0. Choose hyperrational numbers q1, q2 such
that

q1 ≈ q2, q1 < q < q2.

Do the same for r. We have

q1r1 < qr < q2r2.

By (vi) and Transfer,

aq1r1 < aqr < aq2r2 ,

aq1 < aq < aq2 ,

(aq1)
r1 < (aq)

r
< (aq2)

r2 .

Using (iii) for hyperrational exponents,

aq1r1 = (aq1)
r1 , aq2r2 = (aq2)

r2 .

But q1r1 ≈ qr ≈ q2r2, so by the continuity of the function ax, aq1r1 ≈ aqr ≈
aq2r2 . It follows that aqr ≈ (aq)r, and since both numbers are real they must
be equal. a
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Definition 8.8. Let 0 < a and a 6= 1. The logarithmic function with
base a is the inverse of the exponential function with base a,

x = loga y if and only if y = ax.

By Theorem 7.2, loga y is continuous and has domain (0,∞). The familiar
rules for logarithms follow from the corresponding rules for exponents and will
be used freely below.

8C. Derivatives of Exponential Functions (§8.3)

In this section we introduce the number e, and differentiate the functions
ex and ln x. The next lemma uses the geometric series formula

(1 + b+ b2 + · · ·+ bn) =
bn+1 − 1

b− 1
, b 6= 1,

which is easily proved by multiplying both sides by b− 1.

Lemma 8.9. The limit limx→∞
(
1 + 1

x

)x
exists.

Proof. Let b be a real number greater than 1. The function y = bt is

continuous, so it has an integral c =
∫ 1

0
bt dt. yt is positive for all t, so c > 0.

Let H be positive infinite. We will prove that(
1 +

1

H

)H
≈ bc/(b−1).

We work with the logarithm

logb

[(
1 +

1

H

)H]
= H logb

(
1 +

1

H

)
.

Let

4t = logb

(
1 +

1

H

)
.

4t is positive infinitesimal, because

4t ≈ logb 1 = 0.

Moreover,

b4t = 1 +
1

H
, H =

1

b4t − 1
,

H logb

(
1 +

1

H

)
=

4t
b4t − 1

.

We wish to estimate the Riemann sum
∑1

0 b
t4t. Any real solution of

4u > 0, n ∈ Z, n4u < 1 ≤ (n+ 1)4u(53)
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is a solution of (
1 + b4u + · · ·+ b(n−1)4u

)
4u ≤

1∑
0

bu4u

≤
(
1 + b4u + · · ·+ bn4u

)
4u.

By the geometric series formula, this simplifies to

bn4u − 1

b4u − 1
4u ≤

1∑
0

bu4u ≤ b(n+1)4u − 1

b4u − 1
4u.(54)

Let K be the hyperinteger with K4t < 1 < (K + 1)4t. By Transfer,

bK4t − 1

b4t − 1
4t ≤

1∑
0

bt4t ≤ b(K+1)bc/(b−1)4t − 1

b4t − 1
4t.

Then

H logb

(
1 +

1

H

)(
bK4t − 1

)
≤

1∑
0

bt4t

≤ H logb

(
1 +

1

H

)(
b(K+1)4t − 1

)
,∑1

0 b
t4t

b(K+1)4t − 1
≤ H logb

(
1 +

1

H

)
≤
∑1

0 b
t4t

bK4t − 1
.

Since K4t ≈ 1 ≈ (K + 1)4t, we conclude that

c

b− 1
≈ H logb

(
1 +

1

H

)
, c =

∫ 1

0

bt dt

and

bc/(b−1) ≈
(

1 +
1

H

)H
.

Since this holds for all positive infinite H,

bc/(b−1) = lim
x→∞

(
1 +

1

x

)x
.

a

Definition 8.10.

e = lim
x→∞

(
1 +

1

x

)x
, ln x = loge x.

Theorem 8.11. The exponential function ex is differentiable, and

d (ex)

dx
= ex.
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Proof. Let t be finite and 4t be positive infinitesimal. We show that

et+4t − et

4t
≈ et.

We have
et+4t − et

4t
= et

(
e4t − 1

4t

)
.

Let b = e4t−1
4t . Then e4t = 1 + b4t. Since et is continuous, e4t ≈ 1, and b4t

is positive infinitesimal. Thus H = 1/(b4t) is positive infinite. Also,

e ≈
(

1 +
1

H

)H
= (1 + b4t)1/b4t =

(
e4t
)1/b4t

= e1/b.

Therefore b ≈ 1, and

et+4t − et

4t
= bet ≈ et.(55)

Now let x be real and 4t be positive infinitesimal. Then by (55),

ex+4t − ex

4t
≈ ex, ex − ex−4t

4t
≈ ex−4t ≈ ex.

Therefore
d (ex)

dx
= ex.

a

In general, ax = ex ln a, so

d (ax)

dx
=
d
(
ex ln a

)
dx

= (ln a)ex ln a = (ln a)ax.

This shows that e is uniquely characterized by the equation d (ex) /dx = ex,
because when a 6= e, ln a 6= 1.

Corollary 8.12. y = ln x is differentiable for all x > 0, and

d(ln x)

dx
=

1

x
.

Proof. Since y = ln x, x = ey. By the Inverse Function Theorem 7.3,
dy/dx exists and

dy

dx
=

1

dx/dy
=

1

ey
=

1

x
.

a



CHAPTER 9

INFINITE SERIES

Throughout this chapter we let H and K denote positive infinite hyperin-
tegers. The set of natural numbers (nonnegative integers) will be denoted by
N, and the set of positive integers by N+.

9A. Sequences (§9.1)

By an infinite sequence 〈an〉 we mean a function from either N or N+ into
the real numbers.

Definition 9.1. An infinite sequence 〈an〉 converges to a real number L
if aH ≈ L for every H, in symbols, limn→∞ an = L. 〈an〉 diverges to ∞ if
aH is positive infinite for all H, in symbols, limn→∞ an =∞.

We begin with some computations of limits.

Theorem 9.2. The following sequences diverge to ∞.

lim
n→∞

n!

bn
=∞, (b ≥ 1)

lim
n→∞

bn

nc
=∞, (b > 1, c ≥ 0)

lim
n→∞

nc

ln(n)
=∞, (c > 0)

lim
n→∞

ln(n) =∞.

Proof. We show that each of

H!

bH
,

bH

Hc
,

Hc

ln(H)
, ln(H)

is positive infinite. The natural logarithm ln(H) is positive infinite because
for each real r, er < H and hence r < ln(H). In the other three cases we show
that the logarithm of the quotient is positive infinite.
H!/bH : For an integer m > b we have

ln

(
H!

bH

)
= ln(1) + · · ·+ ln(m− 1) + ln(m) + · · ·+ ln(H)−H ln(b)

105
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> (H −m) ln(m)−H ln(b) = H(lnm− ln b)−m lnm.

Since lnm > ln b, ln
(
H!/bH

)
is positive infinite.

bH/Hc: We have

ln

(
bH

Hc

)
= H ln b− c lnH = H

(
ln(b)− c ln(H)

H

)
.

By l’Hospital’s Rule, limx→∞(ln(x)/x) = 0, so ln(H)/H ≈ 0 and ln
(
bH/Hc

)
is positive infinite.
Hc/ lnH: Putting K = ln(H),

ln

(
Hc

ln(H)

)
= c ln(H)− ln(ln(H)) = K

(
c− ln(K)

K

)
,

so ln (Hc/ ln(H)) is positive infinite. a

Here are three equivalence theorems for limits of sequences.

Theorem 9.3. Given a sequence 〈an〉 and a real number L, the following
are equivalent.

(i) limn→∞ an = L.
(ii) There is an H such that for all K ≥ H, aK ≈ L.
(iii) The ε,M condition: For every real ε > 0 there is a positive integer M

such that for all n ≥M , |an − L| < ε.

The proof is similar to Theorem 5.1, the equivalence theorem for limits of
functions.

Theorem 9.4. The following are equivalent.
(i) limn→∞ an =∞.
(ii) There is an H such that for all K ≥ H, aK is positive infinite.
(iii) For every real B there is a positive integer M such that for all n ≥M ,

an > B.

Theorem 9.5. The following are equivalent.
(i) The sequence 〈an〉 converges.
(ii) Hyperreal Cauchy Condition: For all H and K, aH ≈ aK .
(iii) Real Cauchy Condition: For every real ε > 0 there is a positive integer

M such that for all m,n ≥M , |am − an| < ε.

Proof. Assume (i), say limn→∞ an = L. Then for all H and K, aH ≈ L ≈
aK , so (ii) holds. Now assume (ii). Suppose the Real Cauchy Condition (iii)
fails for some real ε > 0. Then every M ∈ N+ is a partial real solution of

m ∈ N+, n ∈ N+, M ≤ m, M ≤ n, |am − an| ≥ ε.
Let J be positive infinite. By the Partial Solution Theorem 1.20 there exist
H,K ≥ J such that |aH = aK | ≥ ε, contradicting (ii).

Assume the Real Cauchy Condition (iii). There is a positive integer M1

such that for all integers m,n ≥ M1, |am − an| < 1. By Transfer. for all
integers m ≥M1, |am − aH | < 1. Therefore aH is finite. Let L = st (aH). We
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show that the sequence converges to L. Let ε > 0 be real and let M be the
corresponding positive integer. Using Transfer again, for all hyperreal n ≥M
we have |an − aH | < ε. Thus for all K, |aK − aH | < ε. Since this holds for
each ε, we have aK ≈ aH ≈ L for every K, whence limn→∞ an = L, a

We now give hyperreal proofs of the Bolzano-Weierstrass Theorem and the
countable Heine-Borel Theorem. A subsequence of 〈an〉 is a sequence 〈af(n)〉
where f is an increasing function from N into N.

Lemma 9.6. (i) If st(H) = L then 〈an〉 has a subsequence converging to L.
(ii) If aH is positive infinite then 〈an〉 has a subsequence diverging to ∞.

Proof. (i) For each n ∈ N+ and each H we have

H ∈ N∗, H ≥ n, |aH − L| ≤
1

n
.

By the Partial Solution Theorem, each n ∈ N+ is a partial real solution of

m ∈ N+, m ≥ n, |am − L| <
1

n
.

Define f(0) = 0, and for each n > 0 define f(n) to be the first positive integer
m such that

m > f(n− 1), |am − L| <
1

n
.

Then f is increasing and

|af(n) − L| <
1

n
.

By the ε, δ condition for limits (Theorem 5.1), the subsequence 〈af(n)〉 con-
verges to L.

(ii) The proof is similar to (i). a

〈an〉 is a bounded sequence if its range {an : n ∈ N} is a bounded set.
Thus by Theorem 1.31, 〈an〉 if bounded if and only if aH is finite for every
H ∈ N∗.

Theorem 9.7. (Bolzano-Weierstrass Theorem) Every bounded sequence has
a convergent subsequence.

Proof. Let 〈an〉 be bounded and choose an infinite H. Then aH is finite,
and by Lemma 9.6 〈an〉 has a subsequence converging to st(aH). a

Theorem 9.8. (Countable Heine-Borel Theorem) Let

X0 ⊇ X1 ⊇ · · · ⊇ Xn ⊇ · · ·

be a decreasing chain of nonempty closed bounded sets of real numbers. Then
∞⋂
n=0

Xn 6= ∅.
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Proof. Let P (x, n) be the binary relation x ∈ Xn on the reals. Then for
each natural number n,

X∗n = {x ∈ R∗ : P ∗(x, n)}.

Choose an infinite H and define

X∗H = {x ∈ R∗ : P ∗(x,H)}.

By hypothesis, each Xn is nonempty, so each real solution of n ∈ N is a partial
solution of

n ∈ N, P (x, n).

By the Partial Solution Theorem, there is a hyperreal x such that P ∗(x,H),
so x ∈ X∗H . Using Transfer we see that X∗H ⊆ X∗n for all n ≤ H, and hence for
all n ∈ N. Therefore x ∈ X∗n for all n ∈ N. Since Xn is closed and bounded, x
is finite and st(x) ∈ Xn. Thus st(x) ∈

⋂∞
n=0Xn. a

Theorem 9.9. An increasing sequence 〈an〉 either diverges to ∞ or con-
verges.

Proof. Suppose the sequence does not diverge to∞. Then some aH is not
positive infinite. Since 〈an〉 is increasing, it follows from the Transfer Axiom
that the natural extension of 〈an〉 is increasing, that is, am < an whenever
m < n in N∗. Then aH > a0, so aH is not negative infinite. Therefore
aH is finite. By Lemma 9.6, 〈an〉 has a subsequence 〈af(n)〉 which converges
to L = st(aH). For every natural number n ≥ f(0) there is an m such
that f(m) ≤ n < f(m + 1). Take an infinite K. By the Partial Solution
Theorem there is an M ∈ N∗ such that f(M) ≤ K ≤ f(M + 1). M must
be positive infinite, so af(M) ≈ L ≈ af(M+1). But since 〈an〉 is increasing,
af(M) ≤ aK ≤ af(M+1). Therefore aK ≈ L, so 〈an〉 converges to L. a

9B. Series (§9.2 – §9.6)

Given an infinite sequence

〈an〉 = a0, a1, . . . , an, . . . ,

The partial sum sequence 〈Sn〉 is defined by

Sn = a0 + a1 + · · ·+ an =

n∑
k=0

ak.

By the Function Axiom, the natural extension of the function Sn has a value
SH for each positive infinite hyperinteger H, which we call the infinite partial
sum

SH = a0 + a1 + · · ·+ aH =

H∑
k=0

ak.
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Definition 9.10. The infinite series
∑∞
n=0 an is said to converge to S,

in symbols

S = a0 + a1 + · · ·+ an + · · · =
∞∑
n=0

an,

if the partial sum sequence converges to S,

S = lim
n→∞

Sn = lim
n→∞

(a0 + a1 + · · ·+ an).

That is, for every positive infinite hyperinteger H,

S ≈ a0 + a1 + · · ·+ aH .

The series is said to diverge if the partial sum sequence diverges.

Proposition 9.11. (Geometric Series) For each b ∈ (−1, 1),

∞∑
n=0

bn =
1

1− b
.

Proof. By the geometric series formula and Transfer, for each infinite H
we have

(1 + b+ b2 + · · ·+ bH) =
bH+1 − 1

b− 1
≈ 1

1− b
.

a

The equivalence theorems for limits of sequences in the preceding section
automatically give equivalence theorems for sums of series. In particular, the
Hyperreal Cauchy Condition in Theorem 9.5 has the following consequence,

where aH + · · ·+ aK means
∑K
n=0 an −

∑H
n=0 an.

Proposition 9.12. (i)
∑∞
n=0 an converges if and only if for all infinite H ≤

K,

aH + · · ·+ aK ≈ 0.

(ii) If
∑∞
n=0 an converges, then limn→∞ an = 0.

Proof. (i) is the Hyperreal Cauchy Condition stated in series notation. (ii)
follows by setting K = H, so that aH ≈ 0. a

The usual converge tests for infinite series are developed in Elementary Cal-
culus in the standard way. The following hyperreal form of the Limit Com-
parison Test is simpler to state and use than the standard result.

Theorem 9.13. (Limit Comparison Test) Let
∑∞
n=0 an and

∑∞
n=0 bn be

positive term series and c be a positive real number. Suppose that aK ≤ c bK
for all infinite K. If

∑∞
n=0 bn converges then

∑∞
n=0 an converges.
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Proof. Let H ≤ K be infinite. By the Hyperreal Cauchy Condition 9.12,

bH + · · ·+ bK ≈ 0.

Hence

0 ≤ aH + · · ·+ aK ≤ c(bH + · · ·+ bK) ≈ 0,

so aH + · · ·+ aK ≈ 0 and
∑∞
n=0 an converges. a

As an illustration of the use of the Limit Comparison Test we give a proof
of a basic result on power series. A series

∑∞
n=0 an is absolutely convergent

if the series
∑∞
n=0 |an| is convergent.

Theorem 9.14. If a power series
∑∞
n=0 an x

n is convergent when x = u,
then it is absolutely convergent whenever |x| < |u|.

Proof. Let |v| < |u| and b = |v|/|u|. Then 0 ≤ b < 1, so the geo-
metric series

∑∞
n=0 b

n converges. We assume that
∑∞
n=0 an u

n converges,
so limn→∞ anu

n = 0 by Proposition 9.12. Then for positive infinite H,
aH u

H ≈ 0. Thus ∣∣aH vH ∣∣ =
∣∣aH uH ∣∣ bH ≤ bH ,

so by the Limit Comparison Test 9.13,
∑∞
n=0 |an vn| converges. a

9C. Taylor’s Formula and Higher Differentials (§9.10)

In Elementary Calculus the standard proof of Taylor’s Formula is given. Let
f be a real function and c, x ∈ R.

Theorem 9.15. (Taylor’s Formula) If f (n+1) exists between c and x, then

f(x) =

n∑
k=0

f (k)(c)

k!
(x− c)k +

f (n+1)(t)

(n+ 1)!
(x− c)n+1

for some real t between c and x.

Using the Partial Solution Theorem we obtain the following consequence
concerning infinitesimals.

Corollary 9.16. Suppose c is real and f (n) is continuous at c. Then when-
ever x ≈ c and 4x is a nonzero infinitesimal,

f(x+4x) ≈
n∑
k=0

f (k)(x)

k!
4xk (compared to 4xn) .
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Proof. fn)(t) is defined for t ≈ c. By Theorem 9.15 and the Partial Solu-
tion Theorem there is a t between x and x+4x such that

f(x+4x) =

n−1∑
k=0

f (k)(x)

k!
4xk +

f (n)(t)

n!
4xn

=

n∑
k=0

f (k)(x)

k!
4xk +

f (n)(t)− f (n)(x)

n!
4xn.

By continuity of f (n) at c, f (n)(t)− f (n)(x) ≈ 0, and the result follows. a

By modifying the proof of Taylor’s Formula, we show that Corollary 9.16
holds at x = c assuming only that f (n)(c) exists.

Theorem 9.17. Suppose c is real, 4x is nonzero infinitesimal, and f (n)(c)
exists. Then

f(c+4x) ≈
n∑
k=0

f (k)(c)

k!
4xk (compared to 4xn) .

Proof. Since f (n)(c) exists, f (n−1)(x) exists for all x in some real neigh-
borhood of c. Let

F (x) = f(x)−
n∑
k=0

f (k)(c)

k!
(x− c)k,

G(x) = (x− c)n.

Then for m < n, F (m)(c) = 0 and G(m)(c) = 0. Using the Generalized Mean
Value Theorem 5.11 n− 1 times we see that

F (x)

G(x)
=
F (n−1)(t)

G(n−1)(t)

for some t between c and x. Note that the (n− 1)-st derivative of (t− c)(n−1)
is (n− 1)!, and the (n− 1)-st derivative of (t− c)n is n!(t− c). From this, we
make the computations

F (n−1)(t) = f (n−1)(t)− f (n−1)(c)− f (n)(c)(t− c),

G(n−1)(t) = n!(t− c),
and we have in turn

F (x)

G(x)
=
f (n−1)(t)− f (n−1)(c)

n!(t− c)
− f (n)(c)

n!
,

F (x) =

(
f (n−1)(t)− f (n−1)(c)

n!(t− c)
− f (n)(c)

n!

)
(x− c)n,

f(x) =

n−1∑
k=0

f (k)(c)

k!
(x− c)k +

f (n)(c)

n!
(x− c)n + F (x),
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f(x) =

n−1∑
k=0

f (k)(c)

k!
(x− c)k +

f (n−1)(t)− f (n−1)(c)
n!(t− c)

(x− c)n.

By the Partial Solution Theorem there is a hyperreal t1 between c and c+4x
such that

f(c+4x) =

n−1∑
k=0

fk)(c)

k!
4xk +

f (n−1)(t1)− f (n−1)(c)
n!(t1 − c)

4xn.

Since f (n)(c) exists, we have

f (n)(c) ≈ f (n−1)(t1)− f (n−1)(c)
t1 − c

.

Therefore

f(c+4x) =

n∑
k=0

f (k)(c)

k!
4xk + ε4xn

for some ε ≈ 0, and the desired result follows. a

When n = 1, Theorem 9.17 reduces to the Increment Theorem,

f(c) +4x) ≈ f(c) + f ′(c)4x (compared to 4x) .

Another natural way to generalize the Increment Theorem involves the notion
of an n-th increment.

Definition 9.18. Let y = f(x) be defined on an interval I. The n-th
increment

4ny = 4nf(x,4x)

is defined by induction on n as follows.

4′y = 4′f(x,4x) = f(x+4x)− f(x),

4n+1y = 4n+1f(x, x+4x) = 4nf(x+4,4x)−4nf(x,4x).

Thus 4nf(x,4x) is defined whenever x ∈ I and x + n4x ∈ I. For n = 2
we have

42y = [f(x+ 24x)− f(x+4x)]− [f(x+4x)− f(x)]

= f(x+ 24x)− 2f(x+4x) + f(x).

For n = 3,

43y = f(x+ 34x)− 3f(x+ 24x) + 3f(x+4x)− f(x).

In general, it can be shown by induction that

4ny =

n∑
k=0

(−1)n−k
(
n

k

)
f(x+ k4x)

where
(
n
k

)
= n!

k!(n−k)! is the binomial coefficient. The following theorem gives

a connection between the n-th increment and the n-th differential dny =
f (n)(x)dxn.
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Theorem 9.19. Suppose y = f(x) is a real function, c is a real number,
and 4x is a nonzero infinitesimal.

(i) If f (n) is continuous at c, then at every hyperreal point x ≈ c we have

4ny
4xn

≈ dny

dxn
,

that is,

4nf(x,4x) ≈ f (n)(x)4xn (compared to 4xn) .

(ii) If f (n) exists at c, then at x = c we have

4ny
4xn

≈ dny

dxn
,

that is,

4nf(c,4x) ≈ f (n)(c)4xn (compared to 4xn) .

Proof. We give the proof for the case 4x > 0. We first prove a general-
ization of the Mean Value Theorem 3.30.

(a) Let u and 4u be real and suppose g(m)(t) exists for u ≤ t ≤ u+m4u.
Then 4mg(u,4u) = g(m)(t1)4um for some t1 ∈ (u, u+m4u).

The proof is by induction on m. For m = 1 it is just the Mean Value
Theorem,

g(u+4u)− g(u) = g′(t)4u.
Assume (a) for m− 1 and let h(t) = g(t+4u)− g(t). Then

h(m−1)(t) = g(m−1)(t+4u)− g(m−1)(t)

exists for u ≤ t ≤ u+ (m− 1)4u, so for some t0 ∈ (u, u+ (m− 1)4u),

4m−1h(u,4u) = h(m−1)(t0)4um−1.

Moreover,

4m−1h(u,4u) = 4mg(u,4u).

By the Mean Value Theorem,

h(m−1)(t0) = g(m−1)(t0 +4u)− g(m−1)(t0) = g(m)(t1)4u

for some t1 ∈ (t0, t0 +4u), and

4mg(u,4u) = g(m)(t1)4u.

This proves (a) for m, and completes the induction.
We now prove (i). Since f (n) is continuous at c, f (n)(t) exists for x ≤ t ≤

x+4x. By (a) and the Partial Solution Theorem,

4nf(x,4x)

4xn
= f (n)(t1)
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for some t1 ∈ (x, x+ n4x). Then t1 ≈ x ≈ c, and since f (n) is continuous at
c,

4nf(x,4x)

4xn
≈ f (n)(x).

To prove (ii) we let m = n− 1 and g(t) = f(t+4x)− f(t). By (a) and the
Partial Solution Theorem there is a t1 ∈ (c, c+ (n− 1)4x) such that

4n−1g(c,4x) = g(n−1)(t1)4xn−1,
that is,

4nf(c.4x) =
f (n−1)(t1) +4x)− f (n−1)(t1)

4x
4xn.

Let t2 = t1 +4x. Then t1 ≈ c, t2 ≈ c, so

4nf(c,4x)

4xn
=
f (n−1)(t2)− f (n−1)(t1)

4x

=
f (n−1)(t2)− f (n−1)(c)

t2 − c
t2 − c
4x

+
f (n−1)(c)− f (n−1)(t1)

c− t1
c− t1
4x

≈ f (n)(c) st
(
t2 − c
4x

)
+ f (n)(c) st

(
c− t1
4x

)
= f (n)(c).

Thus
4nf(c,4x)

4xn
≈ f (n)(c).

a



CHAPTER 10

VECTORS

10A. Hyperreal Vectors (§10.8)

Chapter 10 of Elementary Calculus deals mostly with two and three di-
mensional vectors over the reals. Only the last section of the chapter, §10.8,
concerns hyperreal vectors.

Let n be a fixed natural number. The simplest way to define a real vector
in n dimensions is as an n-tuple of real numbers, 〈r1, . . . , rn〉. In Elementary
Calculus we used the following more geometric definition. Given two points

P = 〈p1, . . . , pn〉, Q = 〈q1, . . . , qn〉

in Rn, the ordered pair
−→
PQ is called the directed line segment from P to

Q. The components of
−→
PQ are the terms in the n-tuple

〈q1 − p1, . . . , qn − pn〉.
Two directed line segments are said to be equivalent if they have the same
components (hence the same length and direction), and a vector A is an equiv-

alence class of directed line segments. If A is the equivalence class of
−→
PQ, the

components of
−→
PQ are called the components of A, denoted by 〈a1, . . . , an〉,

and A is called the vector from P to Q.
The basis vectors are the vectors j1, . . . , jn, where jm is the vector with

m-th component 1 and all other components 0. For real vectors the vector
sum A + B, vector difference A − B, and the scalar multiple cA are
defined in the usual way in terms of components. Thus the vector A with
components 〈a1, . . . , an〉 is equal to the sum

A = a1j1 + · · ·+ anjn.

The inner product and length are defined by

A ·B = a1b1 + · · ·+ anbn,

|A| =
√

A ·A =
√
a21 + · · ·+ a2n.

The zero vector in n dimensions is denoted by 0.
In two dimensions, the basis vectors are denoted by i, j, so the vector A with

components 〈a, b〉 is the sum A = ai + bj.

115
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The hyperreal vectors in n dimensions are defined in a similar way. By
the Function and Transfer Axioms, the hyperreal vectors in n dimensions form
an inner product space over the field R∗ of hyperreal numbers. That is, the
usual algebraic rules for vector sums and differences, scalar multiples, and inner
products hold for hyperreal vectors. Hyperreal vectors A will be classified by
the behavior of the length |A| and the unit vector 1

|A|A.

Definition 10.1. A hyperreal vector A is said to be infinitesimal, finite,
or infinite if its length |A| is infinitesimal, finite, or infinite respectively. A is
infinitely close to B, in symbols A ≈ B, if and only if B−A is infinitesimal.
The monad and galaxy of A are defined by

monad(A) = {B : B ≈ A},

galaxy(A) = {B : B−A is finite}.

Thus monad(0) is the set of infinitesimal vectors, and galaxy(0) is the set of
finite vectors.

The next proposition follows easily from the inequalities

|am| ≤
√
a21 + · · · a2m ≤ |a1|+ · · ·+ |am|.

Proposition 10.2. (i) A is infinitesimal if and only if all its components
are infinitesimal.

(ii) A is finite if and only if all its components are finite.
(iii) A is infinite if and only if at least one of its components is infinite.
(iv) A ≈ B if and only if a1 ≈ b1, . . . , an ≈ bn.

Proposition 10.3. The sets monad(0) and galaxy(0) are closed under vec-
tor sums, vector differences, and finite scalar multiples.

This follows from Proposition 10.2 and the fact that the sets monad(0) and
galaxy(0) of hyperreal numbers are closed under sums, differences, and finite
multiples.

Definition 10.4. Given a finite hyperreal vector A, the standard part
st(A) is defined as the real vector

st(A) = st(a1)j1 + · · ·+ st(an)jn.

Thus st(A) is the unique real vector infinitely close to A.

The next result also follows from Proposition 10.2.
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Proposition 10.5. The mapping st preserves sums, differences, finite scalar
multiples, and lengths. That is, if A,B are finite vectors and c is a finite scalar,

st(A + B) = st(A) + st(B)

st(A−B) = st(A)− st(B)

st(cA) = st(c)st(A)

st(A ·B) = st(A) · st(B)

st(|A|) = |st(A)|.

Definition 10.6. A hyperreal vector A has real length if |A| is real. A
unit vector is a hyperreal vector of length 1. If A 6= 0, the unit vector of
A is the unit vector U = 1

|A|A. A has real direction if A 6= 0 and the unit

vector of A is a real vector.

Proposition 10.7. A nonzero vector A is real if and only if A has both
real length and real direction.

Proof. A has real length and direction if and only if both |A| and U =
1
|A|A are real, which holds if and only if A = |A|U is real. a

Definition 10.8. Two nonzero vectors A and B are said to be parallel if
their unit vectors U and V are equal or opposite, U = V or U = −V.

We introduce a weaker notion for hyperreal vectors. Two nonzero hyperreal
vectors A and B are said to be almost parallel if their unit vectors U and
V are such that either U ≈ V or U ≈ −V.

Proposition 10.9. Every nonzero hyperreal vector A is almost parallel to
some real vector.

Proof. Let U be the unit vector of A. Then U has finite length 1, so the
real vector V = st(U) exists. V is its own unit vector because |V| = |st(U)| =
st(|U|) = 1. Finally, U ≈ V, so A is almost parallel to V. a

The notion of almost parallel can be generalized to finite sequences of vec-
tors.

Definition 10.10. A k-tuple of real vectors A1, . . . ,Ak is linearly de-
pendent over R if there exist real numbers c1, . . . , ck, not all zero, such that

c1A1 + · · ·+ ckAk = 0.(56)

Similarly, a k-tuple A1, . . . ,Ak of hyperreal vectors is linearly dependent
over R∗ if there exist hyperreal numbers c1, . . . , ck, not all zero, such that
such that (56) holds. Finally, a k-tuple of hyperreal vectors A1, . . . ,Ak is
almost linearly dependent over R if either some Am = 0 or there exist
real numbers c1, . . . , ck, not all zero, such that

c1U1 + · · ·+ ckUk ≈ 0,

where Um is the unit vector of Am.
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Thus nonzero hyperreal vectors A1, . . . ,Ak are almost linearly dependent
over R if and only if the standard parts of the unit vectors, st(U1), . . . , st(Uk),
are linearly dependent over R. For pairs of nonzero vectors, linearly dependent
means parallel, and almost linearly dependent means almost parallel.

Theorem 10.11. (i) If A1, . . . ,Ak are linearly dependent over R∗ then they
are almost linearly dependent over R.

(ii) For real vectors, linear dependence over R, linear dependence over R∗,
and almost linear dependence over R are equivalent.

Proof. (i) Let c1A1 + · · ·+ ckAk = 0 where the hyperreal numbers ck are
not all zero. We may assume that all the Am are nonzero since otherwise the
vectors are trivially almost linearly dependent over R. Then

c1|A1|U1 + · · ·+ ck|Ak|Uk = 0.

Let b = |cm||Am| be the largest of the k hyperreal numbers |c1||A1|, . . . , |ck||Ak|,
and let d` = c`|A`|/b for ` = 1, . . . , k. Then

d1U1 + · · ·+ dkUk = 0,

each d` is finite, and |dm| = 1. Taking standard parts we see that

st(d1)st(U1) + · · ·+ st(dk)st(Uk) = 0

and st(dm) 6= 0. Therefore the standard parts of the unit vectors are linearly
dependent over R, and hence A1, . . . ,Ak are almost linearly dependent over
R. This proves (i).

(ii) By the Partial Solution Theorem, linear dependence over R and over R∗
are equivalent for real vectors. Moreover, real vectors are linearly dependent
over R if and only if the standard parts of their unit vectors are linearly
dependent over R. This proves (ii). a

10B. Vector Functions (§10.6)

An n-dimensional real vector function F maps a subset of R into the set
of n dimensional real vectors. The components of a real vector function F are
real functions 〈f1, . . . , fn〉 with the same domain as F. In symbols,

F(t) = f1(t)j1 + · · ·+ fn(t)jn.

The natural extension of F is the hyperreal vector function F∗ whose compo-
nents are the natural extensions 〈f∗1 , . . . , f∗n〉.

We conclude this chapter with definitions and equivalence theorems for lim-
its, continuity, and derivatives of real vector functions of one variable.

Definition 10.12. Let F be a real vector function, A be a real vector, and
c be a real number.

lim
t→c

F(t) = A
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means that whenever t ≈ c but t 6= c, F(t) ≈ A. F is continuous at c if
whenever t ≈ c, F(t) ≈ F(c), that is,

lim
t→c

F(t) = F(c).

Theorem 10.13. The following are equivalent.
(i) limt→c F(t) = A.
(ii) For m = 1, . . . , n, limt→c fm(t) = am.
(iii) The ε, δ condition. For every real ε > 0 there is a real δ > 0 such that

whenever 0 < |t− c| < δ, |F(t)−A| < ε.

Proof. The equivalence of (i) and (ii) follows from Proposition 10.2, and
the equivalence of (ii) and (iii) follows from Theorem 5.1, the equivalence
theorem for limits of functions. a

Definition 10.14. Let F be a real function, S be a real vector, and c be a
real number. F has vector derivative S at c, in symbols F′(c) = S, if for
every nonzero infinitesimal 4t we have

F(c+4t)− F(c)

4t
≈ S.

Thus

F′(c) = lim
4t→0

F(c+4t)− F(c)

4t
.

Theorem 10.13 leads to ε, δ conditions for the vector derivative. In particu-
lar, it follows that F′(c) exists if and only if f ′1(c), . . . , f ′n(c) all exist, and

F′(c) = f ′1(c)j1 + · · ·+ f ′n(c)jn.

Vector increments and vector differentials are defined as vector dependent
variables as follows. We are given a real vector function X = F(t) where t is a
scalar independent variable and X a vector dependent variable. We introduce
a new scalar independent variable 4t and a new vector dependent variable
4X, called the vector increment of X, with the equation

4X = F(t+4t)− F(t).

The vector differential of X is a second vector dependent variable whose
values are given by the equation

dX = F′(t)4t.
Thus dX exists when F′(t) exists, and putting dt = 4t we have

dX

dt
= F′(t),

4X

4t
≈ dX

dt
.





CHAPTER 11

PARTIAL DIFFERENTIATION

11A. Continuity in Two Variables (§11.1, §11.2)

For simplicity we concentrate on real functions of two variables. However,
all the notions and results readily extend to n variables.

Recall from Definition 1.32 that the distance between two hyperreal points
P (x1, y1) and Q(x2, y2) is

|P −Q| =
√

(x2 − x1)
2

+ (y2 − y1)
2
,

that P is infinitely close to Q, P ≈ Q, if |P−Q| ≈ 0, and that the monad of
P is the set of all points Q infinitely close to P . We have P (x1, y1) = Q(x2, y2)
if and only if x1 = x2and y1 = y2.

Given a real point P and a real number δ > 0, the real neighborhood
Nδ(P ) is defined as the set of all real points Q such that |Q − P | < δ. The
interior of a set D ⊆ R2 is the set of all points P such that some real neigh-
borhood Nδ(P ) is contained in D. D ⊆ R2 is an open set if it is equal to its
interior. A point P belongs to the boundary of D if every real neighborhood
of P meets both D and its complement. It follows that the interior of D and
the boundary of D are disjoint, so each open set is disjoint from its boundary.
D is a closed set if D contains its boundary.

Throughout this chapter we let f be a real function of two variables. The
graph of z = f(x, y) is a surface in (x, y, z) space.

The following result was proved for one variable in Theorem 1.28 and Corol-
lary 1.30, and the proof for two variables is similar.

Theorem 11.1. (i) Let Y ⊆ R2 be a set of real points and let P ∈ R2

be a real point. If Y ∗ contains the monad of P , then Y contains some real
neighborhood of P .

(ii) Let P ∈ R2. If f(x, y) is defined for all (x, y) ≈ P , then f is defined on
some real neighborhood of P .

Definition 11.2. Let (a, b) ∈ R2 and L ∈ R. The limit

lim
(x,y)→(a,b)

f(x, y) = L

121
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means that whenever (x, y) ≈ (a, b) but (x, y) 6= (a, b), f(x, y) ≈ L. Infinite
limits are defined in a similar way.

The function f is continuous at (a, b) if f(a, b) is defined, and (x, y) ≈
(a, b) implies f(x, y) ≈ f(a, b).

Corollary 11.3. f is continuous at (a, b) if and only if f is defined at
(a, b) and

lim
(x,y)→(a,b)

f(x, y) = f(a, b).

Theorem 1.12 on the standard part function shows that the functions x+ y,
x− y, and xy are everywhere continuous. For example, if (x, y) ≈ (a, b) ∈ R2

then
x+ y ≈ st(x+ y) = st(x) + st(y) = a+ b.

It follows from Theorem 11.1 that any function which is continuous at (a, b)
is defined on some real neighborhood of (a, b). As in the one variable case, we
have the following equivalence theorem.

Theorem 11.4. The following are equivalent.
(i) lim(x,y)→(a,b) f(x, y) = L,
(ii) For every real ε > 0 there is a real δ > 0 such that for all (x, y) 6= (a, b)

in Nδ(a, b), |f(x, y)− L| < ε.
(iii) There is a hyperreal δ > 0 such that whenever

0 < |(x, y)− (a, b)| < δ,

we have f(x, y) ≈ L.

Proposition 11.5. Compositions of continuous functions are continuous.
That is, if f(x, y) and g(x, y) are continuous at (x, y) = (a, b), and if h(u, v)
is continuous at (u, v) = (f(a, b), g(a, b)), then the composition

k(x, y) = h(f(x, y), g(x, y))

is continuous at (x, y) = (a, b).

The proof is the same as in the one variable case, Proposition 3.11.

11B. Partial Derivatives (§11.3, §11.4)

Definition 11.6. Given a real function f(x, y) and a real point (a, b), the
partial derivatives are defined by

fx(a, b) = g′(a) where g(x) = f(x, b),

fy(a, b) = h′(b) where h(y) = f(a, y).

If z = f(x, y) we use the notation

∂z

∂x
=
∂f

∂x
(a, b) = fx(a, b),

∂z

∂y
=
∂f

∂y
(a, b) = fy(a, b).
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The mere existence of the partial derivatives of f(x, y) tells us nothing about
the behavior of f off of the lines x = a, y = b. We introduce three stronger
notions of differentiability which will be used later on in this chapter.

Definition 11.7. Let (a, b) ∈ R2 and suppose both partial derivatives fx(a, , b)
and fy(a, b) exist.

(i) f is smooth at (a, b) if both fx and fy are continuous at (a, b).
(ii) f is differentiable at (a, b) if for any nonzero infinitesimal point (4x,4y),

f(a+4x, b+4y)− f(a, b) ≈ fx(a, b)4x+ fy(a, b)4y(
compared to

√
4x2 +4y2

)
.

(iii) f is uniformly differentiable at (a, b) if for any hyperreal point
(x, y) ≈ (a, b) and nonzero infinitesimal point (4x,4y),

f(x+4x, y +4y)− f(x, y) ≈ fx(a, b)4x+ fy(a, b)4y(
compared to

√
4x2 +4y2

)
.

Differentiability and uniform differentiability correspond to the one variable
notions. They are equivalent to real ε, δ conditions which are left to the reader.

When z = f(x, y) we introduce two new dependent variables, the incre-
ment 4z given by

4z = f(x+4x, y +4y)− f(x, y)

and the total differential dz given by

dz = fx(x, y)4x+ fy(x, y)4y =
∂z

∂x
4x+

∂z

∂y
4y.

Both 4z and dz depend on the four independent variables x, y,4x,4y. Using
dependent variable notation, f is differentiable at (a, b) if and only if for every
nonzero infinitesimal (4x,4y),

4z ≈ dz
(

compared to
√
4x2 +4y2

)
.

If f is differentiable at (a, b), the tangent plane of f at (a, b) is defined as
the plane with the equation

z − f(a, b) = fx(a, b)(x− a) + fy(a, b)(y − b).

Putting 4x = x− a and 4y = y − b, we see that

4z = change in z along the surface,

dz = change in z along the tangent plane.

By definition, if f is differentiable at (a, b) then whenever (x, y) is infinitely
close to but not equal to (a, b), the tangent plane is infinitely close to the

surface compared to
√
4x2 +4y2.
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The following result shows the relationship between the three notions of
differentiability. The implication (i)⇒ (iii) was called the Increment Theorem
in Elementary Calculus. The one-variable form of the implication (i) ⇒ (ii)
was given by Theorem 3.37 (i).

Theorem 11.8. Let (a, b) be a real point. Each condition below implies the
next, (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

(i) f is smooth at (a, b).
(ii) f is uniformly differentiable at (a, b).
(iii) f is differentiable at (a, b).
(iv) f is continuous at (a, b).

Proof. (i) ⇒ (ii): Let (x, y) ≈ (a, b) and let (4x,4y) be nonzero infini-
tesimal. Then

f(x+4x, y +4y)− f(x, y) =

[f(x+4x, y +4y)− f(x+4x, y)] + [f(x+4x, y)− f(x, y)].

Since fx and fy are continuous at (a, b) they are defined everywhere in the
monad of (a, b). Using the Hyperreal Mean Value Theorem 3.34 for the one
variable function g(u) = f(x+4x, u), we have

f(x+4x, y +4y)− f(x+4x, y) = fy(x+4x, u)4y
for some u between y and y +4y. Similarly,

f(x+4x, y)− f(x, y) = fx(t, y)4x
for some t between x and x+4x. Since

fy(x+4x, u) ≈ fy(a, b), fx(t, y) ≈ fx(a, b)

and
4x√

4x2 +4y2
,

4y√
4x2 +4y2

are finite, we have

f(x+4x, y +4y)− f(x, y) ≈ fx(a, b)4x+ fy(a, b)4y(
compared to

√
4x2 +4y2

)
.

Thus (i) implies (ii). Condition (ii) trivially implies (iii).
(iii) ⇒ (iv): Let (4x,4y) ≈ (0, 0). By (iii),

f(a+4x, b+4y)− f(a, b) ≈ fx(a, b)4x+ fy(a, b)4y ≈ 0.

Therefore f is continuous at (a, b). a
The next two theorems are the two-variable analogues of Theorems 3.37 (ii)

and 3.39. The proofs are left to the reader.

Theorem 11.9. If f is uniformly differentiable at every point of an open
set Y ⊆ R2, then f is smooth at every point of Y .
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Theorem 11.10. If f(x, y) is uniformly differentiable at a real point (a, b)
then f is continuous on some real neighborhood of (a, b).

11C. Chain Rule and Implicit Functions (§11.5, §11.6)

The Chain Rule for functions of two variables holds when all functions in-
volved are differentiable in the sense of the preceding section.

In Elementary Calculus the theory was simplified by concentrating on smooth
functions. Some theorems were stated under the hypothesis that f is smooth
when only differentiability or uniform differentiability was actually needed. In
this section we give detailed proofs of the basic results and keep track of the
kind of differentiability which is actually needed in each case.

Theorem 11.11. (Chain Rule for Two Variables) Suppose x = f(s, t) and
y = g(s, t) are differentiable at the real point (s0, t0) and z = h(x, y) is differ-
entiable at the real point

(x0, y0) = (f(s0, t0), g(s0, t0)).

Then the composition

z = H(s, t) = h(f(s, t), g(s, t))

is differentiable at (s0, t0), and its partial derivatives are

∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s
,

∂z

∂t
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t
.

Proof. Let (4s,4t) be a nonzero infinitesimal point and let 4x,4y, and

4z be the corresponding increments in x, y, and z. Let δ =
√
4s2 +4t2.

Then at the point (s0, t0),

4x ≈ ∂x

∂s
4s+

∂x

∂t
4t (compared to δ) ,

4y ≈ ∂y

∂s
4s+

∂y

∂t
4t (compared to δ) .

It follows that 4x ≈ 0,4y ≈ 0. Also, 4x/δ,4y/δ, and hence
√
4x2 +4y2/δ

are finite. Therefore

4z ≈ ∂z

∂x
4x+

∂z

∂y
4y (compared to δ) .

When 4t = 0 we have δ = 4s and

4z
4s
≈ ∂z

∂x

4x
4s

+
∂z

∂y

4y
4s
≈ ∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s
,

so
∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s
.
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The formula for ∂z/∂t is obtained in a similar way when 4s = 0. Finally, H
is differentiable at (s0, t0) because

4z
δ
≈ ∂z

∂x

4x
δ

+
∂z

∂y

4y
δ

≈ ∂z

∂x

(
∂x

∂s
4s+

∂x

∂t
4t
)

1

δ
+
∂z

∂y

(
∂y

∂s
4s+

∂y

∂t
4t
)

1

δ
,

so

4z ≈ ∂z

∂s
4s+

∂z

∂t
4t (compared to δ) .

a

We now turn to the Implicit Function Theorem, first for two variables and
then for three variables.

Definition 11.12. An implicit function of a real curve F (x, y) = 0 at a
real point (a, b) is a real function y = g(x) such that:

(i) g(a) = b;
(ii) The domain of g is a real neighborhood of a;
(iii) The graph of g is a subset of the graph of the equation F (x, y) = 0.

An implicit function of a real surface F (x, y, z) = 0 at a real point (a, b, c)
is a real function z = h(x, y) such that:

(iv) h(a, b) = c;
(v) The domain of h is a real neighborhood of (a, b);
(vi) The graph of h is a subset of the graph of F (x, y, z) = 0.

The notion of uniform differentiability will be useful for the Implicit Function
Theorem.

Theorem 11.13. (Two Variable Implicit Function Theorem) Suppose that
at the real point (a, b), z = F (x, y) is uniformly differentiable, F (a, b) = 0, and
Fy(a, b) 6= 0. Then the curve F (x, y) = 0 has an implicit function at (a, b).
Moreover, for every implicit function g(x) at (a, b), g is uniformly differentiable
at a and

g′(a) = −Fx(a, b)

Fy(a, b)
.

Proof. Since Fy(a, b) 6= 0, it follows from the ε, δ condition for uniform
differentiability at (a, b) (the two variable form of Theorem 5.4) that there is
a real neighborhood Nδ(a, b) with the following property. For any two distinct
points (x, y) and (x, y + 4y) of Nδ(a, b), F (x, y) 6= F (x, y + 4y). We may
therefore define a real function g by

g(x) = y iff (x, y) ∈ Nδ(a, b) and F (x, y) = 0.



11C. Chain Rule and Implicit Functions (§11.5, §11.6) 127

Obviously g(a) = b. We show first that g is continuous at a. Let x1 ≈ a. Since
F is continuous at (a, b), F (x1, b) ≈ 0. Since F is uniformly differentiable at
(a, b), for every nonzero infinitesimal 4y we have

F (x1, b+4y)− F (x1, b)

4y
≈ Fy(a, b) 6= 0.

Hence there is a 4y ≈ 0 such that 0 is between F (x1, b) and F (x1, b +4y).
Since F is continuous on Nδ(a, b), it follows from the Hyperreal Intermediate
Value Theorem 3.32 that there is a hyperreal point y1 ≈ b with F (x1, y1) = 0.
Every real solution of

F (x, y) = 0, |(x, y)− (a, b)| < δ

is a real solution of y = g(x). By Transfer, y1 = g(x1). Thus g is defined in
the monad of a and is continuous at a. By Theorem 11.1 (or Corollary 1.30),
g is defined on some real neighborhood of a. By definition, the graph of g is a
subset of the graph of F (x, y) = 0.

It remains to show that g is uniformly differentiable at a and has the required
derivative. Let x ≈ a and let 4x be nonzero infinitesimal. Let y = g(x),

4y = g(x+4x)− g(x), and 4s =
√
4x2 +4y2. Since g is continuous at s,

4y ≈ 0. Since F is uniformly differentiable at (a, b),

0 = F (x+4x, y +4y)− F (x, y)

≈ Fx(a, b)4x+ Fy(a, b)4y (compared to 4x) .

Since Fy(a, b) 6= 0,

4y
4s
≈ −Fx(a, b)

Fy(a, b)

4x
4s

.(57)

We cannot have 4x/4s ≈ 0, because it leads to the contradiction

1 ≈ 4y
4s
≈ −Fx(a, b)

Fy(a, b)
· 0 = 0.

Therefore we may divide both sides of (57) by 4x/4s, and get

4y
4x

=
4y/4s
4x/4s

≈ −Fx(a, b)

Fy(a, b)
.

We conclude that g is uniformly differentiable at a and

g′(a) = −Fx(a, b)

Fy(a, b)
.

a

We now turn to the Implicit Function Theorem in three variables. It is
proved in exactly the same way as the two variable theorem.
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Theorem 11.14. (Three variable Implicit Function Theorem) Suppose that
at the point (a, b, c), w = F (x, y, z) is uniformly differentiable, F (a, b, c) = 0,
and Fz(a, b, c) 6= 0. Then the curve F (x, y, z) = 0 has an implicit function at
(a, b). Moreover, every implicit function h(x, y) is uniformly differentiable at
(a, b), has partial derivatives

hx(a, b) = −Fx(a, b, c)

Fz(a, b, c)
, hy(a, b) = −Fy(a, b, c)

Fz(a, b, c)

and has the tangent plane

Fx(a, b, c)(x− a) + Fy(a, b, c)(y − b) + Fz(a, b, c)(z − c) = 0.

11D. Maxima and Minima (§11.7)

We discuss maxima and minima for real functions of two variables.

Definition 11.15. Let f(x, y) be a real function with domain D. f has a
maximum at a point (a, b) ∈ D if f(a, b) ≥ f(x, y) for all (x, y) ∈ D. The
value f(a, b) is called the maximum value of f . A minimum of f and the
minimum value are defined analogously.

The following two results are proved exactly as in the one variable case.

Proposition 11.16. Suppose a real function f(x, y) with domain D has
a maximum at a real point (a, b). Then the natural extension of f has a
maximum at (a, b), that is, f(a, b) ≥ f(x, y) for all hyperreal points (x, y) ∈
D∗.

Theorem 11.17. Given a real function f(x, y) and a real point (a, b), the
following are equivalent.

(i) f has a local maximum at (a, b), that is, the restriction of f to some real
neighborhood of (a, b) has a maximum at (a, b).

(ii) Whenever (x, y) ≈ (a, b), f(a, b) ≥ f(x, y).

By Corollary 1.29 and Theorem 1.31 for two variables, a set of points D ⊆ R2

is closed and bounded if and only if

(i) Every point (x, y) ∈ D∗ is finite, and
(ii) Whenever (x, y) ∈ D∗, (st(x), st(y)) ∈ D.

We use this fact to prove the Extreme Value Theorem for two variables.

Theorem 11.18. (Extreme Value Theorem) Suppose the domain of f(x, y)
is a closed and bounded set D, and f(x, y) is continuous on D. Then f has a
maximum and a minimum.

Proof. Let Y be the range of f ,

Y = {f(x, y) : (x, y) ∈ D}.
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By Proposition 1.27, f∗ has domain D∗ and range Y ∗. For each (x1, y1) ∈ D∗,
we have (st(x1), st(y1)) ∈ D, and by the continuity of f ,

f(x1, y1) ≈ f(st(x1), st(y1)).

Therefore f(x1, y1) is finite, so every element of Y ∗ is finite. By Theorem
1.31, the set Y is bounded, so Y ⊆ [A,B] for some real A and B. Consider a
positive integer n, and partition the interval [A,B] into n equal subintervals of
length δ = (B −A)/n. Let k = k(n) be the largest integer such that Y meets
the kth subinterval. Then there is a point (g(n), h(n)) such that

(g(n), h(n)) ∈ D, A+ (k − 1)δ ≤ f(g(n), h(n)),

but for all (x, y) ∈ D,

f(x, y) ≤ A+ kδ.

Now let n1 be a positive infinite hyperinteger and let δ1 = (B − A)/n1 and
k1 = k(n1). Using Transfer we see that

(g(n1), h(n1)) ∈ D∗, A+ (k1 − 1)δ1 ≤ f(g(n1), h(n1)).

By another use of Transfer, for every point (x1, y1) ∈ D∗ we have

f(x1, y1) ≤ A+ k1δ1.

Since D is closed and bounded, (g(n1), h(n1)) is finite, and has a standard
part

(a, b) = (st(g(n1)), st(h(n1))) ∈ D.
By continuity of f ,

f(a, b) = st(f(g(n1), h(n1))).

It follows that for any point (x, y) ∈ D,

f(x, y) ≤ st(A+ k1δ1) = st(A+ (k1 − 1)δ1) ≤ f(a, b),

so f has a maximum at (a, b). a

The above proof differs from the proof of the one variable Extreme Value
Theorem 3.28 because this time we partitioned the range of f instead of the
domain of f . The one variable proof can be generalized to the present case by
using a rectangular grid to partition the domain of f .

Here is a hyperreal form of the Extreme Value Theorem.

Theorem 11.19. (Hyperreal Extreme Value Theorem) Suppose f is contin-
uous on its domain D, and E is a hyperreal closed rectangle which is contained
in D∗. Then f∗ has a maximum and minimum on E.

Proof. By the Extreme Value Theorem 11.18, for every real closed rectan-
gle E with sides [s, t] and [u, v] there is a point x = g(s, t, u, v), y = h(s, t, u, v)
such that (x, y) ∈ E and either (x, y) /∈ D or f has a maximum on E at (x, y).
Then every real solution of

s ≤ x1 ≤ t, u ≤ y1 ≤ v, x = g(s, t, u, v), y = h(s, t, u, v), (x, y) ∈ D(58)
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is a solution of

s ≤ x ≤ t, u ≤ y ≤ v, f(x, y) ≥ f(x1, y1).(59)

By Transfer, every hyperreal solution of (58) is a solution of (59). For any
hyperreal closed rectangle E ⊆ D∗ with sides [s, t]∗ and [u, v]∗, f∗ is defined
everywhere in E. It follows that f∗ has a maximum on E at

x = g(s, t, u, v), y = h(s, t, u, v).

The proof that f∗ has a minimum is similar. a

The above theorem can easily be generalized. For instance, later in this
section we will introduce the notion of a basic closed hyperreal region, and a
proof similar to the above works when E is such a region.

Definition 11.20. For simplicity, for the rest of this chapter we only con-
sider functions f such that f is differentiable at every interior point of its
domain D. An interior point (a, b) of D is said to be a critical point of f if
both partial derivatives of f are equal to zero,

fx(a, b) = 0, fy(a, b) = 0.

Theorem 11.21. (Critical Point Theorem) Suppose f is continuous on its
domain D and f is differentiable at every interior point of D. If f has a
maximum or minimum at a real point (a, b), then (a, b) is either a boundary
point of D or a critical point of f .

Proof. Suppose f has a maximum at an interior point (a, b) of D. Then
the one variable function g(x) = f(x, b) has a maximum at the interior point
a. By the one variable Critical Point Theorem 3.29, g′(a) = fx(a, b) = 0.
Similarly, fy(a, b) = 0. a

As in the one variable case, the Extreme Value Theorem and Critical Point
Theorem lead to a method for finding the maxima and minima of a function
with a bounded closed domain. We will see that the method can often be
applied for other domains as well. In Elementary Calculus we concentrated
on basic closed regions, that is, sets D of the form

D = {(x, y) : a ≤ x ≤ b, g(x) ≤ y ≤ h(x)}

where g and h are continuous and g(x) ≤ h(x) for x in [a, b]. The follow-
ing lemma ties the present approach to the simpler treatment in Elementary
Calculus.

Lemma 11.22. Let D be a basic closed region in the plane.
(i) D is a bounded closed set.
(ii) The boundary of D is the set of all points of D on one of the four curves

x = a, x = b, y = g(x), y = h(x).
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Proof. (i) Since g and h are continuous, they have maxima and minima
on [a, b], so D is bounded. Let (x1, y1) ∈ D∗ and let x = st(x1), y = st(y1).
Then

a ≤ x1 ≤ b, g(x1) ≤ y1 ≤ h(x1).

By the continuity of g and h,

g(x) = st(g(x1)), h(x) = st(h(x1)).

Therefore
a ≤ x ≤ b, g(x) ≤ y ≤ h(x),

so (x, y) ∈ D.
(ii) Obviously any point on one of the four curves is on the boundary of D.

For example, if a ≤ x ≤ b and g(x) = y then for any real ε > 0, y− ε/2 < g(x)
and hence (x, y − ε/2) /∈ D, so Nε(x, y) is not contained in D and (x, y) is on
the boundary of D.

Suppose (x, y) ∈ D but (x, y) is not on one of the four curves. Then

a < x < b, g(x) < y < h(x).

For any (x1, y1) ≈ (x, y) we have a < x1 < b. Also, g(x1) < y1 < h(x1)
because if, for example, y1 ≤ g(x1), then

y = st(y1) ≤ st(g(x1)) = g(st(x1)) = g(x),

contradicting the assumption that g(x) < y. Thus (x1, y1) ∈ D∗, so D∗

contains the monad of (x, y). It follows by Theorem 1.28 that (x, y) belongs
to the interior of D. a

In many applications, a function f is continuous on a basic closed region D
and is differentiable and has only finitely many critical points on the interior
of D. The maximum of f can usually be found as follows. First, evaluate f at
each of its critical points. Second, on each of the four boundary curves of D
find the maxima of f by eliminating one variable and using the one variable
method. Finally, the largest of the values of f at the critical points and on
the boundary curves must be the maximum value of f .

We now present a method for finding maxima and minima on open regions.
A basic open region in the plane is a set D ⊆ R2 of one of the forms

{(x, y) : x ∈ I, g(x) < y < h(x)},
{(x, y) : x ∈ I, −∞ < y < h(x)},
{(x, y) : x ∈ I, g(x) < y <∞},
{(x, y) : x ∈ I, −∞ < y <∞}

where I is an open interval, g and h are continuous real functions on I, and
g(x) < h(x) for all x ∈ I.

A basic closed hyperreal region in the plane is a set E ⊆ R∗ of hyperreal
points of the form

E = {(x, y) : a ≤ x ≤ b, g(x) +A ≤ y ≤ h(x) +B}
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where a, b, A,B are hyperreal numbers and g, h are real functions on an interval
I such that a, b ∈ I∗.

A hyperreal cover of a basic open region D is a basic closed hyperreal
region E obtained as follows. Let ε be a positive infinitesimal and H be a
positive infinite hyperreal number. If

D = {(x, y) ∈ R2 : a < x < b, g(x) < y < h(x)},

then

E = {(x, y) ∈ (R∗)2 : a+ ε ≤ x ≤ b− ε, g(x) + ε ≤ y ≤ h(x)− ε}.

If

D = {(x, y) ∈ R2 : a < x <∞, g(x) < y <∞},
then

E = {(x, y) ∈ (R∗)2 : a+ ε ≤ x ≤ H, g(x) + ε ≤ y ≤ H}.
The other cases are similar.

Note that every basic open region D has a hyperreal cover. In fact, there is
one hyperreal cover for each positive infinitesimal ε > 0 and positive infinite
H.

Lemma 11.23. If E is a hyperreal cover of a basic open region D, then
D ⊆ E ⊆ D∗.

This lemma follows easily from the definition.
The standard calculus course often gives the Second Derivative Test for local

maxima, minima, and saddle points, but no practical test for global maxima
and minima. The following method for finding global maxima and minima
for open regions is presented in Elementary Calculus. It is an application
of hyperreal numbers to an elementary problem about real functions. For a
function f with an open domain D, no point of D is on the boundary. Thus
by the Critical Point Theorem, if f has a maximum, it must occur at a critical
point. But it is often hard to determine whether or not f has a maximum.
The next result is a practical criterion for the existence of a maximum of f .

By a maximum critical point of f(x, y) we mean a critical point (x0, y0)
such that for every other critical point (x1, y1), f(x0, y0) ≥ f(x1, y1). Obvi-
ously, if f(x, y) has at least one but only finitely many critical points, it has a
maximum critical point.

Theorem 11.24. Suppose a real function f(x, y) is defined on a basic open
region D, has partial derivatives at every point of D, and has a maximum
critical point (c, d). Let E be a hyperreal cover of D. Then

(i) If f(c, d) ≥ f(x, y) for all (x, y) on the boundary of E, then f has a
maximum in D at (c, d).

(ii) If f(c, d) < f(x, y) for some (x, y) on the boundary of E, then f has no
maximum in D.

A similar result holds for minima.
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Proof. We give the proof in the case that D has the form

D = {(x, y) : a < x <∞, g(x) < y <∞}.

The hyperreal cover E has the form

E = {(x, y) : a+ ε ≤ x ≤ H, g(x) + ε ≤ y ≤ H}

where ε is positive infinitesimal and H is positive infinite. We first prove
(ii). Suppose f has a maximum in D. To prove (ii) it suffices to show that
f(c, d) ≥ f(x, y) for all (x, y) on the boundary of E. Since D is open, no point
of D is on the boundary of D. Hence by the Critical Point Theorem 11.21, the
maximum must occur at the maximum critical point (c, d). By Proposition
11.16, f(c, d) ≥ f(x, y) for all (x, y) ∈ D∗. Since E ⊆ D∗, it follows that
f(c, d) ≥ f(x, y) for all (x, y) on the boundary of E. This proves (ii).

The proof of (i) uses the Partial Solution Theorem. For each positive real
ε0 and H0, let E(ε0, H0) be the basic closed region

E(ε0, H0) = {(x, y) : a+ ε0 ≤ x ≤ H0, g(x) + ε0 ≤ y ≤ H0}.

Then

E(ε0, H0) ⊆ D ⊆ E ⊆ D∗.
Let ∂E(ε0, H0) be the boundary of E(ε0, H0). The relations (x, y) ∈ E(ε0, H0)
and (x, y) ∈ ∂E(ε0, H0) can both be expressed by systems of formulas. By
the Extreme Value and Critical Point Theorems, if (c, d) ∈ E(ε0, H0) then in
E(ε0, H0), f has a maximum either at (c, d) or on ∂E(ε0, H0). Thus every real
solution of

(c, d) ∈ E(ε0, H0), (s, t) ∈ E(ε0, H0), f(c, d) < f(s, t)(60)

is a partial real solution of

(s, t) = (s, t), (x, y) ∈ ∂E(ε0, H0), f(c, d) < f(x, y).(61)

Suppose f does not have a maximum in D at (c, d). To prove (i) we must
show that f(c, d) < f(u, v) for some (u, v) on the boundary of E. We have
f(c, d) < f(s, t) for some real point (s, t) ∈ D. Since D ⊆ E = E(ε,H),
(s, t, ε,H) is a hyperreal solution of the system of formulas (60). By the Partial
Solution Theorem, there is a hyperreal point (u, v) such that (61) holds for
(s, t, ε,H, u, v). Thus (u, v) is on the boundary of E and f(c, d) < f(u, v).
This proves (i). a

11E. Second Partial Derivatives (§11.8)

Given a function f(x, y) of two variables, one can consider four second partial
derivatives, the pure second partials

∂2f

∂x2
= fxx = (fx)x and

∂2f

∂y2
= fyy = (fy)y
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and the mixed second partials

∂2f

∂x∂y
= fxy = (fx)y and

∂2f

∂y∂x
= fyx = (fy)x.

We give a hyperreal proof of the equality of the mixed second partial deriva-
tives. The hypothesis we need is the uniform differentiability of both first
partial derivatives. (In Elementary Calculus we used the stronger hypothesis
that both first partial derivatives are smooth). The proof uses the following
form of the Hyperreal Mean Value Theorem for two variables.

Theorem 11.25. (Hyperreal Mean Value Theorem) Suppose f(x, y) is a real
function whose partial derivative fx(x, y) exists on an open rectangle D. Then
for every pair of hyperreal points (x, y) and (x +4x, y) in D∗ with 4x 6= 0
there is a point t between x and x+4x such that

f(x+4x, y)− f(x, y)

4x
= fx(t, y).

A similar result holds for the other partial derivative fy.

Proof. By the real Mean Value Theorem 3.30 in one variable, every real
solution of

(x, y) ∈ D, (x, x+4x, y) ∈ D, 4x > 0

is a partial real solution of

f(x, x+4x, y)− f(x, y)

4x
= fx(t, y), x < t < x+4x.

The result now follows from the Partial Solution Theorem. a

Theorem 11.26. Suppose both partial derivatives fx and fy of a real func-
tion f(x, y) are uniformly differentiable at a real point (a, b). Then the mixed
second partial derivatives are equal at (a, b),

∂2f

∂x∂y
(a, b) =

∂2f

∂y∂x
(a, b).

Proof. Let 4x and 4y be nonzero infinitesimals. Since fx and fy are uni-
formly differentiable at (a, b), they exist and are continuous on a real neigh-
borhood of (a, b), by Theorem 11.10. Let

δ = [f(a+4x, b+4y)− f(a+4x, b)]− [f(a, b+4x)− f(a, b)].

By the Hyperreal Mean Value Theorem 11.25 applied to the function

g(x,4y) = f(x, b+4y)− f(x, b),

we have

δ

4y
=
f(a+4x, b+4y)− f(a+4x, b)

4y
− f(a, b+4x)− f(a, b)

4y
= fy(a+4x, u)− fy(a, u)
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for some u between b and b+4y. By uniform differentiability of fx and fy,

δ

4x4y
=
fx(t, b+4y)− fx(t, b)

4y
≈ ∂2f

∂y∂x
(a, b)

and
δ

4x4y
=
fy(a+4x, u)− fy(a, u)

4x
≈ ∂2f

∂x∂y
(a, b).

Therefore
∂2f

∂y∂x
(a, b) =

∂2f

∂x∂y
(a, b).

a





CHAPTER 12

MULTIPLE INTEGRATION

Double and triple integrals are developed in Chapter 12 of Elementary Cal-
culus. To simplify our notation we will concentrate entirely on double integrals
here. However, everything we do in this chapter cn readily be generalized to
triple integrals.
Permanent Assumption We assume throughout this Chapter that D0 ⊆

R2 is an open set in the plane, and that f(x, y) is a real function which is
continuous on D0.

12A. Double Integrals (§12.1, §12.2)

We will define the double integral of a continuous real function f(x, y) and
state the basic results. Most of the proofs are similar to corresponding proofs
for the single integral in Chapter 4 and will be omitted here.

We will consider basic closed subregions D ⊆ D0. The analogue for f of an
area function for a real function of one variable is a volume function.

Definition 12.1. A volume function for f is a function B(D) from the
set of basic closed regions D ⊆ D0 into the real numbers which has the following
properties:

Addition Property: If D = D1 ∪D2 where

D1 = {(x, y) ∈ D : x ≤ c},

D2 = {(x, y) ∈ D : x ≥ c},

then B(D) = B(D1) +B(D2).
If D = D1 ∪D2 where

D1 = {(x, y) ∈ D : y ≤ k(x)},
D2 = {(x, y) ∈ D : y ≥ k(x)},

where k(x) is continuous on R, then B(D) = B(D1) +B(D2).

137



138 12. Multiple Integration

Cylinder Property: If f(x, y) has minimum value m and maximum value
M on D, and A is the area of D, then

mA ≤ B(D) ≤MA.

The Addition Property states that if we divide D into two basic closed
regions D1 and D2 with either a vertical line x = c or a continuous curve
y = k(x), then B(D) = B(D1) + B(D2). The Cylinder Property states that
B(D) is between the volume of the cylinder above D with the minimum height
m and the volume of the cylinder above D with the maximum height M . The
intuitive notion of the volume of a solid above the region D between the
horizontal plane z = 0 and the surface z = f(x, y) has the Addition and
Cylinder properties. It will turn out that the double integral is the unique
volume function for f . Our first step in defining the double integral is the
finite double Riemann sum.

Let
D = {(x, y) : a ≤ x ≤ b, g(x) ≤ y ≤ h(x)}

be a basic closed region included in D0, and let

B1 = minimum value of g(x), a ≤ x ≤ b,
B2 = minimum value of h(x), a ≤ x ≤ b.

The rectangle
[a, b]× [B1, B2]

is called the circumscribed rectangle of D. Let 4x and 4y be positive real
numbers and divide the intervals [a, b] and [B1, B2] into subintervals of length
4x and 4y respectively,

x0 = a, x1 = a+4x, . . . , xm = a+m4x
where xm < b ≤ xm +4x,

y0 = B1, y1 = B1 +4y, . . . , yn = B1 + n4y
where yn < B2 ≤ yn + 4y. If 4x does not evenly divide b − a, the last
subinterval [xm, b] will have length less than 4x and will be covered by the
interval [xm, xm +4x]. Thus the circumscribed rectangle [a, b] × [B1, B2] of
D is covered by a grid of 4x by 4y rectangles.

Definition 12.2. The finite double Riemann sum of f over D is defined
as ∑∑

D

f(x, y)4x4y =

m∑
k=0

n∑
`=0

{f(xk, y`)4x4y : (xk, y`) ∈ D}.

Thus
∑∑

D f(x, y)4x4y is the sum of the volumes of the rectangles of
base 4x4y and height f(xk, y`) such that the point (xk, y`) belongs to D.
For a given region D, the finite double Riemann sum

∑∑
D f(x, y)4x4y is a

real function of two variables 4x and 4y, and is defined for all 4x > 0,4y >
0. By the Function Axiom, its natural extension is defined for all hyperreal
4x > 0,4y > 0.
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Definition 12.3. If dx and dy are positive infinitesimals, the hyperreal
number ∑∑

D

f(x, y) dx dy

is called the infinite Riemann sum of f over D with respect to dx and dy.

Lemma 12.4. For any basic closed region D and positive infinitesimals dx
and dy, the infinite Riemann sum

∑∑
D f(x, y) dx dy is a finite hyperreal

number.

Definition 12.5. Let dx and dy be positive infinitesimals. The double
integral of f over D with respect to dx and dy is the standard part of the
infinite Riemann sum,∫∫

D

f(x, y) dx dy = st

(∑∑
D

f(x, y) dx dy

)
.

Theorem 12.6. The value of the double integral of f over a basic closed
region D does not depend on dx or dy. That is, if dx, d1x, dy, d1y are positive
infinitesimals, then∫∫

D

f(x, y) dx dy =

∫∫
D

f(x, y) d1x d1y.

Hereafter we will write dA = dx dy and denote the double integral by∫∫
D

f(x, y) dx dy =

∫∫
D

f(x, y) dA.

Theorem 12.7. The double integral is the unique volume function for f .

This theorem justifies the definition of the volume V of the solid over the
region D above the plane z = 0 and below the surface z = f(x, y) as

V =

∫∫
D

f(x, y) dA.

It follows from the Cylinder Property that the area of a basic closed region D
is equal to the definite integral

A =

∫∫
D

1 dA.

The next theorem provides the basic tool for computing double integrals.

Theorem 12.8. (Iterated Integral Theorem) Let D be the basic closed region

D = {(x, y) : a ≤ x ≤ b, g(x) ≤ y ≤ h(x)}.
Then the double integral of f over D is equal to the iterated integral∫∫

D

f(x, y) dA =

∫ b

a

∫ h(x)

g(x)

f(x, y) dy dx.
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Proof. Let

B(D) =

∫ b

a

∫ h(x)

g(x)

f(x, y) dy dx.

Using properties of the single integral, a simple computation shows that B(D)
is a volume function for f . By Theorem 12.7, the double integral is the only
volume function for f , so it must be equal to B(D). a

Corollary 12.9. Suppose D is a basic closed region in both the (x, y) plane
and the (y, x) plane, that is,

D = {(x, y) : a ≤ x ≤ b, g(x) ≤ y ≤ h(x)},

D = {(x, y) : c ≤ y ≤ d, k(y) ≤ x ≤ `(y)}.
Then the two iterated integrals are equal,∫ b

a

∫ h(x)

g(x)

f(x, y) dy dx =

∫ d

c

∫ `(y)

k(y)

f(x, y) dx dy.

Proof. The definition of the double Riemann sum is symmetric between x
and y, so the double integral in the sense of the (x, y) plane equals the double
integral in the sense of the (y, x) plane. By the Iterated Integral Theorem
12.8, each of the iterated integrals is equal to the double integral∫∫

D

f(x, y) dA.

a

12B. Infinite Sum Theorem for Two Variables (§12.3)

As in the case of single integrals, the Infinite Sum Theorem can be used for
applications of the double integral.

Definition 12.10. An element of area is a hyperreal rectangle 4D ⊆
(D0)∗ whose sides are infinitesimal and parallel to the x and y axes. Given an
element of area 4D we let

(x, y) = lower left corner of 4D,

4x,4y = dimensions of 4D,
4A = 4x4y = area of 4D.

Theorem 12.11. (Infinite Sum Theorem) Let f(x, y) be a real function
which is continuous on an open set D0 and let B(D) be a function from basic
closed regions D ⊆ D0 to real numbers. Let 4x and 4y be positive infinitesi-
mals. Assume that:

(i) B has the Addition Property;
(ii) B(D) ≥ 0 for all D;
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(iii) For every element of area 4D ⊆ (D0)∗ with dimensions 4x and 4y,

B(4D) ≈ f(x, y)4x4y (compared to 4x4y) .

Then for every basic closed region D ⊆ D0,

B(D) =

∫∫
D

f(x, y) dA.

In Elementary Calculus we stated a weaker form of the Infinite Sum Theo-
rem, where (iii) is assumed for all elements of area rather than only for elements
of area with fixed dimensions 4x and 4y. The proof there was given only
in the case that D is a rectangle. Here we give the proof in general. The
proof in the general case is much longer than the proof in the case that D is
a rectangle, and uses several lemmas.

Lemma 12.12. Let D be a closed and bounded subset of the open set D0.
There is a positive real number ε such that the ε-neighborhood of every point
of D is included in D0.

Proof. Suppose that for each real ε > 0 there are points P ∈ D and
Q /∈ D0 such that |P − Q| < ε. Then by the Partial Solution Theorem there
are hyperreal points P1 ∈ D∗, Q1 /∈ (D0)∗ with P1 ≈ Q1. Since D is closed
and bounded, by Corollary 1.29 and Theorem 1.31, P1 has a standard part P0,
and P0 ∈ D. Thus P0 ∈ D0 and Q1 ≈ P0. Since D0 is open, by Theorem 1.28
we have Q1 ∈ (D0)∗. This contradiction completes the proof. a

Lemma 12.13. Suppose f is a real function which is continuous on D0. For
every basic closed region D ⊆ D0 there is a basic open region D1 such that
D ⊆ D1 ⊆ D0 and f is bounded on D1.

Proof. Let

D = {(x, y) : a ≤ x ≤ b, g(x) ≤ y ≤ h(x)}.

By Lemma 12.12 there is a real ε > 0 such that the ε-neighborhood of any
point of D is included in D0. Therefore the basic closed region

D2 = {(x, y) : a− ε ≤ x ≤ b+ ε, g(x)− ε ≤ y ≤ h(y) + ε}

is included in D0. By the Extreme Value Theorem 11.18, f has a maximum
and a minimum value in D2, so f is bounded in D2. Let D1 be the interior of
D2,

D1 = {(x, y) : a− ε < x < b+ ε, g(x)− ε < y < h(y) + ε}.
Then D1 is a basic open region, D ⊆ D1 ⊆ D0, and f is bounded on D1. a

Lemma 12.14. Suppose the function B(D) on basic closed regions D ⊆ D0

has the Addition Property and B(D) ≥ 0 for all D. Then whenever D1 ⊆
D2 ⊆ D0 we have B(D1) ≤ B(D2).
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Proof. By extending the left and right boundaries of the subregion D1,
which are vertical line segments, to the lower and upper boundary curves of
D2, we get a partition of D2 into five basic closed regions

D2 = D1 ∪ E1 ∪ E2 ∪ E3 ∪ E4

which meet only on boundaries. By the Addition Property,

B(D2) = B(D1) +B(E1) +B(E2) +B(E3) +B(E4).

Since each term on the right is ≥ 0, B(D1) ≤ B(D2). a

Lemma 12.15. Let D be a basic closed region. For every real ε > 0 there is
a real δ > 0 such that for every partition of the circumscribed rectangle of D
into a grid of subrectangles of length and width less than δ, the total area of
the subrectangles which meet the boundary of D is less than ε.

Proof. Let

D = {(x, y) : a ≤ x ≤ b, g(x) ≤ y ≤ h(x)}

and let [a, b] × [B1, B2] be the circumscribed rectangle of D. Let ε1 be a
positive real number. Since g(x) and h(x) are continuous, they are uniformly
continuous on [a, b] by Theorem 3.15. Hence there is a real δ > 0 such that
δ < ε1 and whenever x1, x2 ∈ [a, b] with |x1 − x2| < δ, we have

|g(x2)− g(x1)| < ε1, |h(x2)− h(x1)| < ε1.

Let 0 < 4x < δ, 0 < 4y < δ and partition the circumscribed rectangle
into a grid of 4x by 4y subrectangles. Each vertical boundary of D is cov-
ered by at most two columns of subrectangles which have total area less than
2ε1(B2 − B1), Since g(x) and h(x) change by less than ε1 over an interval of
length 4x, each of the upper and lower boundary curves of D is covered by
a set of subrectangles of total area less than 2ε1(b − a). Therefore the set of
subrectangles which meet the boundary of D has total area less than

4ε1[(B2 −B1) + (b− a)].

Thus a value of δ corresponding to

ε1 =
ε

4ε1[(B2 −B1) + (b− a)]

has the required property. a

Proof of the Infinite Sum Theorem. Let D be the basic closed region

D = {(x, y) : a ≤ x ≤ b, g(x) ≤ y ≤ h(x)}

and suppose D ⊆ D0. We wish to show that B(D) =
∫∫
D
f(x, y) dA. By

Lemma 12.13, we may assume without loss of generality that f is bounded
on D0. We have f(x, y) ≥ 0 on D0 because of hypotheses (i) and (iii). Thus
for some real M , 0 ≤ f(x, y) ≤ M on D0. By Lemma 12.12 there is a real
ε > 0 such that the ε-neighborhood of every point in D is included in D0. Let
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[a, b] × [B1, B2] be the circumscribed rectangle of D. Consider real numbers
4X,4Y such that

0 < 4X < ε/2, 0 < 4Y < ε/2.

Partition the circumscribed rectangle into a grid of 4X by 4Y subrectangles.
(If 4X does not evenly divide b−a. the right column of subrectangles will be
smaller, and similarly for 4Y ). Let G be the set of all subrectangles and

G1 = {E ∈ G : E in included in the interior of D},

G2 = {E ∈ G : E meets the boundary of D}.
Since 4X + 4Y < ε, we have E ⊆ D0 whenever E ∈ G1 ∪ G2. We
wish to estimate the difference between B(D) and the finite Riemann sum∑∑

D f(x, y)4X4Y . Let p(4X,4Y ) be the total area of the subrectangles
which meet the boundary of D, that is,

p(4X,4Y ) = area of
⋃
G2.

For each E ∈ G1 ∪G2 let

F (E) = f(x, y)4X4Y
where (x, y) is the lower left corner of E, and let q(4X,4Y ) be the maximum
of the values

|B(E)− F (E)|
4X4Y

, E ∈ G1 ∪G2.

Since 0 ≤ f(x, y) ≤M we have

0 ≤ F (E) ≤M4X4Y,
0 ≤ B(E) ≤ (M + q(4X,4Y ))4X4Y.

By Lemma 12.14, ∑
E∈G2

B(D ∩ E) ≤
∑
E∈G2

B(E).

It follows that ∣∣∣∣∣B(D)−
∑∑

D

f(x, y)4X4Y

∣∣∣∣∣
≤

∣∣∣∣∣ ∑
E∈G1

(B(E)− F (E))

∣∣∣∣∣+
∑
E∈G2

B(D ∩ E) +
∑
E∈G2

F (E)

≤
∑
E∈G1

|B(E)− F (E)|+
∑
E∈G2

(B(E) + F (E))

≤ (b− a)(B2 −B1)q(4X,4Y ) + p(4X,4Y )(2M + q(4X,4Y )).

Now consider the given positive infinitesimals 4x,4y. By Transfer,∣∣∣∣∣B(D)−
∑∑

D

f(x, y)4x4y

∣∣∣∣∣
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≤ (b− a)(B2 −B1)q(4x,4y) + p(4x,4y)(2M + q(4x,4y)).

By Lemma 12.15 and Transfer, 0 < p(4x,4y) < ε0 for every positive real
ε0, so p(4x,4y) ≈ 0. By the Partial Solution Theorem there is a 4x by 4y
element of area 4D such that 4D meets D and

|B(4D)− f(x, y)4x4y|
4x4y

= q(4x,4y).

Therefore 4D ⊆ (D0)∗ and by the hypothesis (iii), q(4x,4y) is infinitesimal.
We conclude that ∣∣∣∣∣B(D)−

∑∑
D

f(x, y)4x4y

∣∣∣∣∣ ≈ 0,

whence

B(D) =

∫∫
D

f(x, y) dx dy.

a

In Elementary Calculus the Infinite Sum Theorem for two variables was used
to justify integration formulas for the volume between two surfaces, for mass,
first moments, and moments of inertia of plane objects, and for the area of a
surface. Another application is given in the next section.

12C. Change of Variables in Double Integrals (§12.5)

In Elementary Calculus the Infinite Sum Theorem is used to prove the for-
mula for a double integral over a region

D = {(r, θ) : α ≤ θ ≤ β, a(θ) ≤ r ≤ b(θ)}

in polar coordinates:∫∫
D

f(x, y) dA =

∫ β

α

∫ b(θ)

a(θ)

f(r cos θ, r sin θ)r dr dθ.

Here we will use the Infinite Sum Theorem to obtain the general formula for
a double integral with a change of variables. For comparison we first state the
simpler result for single integrals (§4.7 in Elementary Calculus).

Theorem 12.16. Suppose f(u) is continuous on an open interval I, g maps
an open interval J into I, and g is continuously differentiable on J . Then for
all a, b in J , ∫ g(b)

g(a)

f(u) du =

∫ b

a

f(g(t))g′(t) dt.



12C. Change of Variables in Double Integrals (§12.5) 145

This is proved in Elementary Calculus using the Chain Rule and the Fun-
damental Theorem of Calculus.

In the analogous theorem for two variables, the mapping g is replaced by a
smooth transformation from an open region in the (s, t) plane into the (x, y)
plane, and the derivative of g is replaced by the Jacobian matrix of the trans-
formation. Our elementary treatment of double integrals over basic closed
regions is not adequate for integration by change of variables. The difficulty
is that the image of a basic closed region under a smooth transformation is
not necessarily a basic closed region. To give a natural treatment we need the
classical theory of Jordan content. Once this theory is developed, the Infinite
Sum Theorem can be used to obtain the change of variables formula. Our
main purpose in this section is to show how the Infinite Sum Theorem is used.
To prepare the way we sketch a hyperreal form of Jordan content.

Let D be a bounded set in the plane. The circumscribed rectangle E
of D is the intersection of all closed rectangles containing D. Given positive
real numbers 4x and 4y, partition E into a grid of 4x by 4y subrectangles.
Let C(4x,4y) be the sum of the areas of the subrectangles which are entirely
within D, and let C(4x,4y) be the sum of the areas of the subrectangles
which meet D. By the Function Axiom, the natural extensions C(dx, dy) and
C(dx, dy) are defined for all positive infinitesimal dx and dy. We say that D
has Jordan content A(D) if for all positive infinitesimals dx and dy,

A(D) = st(C(dx, dy)) = st(C(dx, dy)).

Intuitively, the total area of the infinitesimal subrectangles included in D∗ has
standard part A(D). Also, the total area of the infinitesimal subrectangles
which meet D∗ has standard part A(D). The Jordan content of D is also
called the area of D.

For the rest of this section, suppose that D is a set whose closure is contained
in D0, and D has Jordan content A(D).

The double Riemann sum and double integral are defined exactly as in the
case of a basic closed region. That is, for positive infinitesimal dx and dy, we
partition the circumscribed rectangle E of D into a dx by dy grid and define∑∑

D

f(x, y) dx dy =
∑∑

{f(xK , xL) dx dy : (xK , xL) ∈ D∗},

∫∫
D

f(x, y) dx dy = st

(∑∑
D

f(x, y) dx dy

)
.

The basic properties of double integrals are readily generalized to integrals
over sets which have Jordan content, and take the following form.

Theorem 12.17. The double integral
∫∫
D
f(x, y) dx dy does not depend on

the infinitesimals dx and dy.
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Theorem 12.18. (Addition Property) If D = D1 ∪D2 where D1 ∩D2 has
Jordan content zero, and D1, D2 have Jordan content, then∫∫

D

f(x, y) dx dy =

∫∫
D1

f(x, y) dx dy +

∫∫
D2

f(x, y) dx dy.

Theorem 12.19. (Cylinder Property) Suppose m ≤ f(x, y) ≤M for (x, y) ∈
D. Then

m ·A(D) ≤
∫∫

D

f(x, y) dx dy ≤M ·A(D).

Taking f(x, y) = 1, we see at once that

A(D) =

∫∫
D

1 dx dy.

It follows that if D is a basic closed region, then D has Jordan content equal
to the area of D as defined in Chapter 6.

Theorem 12.20. (Sum Rule) If f and g are continuous on D0, then∫∫
D

(f(x, y) + g(x, y)) dx dy =

∫∫
D

f(x, y) dx dy +

∫∫
D

g(x, y) dx dy.

This follows from the analogous formula for the double Riemann sum. We
now introduce the notion of a smooth transformation.

Definition 12.21. Let D0 be an open set in the (s, t) plane. A smooth
transformation T on D0 is a mapping

T (s, t) = (g(s, t), h(s, t)) = (x, y)

of D0 into the (x, y) plane such that each of the functions x = g(s, t) and
y = h(s, t) has continuous partial derivatives on D0.

The image of a subset D ⊆ D0 under T is the set

T (D) = {T (s, t) : (s, t) ∈ D}.

The Jacobian of a smooth transformation T , denoted by J(T ) or ∂(x,y)
∂(s,t) , is

the function

∂(x, y)

∂(s, t)
=

∣∣∣∣∣∣
∂x
∂s

∂x
∂t

∂y
∂s

∂y
∂t

∣∣∣∣∣∣ =
∂x

∂s

∂y

∂t
− ∂x

∂t

∂y

∂s
.

Thus ∂(x,y)
∂(s,t) is a continuous function with domain D0. For example, the

polar coordinate transformation

x = r cos θ, y = r sin θ

is smooth and its Jacobian is

∂(x, y)

∂(s, t)
=

∣∣∣∣∣∣
cosθ −r sin θ

sin θ r cos θ

∣∣∣∣∣∣ = r.
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We will use the following two Lemmas which can be found in many advanced
calculus books (for example, the book Buck [B]).

Lemma 12.22. Let T be a smooth transformation which is one to one and
has nonzero Jacobian on an open set D0. Let D be a closed bounded subset of
D0 which has Jordan content. Then

(i) T (D0) is an open set.
(ii) T (D) is a closed bounded set which has Jordan content.
(iii) T maps the interior of D onto the interior of T (D), and maps the

boundary of D onto the boundary of T (D).

Lemma 12.23. Suppose T is a smooth transformation with nonzero Jacobian
on an open set D0, and the partial derivatives ∂x/∂s, ∂x/∂t, ∂y/∂s, ∂y∂t are
bounded on D0. Then for every real ε > 0 there is a real δ > 0 such that for
every square 4D ⊆ D0 with side 4s < δ, the area of the image of 4D is
within ε4s2 of the Jacobian times the area of 4D, that is,

|A(T (4D))− |J(T )|4s2| < ε4s2.

The number |J(T )4s2| is the area of the parallelogram with vertex T (s, t)
and sides

4s
(
∂x

∂s
i +

∂y

∂s
j

)
, 4s

(
∂x

∂t
i +

∂y

∂t
j

)
.

The lemma is proved by showing that the boundaries of T (4D) are close to
the boundaries of the parallelogram.

Theorem 12.24. (Change of Variables) Let T be a smooth transformation
which is one to one and has nonzero Jacobian on an open set D0. Then
for every continuous function h(x, y) on T (D0) and every basic closed region
D ⊆ D0, ∫∫

T (D)

h(x, y) dx dy =

∫∫
D

h(T (s, t))|J(T )| ds dt.

For example, if D is a basic closed region

D = {(r, θ) : α ≤ θ ≤ β, a(θ) ≤ r ≤ b(θ)}
where α < β < α + 2π and 0 < a(θ) ≤ b(θ), then the polar coordinate
transformation T satisfies the hypotheses of the theorem, and we obtain the
formula ∫∫

T (D)

h(x, y) dx dy =

∫∫
D

h(r cos θ, r sin θ)r dr dθ.

We required β < α + 2π to make T one to one, and 0 < a(θ) to make r =
J(T ) 6= 0 in D. But by passing to a limit we see that the polar integration
formula is valid even for

α ≤ β ≤ α+ 2π, 0 ≤ a(θ) ≤ b(θ).
Proof of Theorem 12.24. Let D be a basic closed region contained in

D0. By Lemma 12.13 we may assume that the partial derivatives of x and y
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are bounded on D0. We may also assume that h(T (s, t)) is bounded on D0,
so that h(x, y) is bounded on T (D0). We first give the proof in the case that
h(x, y) ≥ 0 on T (D0). Let B(D1) be defined for basic closed regions D1 ⊆ D0

by

B(D1) =

∫∫
T (D1)

h(x, y) dx dy.

We want to prove that

B(D) =

∫∫
D

h(T (s, t))|J(T )| ds dt.(62)

To do this we will use the Infinite Sum Theorem 12.11. By the Cylinder
Property, B(D1) ≥ 0 for all D1. If D1 = D2 ∪ D3 where D2 and D3 have
disjoint interiors, then T (D1) = T (D2)∪ T (D3), and by Lemma 12.22, T (D2)
and T (D3) have disjoint interiors. Thus by the Addition Property for double
integrals, B(D1) = B(D2) + B(D3). We have now shown that hypotheses (i)
and (ii) of the Infinite Sum Theorem hold for B(D). Hypothesis (iii) says that
for at least one pair of positive infinitesimals 4s,4t, for every element of area
4D ⊆ (D0)∗ with lower left corner (s, t) and dimensions 4s and 4t we have

B(4D) ≈ h(T (s, t))|J(T )|4s4t (compared to 4s4t) .

Since we only need this for some pair of positive infinitesimals, it suffices to
prove it for a pair of positive infinitesimals 4s,4t with 4t = 4s.

Suppose 4s is positive infinitesimal, 4D is an infinitesimal square of side
4s with lower left corner (s, t), and 4D is contained in D∗. By the Hyperreal
Extreme Value Theorem 11.19, h(T (u, v)) has a minimum value m and a
maximum value M for (u, v) ∈ 4D. Therefore h(x, y) has minimum value
m and maximum value M for (x, y) ∈ T (4D). Since T is continuous, every
point of T (4D) is infinitely close to T (s, t). By the continuity of f , m and M
are infinitely close to h(T (s, t)). Then by the Cylinder Property and Transfer
Axiom,

m ·A(T (4D)) ≤ B(4D) ≤M ·A(T (4D)),

whence

B(4D) ≈ h(T (s, t))A(T (4D)) (compared to A(T (4D))) .

Therefore by Lemma 12.23,

B(4D)

4s2
=

B(4D)

A(T (4D))

A(T (4D))

4s2
≈ h(T (s, t))|J(T )|,

and

B(4D) ≈ h(T (s, t))|J(T )|4s2
(
compared to 4s2

)
.

Hence by Infinite Sum Theorem,

B(D) =

∫∫
D

h(T (s, t))|J(T )| ds dt.
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Finally, we consider the general case where f is not necessarily ≥ 0 in D0.
Since f is bounded on D0 there is a real number c > 0 such that h(x, y) ≥ −c
on D0. then h(x, y) + c ≥ 0 on D0, so by the previous case,∫∫

T (D)

(h(x, y) + c) dx dy =

∫∫
D

(h(T (s, t)) + c)|J(T )| ds dt,∫∫
T (D)

c dx dy =

∫∫
D

c|J(T )| ds dt.

Using the Sum Rule for double integrals, Theorem 12.20,∫∫
T (D)

h(x, y) dx dy =

∫∫
T (D)

(h(x, y) + c) dx dy −
∫∫

T (D)

c dx dy

=

∫∫
D

(h(T (s, t)) + c)|J(T )| ds dt−
∫∫

D

c |J(T )| ds dt

=

∫∫
D

h(T (s, t))|J(T )| ds dt.

a





CHAPTER 13

VECTOR CALCULUS

13A. Line Integrals (§13.2)

In this section we will give a hyperreal characterization of the line inte-
gral. Recall that by Theorem 7.4, every smooth parametric curve has a
reparametrization in which the curve length itself is the independent variable.
We will take line integrals over parametric curves of this kind.

Definition 13.1. Let A and B be points in the (x, y) plane. A smooth
curve from A to B is a real parametric curve

C : x = g(s), y = h(s), s ∈ [0, L]

where g(s) and h(s) are continuously differentiable functions on the closed
interval [0, L],

(g(0), h(0)) = A, (g(L), h(L)) = B,

and s is the length of the part of the curve from A to the point (x, y) =
(g(s), h(s)). We call A the initial point of C, and B the terminal point of
C.

In Elementary Calculus the line integral was defined as an ordinary definite
integral as follows.

Definition 13.2. Let

F(x, y) = P (x, y)i +Q(x, y)j

be a continuous real vector valued function on an open rectangle D in the
(x, y) plane which contains a smooth curve C. The line integral of F along
C, denoted by ∫

C

F · dS =

∫
C

P dx+Qdy,

is defined as the definite integral∫ L

0

(
P
dx

ds
+Q

dy

ds

)
ds

where x = g(s) and y = h(s).
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Let n be a positive integer and let 4s = L/n. For k = 0, . . . , n− 1 let

sk = k4s, xk = g(sk), yk = h(sk),

4xk = xk+1 − xk, 4yk = yk+1 − yk,
4Sk = 4xki +4ykj.

The finite Riemann sum along C,∑
C

F · 4S =
∑
C

P4x+Q4y,

is defined as the sum
n∑
k=0

F(xk, yk) · 4Sk =
∑
C

P (xk, yk)4xk +Q(xk, yk)4yk.

This sum corresponds to a polygonal line connecting n+1 points along C. For
a given curve C and vector valued function F it depends only on n, so we may
write

I(n) =
∑
C

F · 4S.

By the Function Axiom, the natural extension I(H) is defined for all positive
hyperintegers H. When H is a positive infinite hyperinteger, the value I(H)
is called an infinite Riemann sum along C and is denoted by

I(H) =
∑
C

F · dS =
∑
C

P dx+Qdy.

Theorem 13.3. Let F(x, y) be a continuous real vector valued function on
an open rectangle D containing a smooth curve C. Let H be a positive infinite
hyperinteger. Then the line integral of F along C is equal to the standard part
of the infinite Riemann sum of F along C,∫

C

F · dS = st

(∑
C

F · dS

)
,

or ∫
C

P dx+Qdy = st

(∑
C

P dx+Qdy

)
.

Proof. First consider a positive integer n and form the finite Riemann sum∑
C

P dx+Qdy =
∑
C

P (xk, yk)4xk +Q(xk, yk)4yk.

Let r be a positive real number. If the Riemann sum differs from the line
integral by at least r, then on one of the subintervals the Riemann sum differs
from the line integral by at least r/n. That is, every real solution of

n ∈ Z, 0 < n,

∣∣∣∣∣∑
C

P4x+Q4y −
∫
C

P dx+Qdy

∣∣∣∣∣ ≥ r(63)
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is a partial real solution of

4s = L/n, 0 ≤ s < s+4s ≤ L, x = g(s), y = h(s),

4x = g(s+4s)− g(s), 4y = h(s+4s)− h(s),(64) ∣∣∣∣∣P (x, y)4x+Q(x, y)4y −
∫ s+4s

s

(Pg′ +Qh′) ds

∣∣∣∣∣ ≥ r/n.
By the Partial Solution Theorem, every hyperreal solution of (63) is a partial
solution of (64). Now form the infinite Riemann sum

∑
C P dx + Qdy with

respect to H. Assume that∣∣∣∣∣∑
C

P dx+Qdy −
∫
C

P dx+Qdy

∣∣∣∣∣ ≥ r.(65)

Let 4s = L/H. Then there exist 0 ≤ s1 < s1 +4s ≤ L such that, putting

x1 = g(s1), y1 = h(s1),

4x = g(s1 +4s)− g(s1), 4y = h(s1 +4s)− h(s1),

we have ∣∣∣∣∣P (x1, y1)4x+Q(s1, y1)4y −
∫ s1+4s

s1

(Pg′ +Qh′) ds

∣∣∣∣∣ ≥ r

H
.

Dividing by 4s,∣∣∣∣∣P (x1, y1)
4x
4s

+Q(x1, y1)
4y
4s
−
∫ s1+4s
s1

(Pg′ +Qh′) ds

4s

∣∣∣∣∣ ≥ r

L
.(66)

Since x = g(s), y = h(s), and
∫ s
0

(Pg′ +Qh′) ds are continuously differentiable
functions of s, we have

4x
4s
≈ g′(s1),

4y
4s
≈ h′(s1),

∫ s1+4s
s1

(Pg′ +Qh′) ds

4s
≈ P (x1, y1)g′(s1) +Q(x1, y1)h′(s1).

But then

P (x1, y1)
4x
4s

+Q(x1, y1)
4y
4s
≈
∫ s1+4s
s1

(Pg′ +Qh′) ds

4s
,

contradicting (66). We conclude that (65) fails for every positive real r. It
follows that ∑

C

P dx+Qdy ≈
∫
C

P dx+Qdy.

a
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A piecewise smooth curve is a parametric curve C which is a finite union
of smooth curves C = C1 ∪ · · · ∪ Cn such that the terminal point of Ck is the
initial point of Ck+1 for k = 1, . . . , n − 1. The line integral of F along a
piecewise smooth curve C is defined as the sum∫

C

F · dS =

∫
C1

F · dS + · · ·+
∫
Cn

F · dS.

13B. Green’s Theorem (§13.3, §13.4)

In this section we will prove Green’s Theorem for basic closed regions with
smooth boundaries, using the Infinite Sum Theorem for one variable. We need
two lemmas about single integrals of functions with more than one variable.

Lemma 13.4. Suppose E is a real open rectangular solid, f(x, y, z) and
g(x, y, z) are continuous on E, the hyperreal points (a, y, z) and (b, y, z) be-
long to E∗, b− a is finite, and

f(x, y, z) ≈ g(x, y, z) for all x ∈ [a, b]∗.

Then ∫ b

a

f(x, y, z) dx ≈
∫ b

a

g(x, y, z) dx.

Proof. For each real r > 0 we have

f(x, y, z)− r ≤ g(x, y, z) ≤ f(x, y, z) + r for all x ∈ [a, b]∗.

By the rules of integrals in one variable and Transfer,∫ b

a

f(x, y, z) dx− r(b− a) ≤
∫ b

a

g(x, y, z) dx ≤
∫ b

a

f(x, y, z) dx+ r(b− a).

Therefore ∣∣∣∣∣
∫ b

a

f(x, y, z) dx−
∫ b

a

g(x, y, z) dx

∣∣∣∣∣ ≤ r(b− a).

Since b− a is finite and this holds for all real r > 0, we have∫ b

a

f(x, y, z) dx ≈
∫ b

a

g(x, y, z) dx.

a

The following lemma was stated in Section §13.3 of Elementary Calculus,
and used in the standard proof of the Path Independence Theorem for line
integrals. A proof of the lemma was sketched there. We give a complete proof
here.
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Lemma 13.5. Suppose P (x, y) is a smooth function on a real open rectangle
D containing the point (a, b). Then whenever (x, y) ∈ D,

∂

∂x

∫ x

a

P (t, y) dt = P (x, y)

and
∂

∂y

∫ x

a

P (t, y) dt =

∫ x

a

∂P

∂y
(t, y) dt.

Proof. The first formula follows at once from the Second Fundamental
Theorem of Calculus, Theorem 4.17. We prove the second formula. Let

F (x, y) =

∫ x

a

P (t, y) dt, (x, y) ∈ D.

Any real solution of

(x, y) ∈ D, (x, y +4y) ∈ D, 4y 6= 0(67)

is a solution of

F (x, y +4y)− F (x, y)

4y
=

∫ x

a

P (t, y +4y)− P (t, y)

4y
dt.(68)

By Transfer, any hyperreal solution of (67) is a solution of (68). Now let 4y
be positive infinitesimal. By Theorem 11.8, P is uniformly differentiable on
D. Therefore, whenever (x, y) ∈ D and t ≈ x,

P (t, y +4y)− P (t, y) ≈ ∂P

∂y
(x, y)4y (compared to 4y) ,

so
P (t, y +4y)− P (t, y)

4y
≈ ∂P

∂y
(x, y).

Since P is smooth onD, ∂P/∂y is continuous onD. Hence whenever (x, y) ∈ D
and t ≈ x, the above formula holds with t in place of x,

P (t, y +4y)− P (t, y)

4y
≈ ∂P

∂y
(t, y).

Since D is open, (x, y +4y) ∈ D∗ whenever (x, y) ∈ D. The function

P (x, y +4y)− P (x, y)

4y
is continuous in the variables (x, y,4y) on D × (0,∞). Now fix (x, y) ∈ D.
By Lemma 13.4,∫ x

a

P (t, y +4y)− P (t, y)

4y
dt ≈

∫ x

a

∂P

∂y
(t, y) dt.

Then by (68),

F (x, y +4y)− F (x, y)

4y
≈
∫ x

a

∂P

∂y
(t, y) dt.
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Taking standard parts, we have

∂F

∂y
(x, y) =

∫ x

a

∂P

∂y
(t, y) dt.

a

Given a basic closed region

D = {(x, y) : a ≤ x ≤ b, g(x) ≤ y ≤ h(x)},

whose upper and lower boundary curves g(x) and h(x) are smooth, the (counter-
clockwise) boundary curve of D is the piecewise smooth curve

∂D = C1 ∪ C2 ∪ C3 ∪ C4

where

C1 is the lower boundary curve of D moving from left to right,
C2 it the right vertical boundary line of D moving upward,
C3 is the upper boundary curve of D moving from right to left,
C4 is the left vertical boundary line of D moving downward.

∂D is a closed curve, that is, its initial point and terminal point are the
same, both equal to (a, g(a)).

The line integral of P dx+Qdy around the boundary curve ∂D is denoted
by ∮

∂D

P dx+Qdy.

In Elementary Calculus, Green’s theorem was stated for basic closed regions
but only proved for rectangles. Here we prove the general case.

Theorem 13.6. (Green’s Theorem) Suppose P (x, y) and Q(x, y) are smooth
functions on an open set containing a basic closed region D with smooth upper
and lower boundary curves. Then∮

∂D

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

Proof. For a ≤ u < v ≤ b let

B(u, v) =

∮
∂E(u,v)

P dx+Qdy

where

E(u, v) = {(x, y) ∈ D : u ≤ x ≤ v}
is the part of D with x ∈ [u, v]. Then B has the Addition Property

B(u, v) +B(v, w) = B(u,w)

because the right boundary of E(u, v) is the same vertical line segment V as
the left boundary of E(v, w), and the upward line integral over V in B(u, v)
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cancels the downward line integral over V in B(v.w). Our plan is to show that
for any infinitesimal subinterval [x, x+4x]∗ of [a, b]∗,

4B
4x
≈ P (x, g(x))− P (x, h(x)) +

∫ h(x)

g(x)

∂Q

∂x
(x, y) dy.(69)

After (69) is verified, the proof is completed as follows. By (69) and the Infinite
Sum Theorem 6.1,

B(a, b) =

∫ b

a

[
P (x, g(x))− P (x, h(x)) +

∫ h(x)

g(x)

∂Q

∂x
(x, y) dy

]
dx.

By the Fundamental Theorem of Calculus 4.14,

P (x, g(x))− P (x, h(x)) =

∫ h(x)

g(x)

−∂P
∂y

dy

for each real x ∈ [a, b]. Therefore

B(a, b) =

∫ b

a

∫ h(x)

g(x)

(
∂Q

∂x
− ∂P

∂y

)
dy dx =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA,

as required.
It remains to prove (69). First let [x, x+4x] be a real subinterval of [a, b],

that is,

a ≤ x < x+4x ≤ b.(70)

Then

4B
4x

=
1

4x

∫ x+4x

x

[P (t, g(t)) +Q(t, g(t))g′(t)] dt

+
1

4x

∫ h(x+4x)

g(x+4x)
Q(x+4x, y) dy

− 1

4x

∫ x+4x

x

[P (t, h(t)) +Q(t, h(t))h′(t)] dt

− 1

4x

∫ h(x)

g(x)

Q(x, y) dy.

We rewrite this equation in the form
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4B
4x

=
1

4x

∫ x+4x

x

[P (t, g(t))− P (t, h(t))] dt(71)

+
1

4x

∫ x+4x

x

[Q(t, g(t))g′(t)−Q(t, h(t))h′(t))] dt

+
1

4x

∫ h(x)

g(x)

[Q(x+4x, y)−Q(x, y)] dy

− 1

4x

∫ g(x+4x)

g(x)

Q(x+4x, y) dy

+
1

4x

∫ h(x+4x)

h(x)

Q(x+4x, y) dy.

By Transfer, every hyperreal solution of (70) is a solution of (71). Now let
[x, x +4x]∗ be an infinitesimal subinterval of [a, b]∗. Then (x, x +4x) is a
hyperreal solution of (70), so it is also a solution of (71).

Let us now consider the third line of (71). Let G(x, t) be the function

G(x, t) =

∫ h(x)

g(x)

Q(t, y) dy.

Then the third line of (71) is equal to the quotient

G(x, x+4x)−G(x, x)

4x
=

1

4x

∫ h(x)

g(x)

[Q(x+4x, y)−Q(x, y)] dy.(72)

By Lemma 13.5, for x, t in [a, b] we have

∂

∂t
G(x, t) =

∂

∂t

∫ h(x)

g(x)

Q(t, y) dy =

∫ h(x)

g(x)

∂Q

∂t
(t, y) dy.(73)

The right side of (73) is continuous in x and t. Since g′(x) and h′(x) are
continuous, one can see from the Second Fundamental Theorem of Calculus
that ∂

∂x G(x, t) is also continuous in x and t. Therefore by Theorem 11.8,
G(x, t) is uniformly differentiable on [a, b] × [a, b], and hence for all t ≈ x we
have

G(x, x+4x)−G(x, x)

4x
≈ ∂

∂t
G(x, t).(74)

Then by (72)– (74), the third line of (71) has the infinitely close approximation

1

4x

∫ h(x)

g(x)

[Q(x+4x, y)−Q(x, y)] dy ≈
∫ h(x)

g(x)

∂Q

∂x
(x, y) dy.

It follows from the Hyperreal Mean Value Theorem 3.34 that the sum of the
second, fourth, and fifth lines of (71) is infinitesimal. Therefore, from (71) we
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obtain
4B
4x
≈ P (x, g(x))− P (x, h(x)) +

∫ h(x)

g(x)

∂Q

∂x
(x, y) dy.

This completes the proof of (69). a





CHAPTER 14

DIFFERENTIAL EQUATIONS

In Elementary Calculus, most of the material in Chapter 14 deals with ways
to find explicit solutions of first and second order linear differential equations,
using standard methods. However, infinitesimals are used extensively in Sec-
tion 14.4, on the approximation, existence, and uniqueness of solutions of
general first order differential equations with continuous coefficients. We will
expand upon that section here.

We assume throughout this chapter that f(t, y) is a real function which is
continuous on I ×R for some open interval I containing t0, and that [t0, T ) is
a half-open subinterval of I, where T is either a positive real number or ∞. A
(first order) differential equation is an equation of the form

dy

dt
= f(t, y).

An initial value problem is a differential equation together with an initial
value,

dy

dt
= f(t, y), y(t0) = y0.(75)

A solution of the initial value problem on [t0, T ) is a function y(t) with domain
[t0, T ) which satisfies (75) for all t ∈ [t0, T ). It is helpful to think of the variable
t as time.

Using the Fundamental Theorem of Calculus 4.14 and the Second Funda-
mental Theorem 4.17, (75) can also be written as an integral equation

y(t) = y0 +

∫ t

t0

f(s, y(s)) ds.(76)

All the results we present in this chapter can be generalized without difficulty
to finite systems of differential equations, where f and y are vector valued
functions of dimension n. We will confine our attention to solutions on intervals
[t0, T ), that is, solutions with time t ≥ t0. One can easily extend the results
to solutions on intervals (−T, t0] by making a change of variables.

161
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14A. Existence of Solutions (§14.4)

In this section we will use hyperfinite Euler approximations to prove that
every initial value problem has at least one solution. At the end of the section
we will draw a conclusion about standard Euler approximations of solutions.

Let 4t > 0 be real. By a polygonal function on [t0, T ) with increment
4t we will mean a real function Y (t), t ∈ [t0, T ) such that for each natural
number n, the graph of Y (t) for t0 + n4t ≤ t ≤ t0 + (n + 1)4t is a straight
line segment. Thus a polygonal function with increment 4t is continuous and
its graph is a broken line with corners at t0 plus multiples of 4t. For a given
increment 4t and assignment of values at multiples of 4t, there is exactly one
polygonal function.

The (standard) Euler approximation with initial value y0 and increment
4t for a differential equation y′(t) = f(t, y) is the polygonal function Y (t) on
[t0, T ) with increment 4t such that Y (t0) = y0 and for each t = t0 +n4t, the
slope on the interval [t, t +4t] is equal to the value f(t, Y (t)). That is, Y (·)
is the polygonal function on [t0, T ) with increment 4t such that

Y (t0) = y0, Y (t+4t) = Y (t) + f(t, Y (t))4t for t = t0 + n4t.
It is defined for each natural number n by induction, starting with

Y (t0) = y0, Y (t0 +4t) = y0 + f(t0, y0)4t.
Thus for each positive integer n, Y (t0 + n4t) is equal to the finite sum

Y (t0 + n4t) = y0 +

n−1∑
k=0

f(t0 + k4t, Y (t0 + k4t))4t.

Following the notation for Riemann sums, we may write this as

Y (s) = y0 +

s∑
t0

f(t, Y (t))4t.

For a given function f(t, y), let us denote the Euler approximation on [t0, T )
with initial value y0 and increment 4t by Yy0,4t. Yy0,4t(t) is a function of
three real variables (y0,4t, t). By the Function Axiom, its natural extension
is a hyperreal function of three hyperreal variables. We call the Euler approx-
imation Yz,dt on [t0, T )∗ with infinitesimal increment dt and an initial value
z ≈ y0 a hyperfinite Euler approximation of the initial value problem
(75), and write it as an infinite sum

Y (s) = z +

s∑
t0

f(t, Y (t)) dt.

For each z and dt, Yz,dt(·) is a hyperreal function of t with domain [t0, T )∗.
In Elementary Calculus, we only considered hyperfinite Euler approxima-

tions with the standard initial value y0. Here we will give a fuller treatment,
and it will be useful to allow hyperreal initial values as well. One advantage of
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doing this is that one can sometimes get a different solution of the initial value
problem by making an infinitesimal change in the initial value in an Euler
approximation, as in Section 14C of this chapter.

Given a hyperreal function Y (·) with domain [t0, T )∗, a real function y(·)
is said to be the standard part of Y (·) on [t0, T ) if whenever t ∈ [t0, T )∗,
s ∈ [t0, T ), and t ≈ s we have Y (t) ≈ y(s). That is, the standard part of Y (t)
exists and depends only on the standard part of t, and we have y(st(t)) =
st(Y (t)).

The next theorem shows that as long as a hyperfinite Euler approximation
is finite, its standard part exists and is a solution of the initial value problem
on some interval [t0, T ). The special case of the theorem with z = y0 was
already proved in Elementary Calculus.

Theorem 14.1. Let Y (t) be the hyperfinite Euler approximation of the ini-
tial value problem

dy

dt
= f(t, y), y(t0) = y0

with initial value z and positive infinitesimal increment dt. Suppose Y (t) is
finite whenever st(t) ∈ [t0, T ). Then the standard part of Y (·) exists and is a
solution of the initial value problem on the interval [t0, T ).

Proof. We will show that the standard part of Y (·) on [t0, T ) exists and
is a solution of the of the equivalent integral equation (76) on [t0, T ). It is
enough to show that for each positive real number c ∈ (t0, T ), the standard
part of Y (·) exists and is a solution of (76) on [t0, c). Take an arbitrary real
c ∈ (t0, T ). For each real s ∈ [t0, c] let y(s) = st(Y (s)). y(·) is a real function
which has a natural extension y∗(·) to [t0, c]

∗. The main steps are to prove the
following for each t ∈ [t0, c]

∗:

st(Y (t)) = st(y(t)) = y(st(t))(77)

and

st(Y (t)) = y0 + st

(
t∑
t0

f(s, y(s)) dt

)
.(78)

It follows from (77) that y(·) is the standard part of Y (·) on [t0, c]. The right
side of (78) is the infinite Riemann sum of f(s, y(s)), and it follows that

y(t) = y0 +

∫ t

t0

f(s, y(s)) dt

for all t ∈ [t0, c].
Proof of (77): By the Extreme Value Theorem, for each real initial value

u and positive real increment 4t, the continuous function |f(t, Yu,4t(t))| has
a maximum Nu,4t ∈ [t0, c], and a maximum value Mu,4t. Yu,4t(t) never
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changes by more than 4tMu,4t over a subinterval of [t0, c] of length 4t, so
whenever s, t ∈ [t0, c] we have

|Yu,4t(t)− Yu,4t(s)| ≤Mu,4t|t− s|.

By Transfer, |f(t, Y (t))| has a maximum at Nz,dt in [t0, c]
∗ and a maximum

value Mz,dt, and whenever s, t ∈ [t0, c]
∗ we have

|Y (t)− Y (s)| ≤Mz,dt|t− s|.(79)

Since Y (t) is finite whenever st(t) ∈ [t0, T ), it is finite whenever t ∈ [t0, c]
∗.

Therefore the maximum value Mz,dt = |f(Nz,dt, Y (Nz,dt))| is finite. Thus
whenever s = st(t) ∈ (t0, c],

st(Y (t)) = st(Y (s)) = y(s).

Taking standard parts in the inequality (79), we see that for all real s, t ∈ [t0, c],

|y(t)− y(s)| ≤ m|t− s| where m = st(Mz,dt).

By Transfer, for all hyperreal s, t ∈ [t0, c]
∗,

|y(t)− y(s)| ≤ m|t− s|.

Then whenever t ∈ [t0, c]
∗ and s = st(t),

st(Y (t)) = y(s) = st(y(s)) = st(y(t)).

This proves (77).
By (77), the function y(·) is continuous on [t0, c]. By the Extreme Value

Theorem, for each positive real 4t and initial value u the difference

|f(t, Yu,4t(t))− f(t, y(t))|

has a maximum at some point Ju,4t ∈ [t0, c] and a maximum value Ku,4t. By
Transfer,

|f(t, Yz,dt(t))− f(t, y(t))|
has a maximum at Jz,dt in [t0, c]

∗ and a maximum value Kz,dt. By (77) and
the continuity of f , Kz,dt is infinitesimal. For each positive real 4t and real
u, and each t ∈ [t0, c], we have∣∣∣∣∣Yu,4t(t)−

(
u+

t∑
t0

f(s, y(s))4t

)∣∣∣∣∣ ≤ Ku,4t(t− t0).

By Transfer, for each t ∈ [t0, c]
∗ we have∣∣∣∣∣Yz,dt(t)−

(
z +

t∑
t0

f(s, y(s)) dt

)∣∣∣∣∣ ≤ Kz,dt(t− r).

Since Kz,dt is infinitesimal, this proves (78). a

To apply the above theorem, we need a convenient criterion for a hyperfinite
Euler approximation to be finite. The next theorem gives one.
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Theorem 14.2. We are given an initial value problem

dy

dt
= f(t, y), y(t0) = y0.

Let M and ε be positive reals.
(i) Suppose

|f(t, y)| ≤M whenever t ∈ [t0, T ) and |y − y0| ≤M(t− t0) + ε.

Then for every hyperfinite Euler approximation Y (·) with initial value z ≈ y0,
the standard part of Y (·) exists and is a solution of the initial value problem
on the interval [t0, T ).

(ii) Suppose

|f(t, y)| ≤M whenever t ∈ [t0, T ) and |y − y0| ≤M(t− t0).

Then for every hyperfinite Euler approximation Y (·) with initial value y0, the
standard part of Y (·) exists and is a solution of the initial value problem on
the interval [t0, T ).

Proof. (i) We show that Y (t) is finite whenever st(t) ∈ [t0, T ). and then
use Theorem 14.1. Suppose c, u are real numbers such that t0 < c < T , u is
within ε of y0, and 4t > 0. Let U = Yu,4t. We show by induction on n that

if t = t0 + n4t ≤ c then |U(t)− u| ≤M(t− t0).(80)

This is true for n = 0 because U(t0) = u. Assume that (80) is true for n and
let s = t0 + n4t, t = s+4t. Then t = t0 + (n+ 1)4t. Suppose t ≤ c. Then
s ≤ c, so by the induction hypothesis we have |U(s)− u| ≤M(s− t0). But u
is within ε of y0, so

|U(s)− y0| ≤M(s− t0) + ε,

and thus |f(s, U(s))| ≤M . By definition,

U(t) = U(s+4t) = U(s) + f(s, U(s))4t.
Therefore

|U(t)− u| ≤ |U(s)− u|+ |f(s, U(s))|4t ≤M(s− t0) +M4t = M(t− t0)

as required. This completes the induction. Since U is a polygonal function, it
follows that

|U(t)− u| ≤M(t− t0) for all t ∈ [t0, c].

Since z ≈ y0, z is within ε of y0. By Transfer, |Y (t) − z| ≤ M(t − t0) and
hence Y (t) is finite whenever t ∈ [t0, c]

∗. Since this holds for all c ∈ (t0, T ),
Y (t) is finite whenever st(t) ∈ [t0, T ), as required.

The proof of (ii) is similar, but with ε = 0 and z = y0. a

Corollary 14.3. (Peano Existence Theorem) For some positive real c, the
initial value problem

dy

dt
= f(t, y), y(0) = y0

has a solution on [t0, c).
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Proof. Choose real a ∈ (t0, T ) and b > 0. By the Extreme Value Theorem,
|f(t, y)| has a maximum value M on the closed rectangle [t0, a]× [y0−b, y0+b].
Let c = min(a, b/M). Then

|f(t, y)| ≤M whenever t ∈ [t0, c] and |y − y0| ≤M(t− t0)

because when t ∈ [t0, c], t ∈ [t0, a] and M(t− t0) ≤Mc ≤ b. By Theorem 14.2,
the standard part of a hyperfinite Euler approximation with initial value y0 is
a solution on [t0, c]. a

Corollary 14.4. If f(t, y) is bounded on [t0, T )× R then for every y0 the
initial value problem has a solution on [t0, T ).

If y(t) is a solution of the initial value problem and is the standard part of
some hyperfinite Euler approximation on [t0, T ), we say that y(t) is Euler ap-
proximable on [t0, T ). Theorem 14.2 shows that every initial value problem
has an Euler approximable solution on some subinterval [t0, c) of [t0, T ). The
preceding two corollaries also give Euler approximable solutions.

We now show that any Euler approximable solution of an initial value prob-
lem has the property that it is within ε of a standard Euler approximation for
each real ε > 0.

Proposition 14.5. Given an initial value problem

dy

dt
= f(t, y), y(0) = y0,

let y(·) be an Euler approximable solution on [t0, T ). Then y(·) has the follow-
ing standard property: for each real ε > 0 and c < T there are real numbers
u,4t such that u is within ε of y0, 4t ∈ (0, ε), and the Euler approximation
Yu,4t(t) is within ε of y(t) for all t ∈ [t0, c].

Proof. Since y(·) is Euler approximable, there is a hyperreal value z ≈ y0
and infinitesimal dt > 0 such that y(·) is the standard part of the hyperfinite
Euler approximation Yz,dt(·) on [t0, T ). Suppose that the property fails for
some ε > 0 and c < T . Then every real solution of

u = u, 0 < 4t < ε

is a partial real solution of

t ∈ [t0, c], |Yu,4t(t)− y(t)| > ε.

By the Partial Solution Theorem, for every hyperreal z ≈ y0 and infinitesimal
dt > 0, there exists t ∈ [t0, c]

∗ such that

|Yz,dt(t)− y∗(t)| > ε.

But y(·) is continuous on [t0, c], so y(st(t)) ≈ st(y∗(t)), and hence

|Yz,dt(t)− y(st(t))| > ε.

This contradicts the fact that y(·) is the standard part of Yz,dt(·) on [t0, T ),
and completes the proof. a
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The above result also has a converse which we will not prove here. It says
that any solution of the initial value problem which satisfies the property in
the theorem is Euler approximable.

In the next section we will see that if the function f is nice then the solution
of the initial value problem is unique and Euler approximable. In the last
section we will examine in detail an example of an initial value problem where
there are many solutions, but every solution is Euler approximable.

14B. Uniqueness of Solutions (§14.4)

Definition 14.6. We say that the function f has Lipschitz bound L (in
y) on a rectangle E if for all points (t, y) and (t, z) in E,

|f(t, y)− f(t, z)| ≤ L|y − z|.
We say that f is locally Lipschitz on a rectangle E if f has a finite Lipschitz
bound on each bounded closed rectangle D ⊆ E.

Proposition 14.7. If the partial derivative fy(t, y) exists and is continuous
on an open rectangle E, then f is locally Lipschitz on E.

Proof. Let D be a bounded closed rectangle contained in E. By the Ex-
treme Value Theorem, |fy(t, y)| has a finite bound L on D. Take (t, y) and
(t, z) in D, with y < z. By the Mean Value Theorem 3.30, there is a point
u ∈ (y, z) such that

f(t, z)− f(t, y)

z − y
= fy(t, u).

The point (t, u) also belongs to D. Therefore |fy(t, u)| ≤ L, and hence

|f(t, z)− f(t, y)| ≤ L|z − y|,
and f has Lipschitz bound L on D. a

Lemma 14.8. Suppose L > 0, g(t) is continuous on [t0, c], and for all t ∈
[t0, c],

0 ≤ g(t) ≤ L
∫ t

t0

g(s) ds.

Then g(t) = 0 for all t ∈ [t0, c].

Proof. Let h(t) =
∫ t
t0
g(s) ds. Then h(t0) = 0, and by the Second Fun-

damental Theorem of Calculus, h′(t) = g(t) for t ∈ (t0, c). By hypothesis,
g(t)− Lh(t) ≤ 0, so h′(t)− Lh(t) ≤ 0. By the Product Rule for derivatives,

d

dt

(
e−Lth(t)

)
= e−Lth′(t)− Le−Lth(t) = e−Lt(h′(t)− Lh(t)).

Thus e−Lth(t) is continuous on [t0, c] and has derivative ≤ 0 on (t0, c). By
Corollary 3.31, 0 = e−Lt0h(t0) ≥ e−Lth(t) ≥ 0 and hence h(t) = 0 for all
t ∈ [t0, c]. Therefore g(t) = 0 for all t ∈ [t0, c]. a
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Theorem 14.9. (Uniqueness Theorem) Suppose f is locally Lipschitz on
[t0, T )× R. Then the initial value problem

dy

dt
= f(t, y), y(t0) = y0

has at most one solution on [t0, T ). It also has at most one solution on [t0, S)×
R where 0 < S ≤ T .

Proof. Since f is locally Lipschitz on [t0, T )×R, it is also locally Lipschitz
on [t0, S)× R. Let x(t) and y(t) be two solutions and let t0 < c < S. By the
Extreme Value Theorem, |x(t)| and |y(t)| have maximum values for t ∈ [t0, c],
so there is a closed rectangle D ⊆ [t0, S) × R which contains the graphs of
x(t) and y(t). By hypothesis, f has a finite Lipschitz bound L on D. Let
g(t) = |x(t)− y(t)|. Then g is continuous on [t0, c]. For all t ∈ [t0, c],

g(t) = |x(t)− y(t)| =
∣∣∣∣∫ t

t0

f(s, x(s)) ds−
∫ t

t0

f(s, y(s)) ds

∣∣∣∣
=

∣∣∣∣∫ t

t0

(f(s, x(s))− f(s, y(s))) ds

∣∣∣∣ ≤ ∫ t

t0

|f(s, x(s))− f(s, y(s))| ds

≤
∫ t

t0

L |x(s)− y(s)| ds =

∫ t

t0

Lg(s) ds.

Thus by Lemma 14.8, g(t) = 0 for all t ∈ [t0, c]. Since this holds whenever
t0 < c < S, x(t) = y(t) for all t ∈ [t0, S). a

Corollary 14.10. Suppose fy(t, y) exists and is continuous on I×R. Then
the initial value problem

dy

dt
= f(t, y), y(t0) = y0

has at most one solution on [t0, T ).

Proof. By Proposition 14.7 and Theorem 14.9. a

Corollary 14.11. Let J be an open interval which contains the initial
value y0, and suppose that fy(t, y) exists and is continuous on I × J . Then
the initial value problem

dy

dt
= f(t, y), y(t0) = y0

has at most one solution y(·) on [t0, T ) such that y(t) ∈ J for all t ∈ [t0, T ).

Proof. Let x(t) and y(t) be two solutions such that x(t) ∈ J and y(t) ∈ J
for all t ∈ [t0, T ), and let t0 < c < T . By the Extreme Value Theorem, x(t)
and y(t) have maximum and minimum values for t ∈ [t0, c], so there is a closed
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interval [a, b] ⊆ J such that x(t) ∈ [a, b] and y(t) ∈ [a, b] for all t ∈ [t0, c]. Let
g(t, y) be the function defined by

g(t, y) =


f(t, b) if y > b

f(t, y) if y ∈ [a, b]

f(t, a) if y < a

Since g agrees with f on [t0, c]× [a, b], x(·) and y(·) are solutions of the initial
value problem

dy

dt
= g(t, y), y(t0) = y0(81)

on [t0, c). Observe that g is continuous on I × R. By Proposition 14.7, f
is locally Lipschitz on I × J , and hence g is locally Lipschitz on I × R. By
Theorem 14.9, there is at most one solution of (81) on [t0, c), so x(t) = y(t)
for all t ∈ [t0, c). Since this holds for all c ∈ (t0, T ), x(t) = y(t) for all
t ∈ [t0, T ). a

Corollary 14.12. Suppose that for each c ∈ (t0, T ) the initial value prob-
lem (75) has at most one solution on [t0, c). Then there is an S (a real number
or ∞) such that t0 < S ≤ T and:

(i) There is a unique solution on [t0, R) when R ≤ S, and
(ii) There is no solution on [t0, R) when S < R ≤ T .

Proof. Let J be the set of all c ∈ (t0, T ) such that either c = t0 or there
exists a solution yc(·) on [t0, c). For each c ∈ J and b ∈ (0, c), the restriction
of yc(·) to [t0, b) is a solution on [0, b), and therefore b ∈ J . We conclude that
{t0} ∪ J is an interval [t0, S) ⊆ [t0, T ) for some S ≤ T . The Peano Existence
Theorem 14.3 shows that 0 < S.

Since there is at most one solution on [t0, b) for each b ∈ (t0, S), yb(t) = yc(t)
whenever t0 ≤ t < b < c < S. Thus the union

y(·) =
⋃
{yc(·) : c ∈ J}

is a function on [t0, S) and is the unique solution on [t0, S). This proves (i).
If S < R ≤ T , then there is a real c with S < c < R. Then c does not

belong to J , so there is no solution on [t0, c) and hence no solution on [t0, R).
This proves (ii). a

Corollary 14.13. Suppose that for each c ∈ (t0, T ) the initial value prob-
lem (75) has exactly one solution on [t0, c). Then it has exactly one solution
on [t0, T ).

Proof. In this case, we must have S = T in Corollary 14.12 a

We now show that if there is a unique solution, then the solution is also
Euler approximable.
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Theorem 14.14. Suppose the initial value problem (75) has the unique so-
lution y(·) on [t0, T ), and has only one solution on [t0, c) for each c ∈ (t0, T ).
Then y(t) is Euler approximable and is the standard part of every hyperfinite
Euler approximation of (75) on [t0, T ).

Proof. Let Y (t) be the hyperfinite Euler approximation with initial value
z0 ≈ y0 and infinitesimal increment dt. It is enough to show that Y (t) is finite
whenever st(t) ∈ [t0, T ), because then by Theorem 14.1, the standard part of
Y (·) is a solution on [t0, T ) and is Euler approximable.

Take a real number c ∈ (t0, T ) and let c < d < T . By assumption, the
initial value problem has exactly one solution x(t) on [t0, d). Then the function
f(t, x(t)) is continuous for t ∈ [t0, c], and by the Extreme Value Theorem there
is a positive real N such that |f(t, x(t))| ≤ N for all t ∈ [t0, c]. Let g(t, y) be
the function defined by

g(t, y) =


N + 1 if f(t, y) > N + 1

f(t, y) if |f(t, y)| ≤ N + 1

−(N + 1) if f(t, y) < −(N + 1)

Then for all (t, y) ∈ ×R, g(t, y) is continuous, |g(t, y)| ≤ N + 1, and g(t, y) =
f(t, y) whenever |f(t, y)| ≤ N + 1. Let Z(·) be the hyperfinite Euler approxi-
mation for the initial value problem

dy

dt
= g(t, y), y(t0) = y0(82)

with initial value z0 and increment dt. By Theorem 14.2, the standard part
z(·) of Z(·) exists and is a solution of the new initial value problem (82) on
the interval [t0, T ).

We now show that z(t) = x(t) for all t ∈ [t0, c). Suppose not, and let v
be the greatest lower bound of all t ∈ [t0, c) such that z(t) 6= x(t). Then
t0 ≤ v < c, z(t0) = x(t0) = y0, and for all t ∈ [t0, v) we have z(t) = x(t)
and |f(t, z(t))| ≤ N . Since z(·) and x(·) are continuous on [t0, c), we also have
z(v) = x(v) and |f(v, z(v))| ≤ N . f(t, z(t)) is also continuous on [t0, c), so
there is an s ∈ (v, c] such that |f(t, z(t))| ≤ N + 1 for all t ∈ [t0, s). Therefore
g(t, z(t)) = f(t, z(t)) for all t ∈ [t0, s), and hence z(·) is a solution of the original
initial value problem (75) on [t0, s). But by hypothesis there is exactly one
such solution on [t0, s), so we must have z(t) = x(t) for all t ∈ [t0, s). This
contradicts the fact that s > v, and proves that z(t) = x(t) for all t ∈ [t0, c).

We now have |f(t, z(t))| ≤ N for all t ∈ [t0, c). Now consider hyper-
real points (t2, y2) ∈ [r, c]∗ × R∗. Since z(·) is the standard part of Z(·)
on [t0, c), |f(t2, Z(t2))| ≤ N + 1 whenever st(t2) ∈ [t0, c). By Transfer,
g(t2, y2) = f(t2, y2) for all hyperreal t2, y2 such that |f(t2, y2)| ≤ N + 1.
Hence f(t2, Z(t2)) = g(t2, Z(t2)) whenever st(t2) ∈ [t0, c). It follows that
Z(t2) = Y (t2) whenever st(t2) ∈ [t0, c). Therefore Y (·) has the standard part
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z(·) on [t0, c), so Y (t2) is finite whenever st(t2) ∈ [t0, c). Since c was an arbi-
trary real number less than T , Y (t2) is finite whenever st(t2) ∈ [t0, T ). This
completes the proof. a

We conclude this section by showing that the unique solution y(·) in the pre-
ceding theorem has a ε, δ property involving standard Euler approximations.

Proposition 14.15. Assume the hypotheses of Theorem 14.14 and let y(·)
be the unique solution of the initial value problem on [t0, T ). Then y(·) has
the following standard property: for each real ε > 0 and c < T there is a real
δ > 0 such that for every Euler approximation Yu,4t(·) with |u − y0| < δ and
0 < 4t < δ, Yu,4t(t) is within ε of y(t) for all t ∈ [t0, c].

Proof. Suppose the property fails for some ε > 0 and c < T . For each
real u and 4t > 0, let M(u,4t) be the maximum value of |Yu,4t(t) − y(t)|
for t ∈ [t0, c]. This maximum exists by the Extreme Value Theorem, because
|Yu,4t(t) − y(t)| is continuous on [t0, c]. Since the property fails for ε and c,
for every real δ > 0 there exist u and 4t such that

|u− y0| < δ, 0 < 4t < δ, M(u,4t) ≥ ε.

By the Partial Solution Theorem, for each positive infinitesimal σ > 0 there
exist hyperreal z and dt such that

|z − y0| < σ, 0 < dt < σ, M(z, dt) ≥ ε.

Using the Partial Solution Theorem again, M(z, dt) is the maximum value of
|Yz,dt(t)− y∗(t)| for t ∈ [t0, c]

∗. Then z ≈ y0 and dt is positive infinitesimal, so
Yz,dt(·) is a hyperfinite Euler approximation but y(·) is not the standard part
of Yz,dt(·) on [t0, T ). This contradicts Theorem 14.14, so the property must
hold after all. a

14C. An Example where Uniqueness Fails (§14.3)

In Elementary Calculus the initial value problem

y′ = 3y2/3, y(0) = 0

was presented as an example with infinitely many solutions. Here we will
examine this example more closely, and show that every solution is Euler
approximable.

For every real number a, let ya(t) be the function

ya(t) =

{
0 for t < a

(t− a)3 for t ≥ a

with domain [0,∞).
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Proposition 14.16. The family of all solutions of the initial value problem

y′ = 3y2/3, y(0) = 0

on [0,∞) consists of the constant zero function

y(t) = 0 for all t ∈ [0,∞)

and the functions ya(·) where a ≥ 0.

Proof. The constant zero function is a solution because its derivative is
everywhere zero. For each real a, one can check by differentiation that y′a(t) =
0 whenever t ≤ a, and y′a(t) = 3(t− a)2 = 3(ya(t))2/3 for t > a. When a ≥ 0,
ya(0) = 0, so ya(·) is a solution of the given initial value problem. When a < 0,
we instead have ya(0) = −a3 > 0, so in this case ya(·) is not a solution.

We now show that these are the only solutions. Let x(·) be a solution of the
initial value problem, and suppose that x(·) is not the constant zero function.
Since f(t, y) = 3y2/3 ≥ 0 for all (t, y), x(t) must be non-decreasing, that is,
x(s) ≤ x(t) whenever s ≤ t. We also must have x(0) = 0, so x(t) ≥ 0 for all t.
By Theorem 14.11, whenever b > 0 and x(b) > 0, the initial value problem

y′ = 3y2/3, y(b) = x(b)

has at most one solution on [b,∞). But it does have one solution on [b,∞),
namely the function ya(·) where (b− a)3 = x(b), that is, a = b− ((x(b))1/3. It
follows from uniqueness that we get the same value a for each starting point
(b, x(b)) on the curve. Thus for some a ≥ 0, we have x(t) = ya(t) whenever
x(t) > 0. Since x(·) and ya(·) are continuous, non-decreasing, and map 0 to 0,
we must have x(t) = ya(t) for all t. a

The following result is given in [AFHL 1986], page 32, and is attributed to
B. Birkeland and D. Normann.

Proposition 14.17. Every solution of the initial value problem

y′ = 3y2/3, y(0) = 0

is Euler approximable. In fact, for each positive infinitesimal dt, every solution
is the standard part of a hyperfinite Euler approximation with increment dt and
initial value z with z ≥ 0.

Proof. We first consider the standard Euler approximations Yu,4t(·) with

initial value u with u ≥ 0 and increment 4t > 0. Since 3y2/3 ≥ 0, Yu,4t(t) is

non-decreasing in t. The function f(t, y) = 3y2/3 is continuous and increasing
in y for y ≥ 0. It therefore follows by induction that for each fixed 4t and
n, Yu,4t(n4t) is a continuous and increasing function of u ∈ [0,∞). Since
Yu,4t(·) is a polygonal function, for each fixed 4t > 0 and t > 0, the function
h(u) = Yu,4t(t) is also continuous and increasing. We also have h(0) = 0 and
u ≤ h(u). Using the Intermediate Value Theorem we see that h(u) = Yu,4t(t)
maps [0,∞) onto [0,∞). Thus whenever

4t > 0, t ≥ 0, v ≥ 0
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there exists u ∈ [0, v] such that

Yu,4t(t) = v.

Now let dt be positive infinitesimal. The constant zero solution is the stan-
dard part of the hyperfinite Euler approximation with increment dt and initial
value 0, because Y0,dt(t) = 0. Let ya(·) be a nonzero solution of the initial value
problem with initial value 0. Then a is a non-negative real number. Take a
time t > a, so that ya(t) = (t − a)3 > 0. By the Partial Solution Theorem,
there is a hyperreal z ∈ [0, ya(t)]∗ such that

Yz,dt(t) = ya(t).

By Theorem 14.2, the standard part of Yz,dt(·) exists on [0,∞) and is a solution
of the initial value problem with initial value st(z). By Proposition 14.16, ya(·)
is the only solution of the initial value problem whose graph contains the point
(t, ya(t)), so ya(·) must be the standard part of Yz,dt(·). a





CHAPTER 15

LOGIC AND SUPERSTRUCTURES

This chapter is optional, and provides a link between the simple treatment of
infinitesimal calculus in the text Elementary Calculus and the more advanced
treatment of infinitesimal analysis found in the literature. The material in this
chapter is not needed as background for teaching calculus from Elementary
Calculus. It is aimed at mathematicians who wish to go more deeply into the
subject.

15A. The Elementary Extension Principle

We will show here that the Transfer Axiom is equivalent to an apparently
stronger statement called the Elementary Extension Principle. It says that the
real numbers (with all real functions and relations) satisfy the same sentences
of first order logic as the hyperreal numbers (with the natural extensions of all
real functions and relations). Before stating the result precisely we start from
the beginning and define the notion of a sentence of first order logic.

In first order logic we start with a set of symbols, called a language, ap-
propriate for the structure under consideration. In this case we introduce a
language L for the real number system with the following uncountable collec-
tion of symbols:

A symbol c for each real constant c,
A symbol f for each real function f of n variables,
A symbol P for each real relation P of n variables.

In addition, L has the following logical symbols common to all first order
languages:

Variables v1, v2, v3, . . .
Connectives ¬ (not), ∧ (and), ∨ (or), ⇒ (implies). ⇔ (if and only if)
Quantifiers ∀ (for all), ∃ (there exists)
Parentheses and commas.

For simplicity we identify each real constant c, function f , and relation
P , with its symbol c, f , P . In Section 1C we defined the notion of a term.

175
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We repeat the definition here. A term is a finite sequence of symbols built
according to the following rules:

• Every variable is a term.
• Every constant is a term.
• If τ1, . . . , τn are terms and f is a real function of n variables, then
f(τ1, . . . , τn) is a term.

When we replace each variable vi in a term τ(v1, . . . , vn) by a constant ci,
we obtain a constant term, which is either equal to some real number or is
undefined.

In Section 1C we called an equation or inequality between two terms a
formula. These are expressions of the forms

τ = σ, τ 6= σ, τ ≤ σ, τ < σ, τ ≥ σ, τ > σ.

The equations and inequalities are special cases of a broader class which we call
the atomic formulas of L. If P is a real relation of n variables and τ1, . . . , τn
are terms, then

P (τ1, . . . , τn)

is called an atomic formula of L.
The set of all (first order) formulas of L is defined as follows.

• Every atomic formula of L is a formula of L.
• If ϕ,ψ are formulas of L, so are

¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ⇒ ψ), (ϕ⇔ ψ).

• If ϕ is a formula of L and vn is a variable, then

(∀vnϕ), (∃vnϕ)

are formulas of L.

For example, omitting unnecessary parentheses, the following formula of L
is the standard ε, δ condition for f to be continuous at x. For readability we
use ε, δ, x, y for variables instead of v1, v2, v3, v4.

∀ε(ε > 0⇒ ∃δ(δ > 0 ∧ ∀y(|x− y| < δ ⇒ |f(x)− f(y)| < ε))).

In this example, ε, δ, and y are bound variables, while x is a free variable
because it is not in a quantifier. A first order formula with no free variables is
called a sentence. Thus whenever all the free variables in a first order formula
are replaced by constants, the result is a sentence.

The statement that every real solution of a system of formulas S is a real
solution of a system of formulas T is expressed by a sentence of L of the form

∀v1 · · · ∀v`((ϕ1 ∧ · · · ∧ ϕm)⇒ (ψ1 ∧ · · · ∧ ψn))(83)

where the ϕi and ψj are atomic formulas.
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The statement that every real solution of a system of formulas S is a partial
real solution of a system of formulas T is expressed by a sentence of L of the
form

∀v1 · · · ∀vk((ϕ1 ∧ · · · ∧ ϕm)⇒ ∃vk+1 · · · ∃v`(ψ1 ∧ · · · ∧ ψn)).(84)

Each sentence ϕ of L is either true or false in the real number system. The
notion of a true sentence is a precise mathematical concept which is defined
by induction on the complexity of a sentence, and corresponds to the intuitive
notion.

Definition 15.1. (i) An atomic sentence P (τ1, . . . , τn) is true if each of
the constant terms τ1, . . . , τn is defined and the n-tuple of values belongs to
the relation P .

(ii) If ϕ and ψ are sentences, then the truth values of the combinations of ϕ
and ψ by connectives are obtained from the truth values of ϕ and ψ using the
following table.

ϕ ψ ¬ϕ ϕ ∧ ψ ϕ ∨ ψ ϕ⇒ ψ ϕ⇔ ψ
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

(iii) The sentence ∀xϕ(x) is true if and only if ϕ(c) is true for all constants
c ∈ R.

(iv) The sentence ∃xϕ(x) is true if and only if ϕ(c) is true for some constant
c ∈ R.

The notation R |= ϕ means that ϕ is true in R.
Note that we treat = and 6= as binary relations, and that the sentence τ 6= σ

is different than ¬τ = σ. In fact, R |= τ 6= σ if and only if τ and σ are both
defined but have different values, while R |= ¬τ = σ if and only if it is not the
case that τ and σ are both defined and equal.

We now introduce a second language L∗ for the hyperreal number system
which has a symbol for each hyperreal constant, function, and relation. The
truth value of a sentence of L∗ in R∗ is defined as before but with quantifiers
ranging over R∗ instead of R.

Definition 15.2. Given a formula ϕ of L, the ∗-transform of ϕ is the
formula ϕ∗ of L∗ obtained by replacing each real function f and relation P
occurring in ϕ by its natural extension f∗ and P ∗.

Given a term τ of L, the ∗-transform τ∗ is defined analogously.

Thus the ∗-transform of the formula expressing continuity of f at x is the
formula

∀ε(ε >∗ 0⇒ ∃δ(δ >∗ 0 ∧ ∀y(|x−∗ y|∗ <∗ δ ⇒ |f∗(x)−∗ f∗(y)|∗ <∗ ε))).
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The relation x ≈ y is expressed by the following formula of L∗:

∀z(R(z) ∧ 0 <∗ z ⇒ |x−∗ y|∗ <∗ z).
This formula is not the ∗-transform of any formula of L because it involves
the set R, which is a subset of R∗ but is not the natural extension of any set
of reals.

Similarly, the property “x is finite” is expressed by

∃z(R(z) ∧ |x|∗ <∗ z),
which again is not the ∗-transform of any formula of L.

The ∗-transform of a sentence of L is always a sentence of L∗. We can now
state the Elementary Extension Principle and show that it follows from our
Axioms A–E for hyperreal numbers.

Theorem 15.3. (Elementary Extension Principle) For every sentence ϕ of
L, ϕ is true in R if and only if its ∗-transform ϕ∗ is true in R∗.

Notice that the Transfer Axiom is just the special case of the Elementary
Extension Principle where ϕ is a sentence of the form (83) above. The Partial
Solution Theorem 1.20 is the special case where ϕ is a sentence of the form
(84) above.

Proof. For each formula ϕ(v1, . . . , vn) of L with at most the free variables
v1, . . . , vn, let Cϕ be the corresponding characteristic function

Cϕ(a1, . . . an) =

{
1 if ϕ(a1, . . . , an) holds in R
0 otherwise.

Thus
R |= ∀v1 · · · ∀vn(ϕ(v1, . . . , vn)⇔ Cϕ(v1, . . . , vn) = 1).

We will prove by induction on the complexity of formulas that for each formula
ϕ(v1, . . . , vn) of L,

R∗ |= ∀v1 · · · ∀vn(ϕ∗(v1, . . . , vn)⇔ (Cϕ)∗(v1, . . . , vn) = 1).(85)

Replacing variables by real constants, it will then follow that the statements
below are equivalent:

R |= ϕ(a1, . . . , an)

R |= Cϕ(a1, . . . , an) = 1

R∗ |= (Cϕ)∗(a1, . . . , an) = 1

R∗ |= ϕ∗(a1, . . . , an).

To start the induction, we let ϕ(v) be an atomic formula P (τ1(v), . . . , τk(v)).
(For simplicity we do this for the case that ϕ(v) has only one variable v; the
case of n variables is similar).

Let CP be the characteristic function of P (y1, . . . , yk). By the definition of
P ∗,

R∗ |= ∀y1 · · · ∀yk(P ∗(y1, . . . , yk)⇔ (CP )∗(y1, . . . , yk) = 1),
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and since ϕ(v) is P (τ1(v), . . . , τk(v)),

R∗ |= ∀v(ϕ∗(v)⇔ (CP )∗(τ∗1 (v), . . . , τ∗k (v)) = 1).

Moreover, in R we have

R |= ∀v(CP (τ1(v), . . . , τk(v)) = 1⇔ Cϕ(v) = 1).

Then by Transfer,

R∗ |= ∀v((CP )∗(τ∗1 (v), . . . , τ∗k (v)) = 1⇔ (Cϕ)∗(v) = 1).

Combining the above formulas, we see that (85) holds for ϕ(v).
To shorten our induction we use the fact that every formula of L is equiva-

lent to a formula which is built up using only the connectives ∧ and ¬ and the
quantifier ∃. The other connectives and quantifiers may be treated as abbre-
viations for longer expressions. In the following we assume that (85) holds for
ϕ(v1, . . . , vn) and ψ(v1, . . . , vn), and prove that (85) also holds for ¬ϕ, ϕ∧ψ,
and ∃vnϕ.

We first consider ¬ϕ. We have

R |= ∀v1 · · · ∀vn(ϕ(v1, . . . , vn)⇔ Cϕ(v1, . . . , vn) = 1),

R |= ∀v1 · · · ∀vn(¬ϕ(v1, . . . , vn)⇔ C¬ϕ(v1, . . . , vn) = 1),

so

R |= ∀v1 · · · ∀vn(¬Cϕ(v1, . . . , vn) = 1⇔ C¬ϕ(v1, . . . , vn) = 1).

By Transfer the ∗-transforms hold in R∗. Therefore

R∗ |= ∀v1 · · · ∀vn(¬(Cϕ)∗(v1, . . . , vn) = 1⇔ (C¬ϕ)∗(v1, . . . , vn) = 1).

Using the hypothesis (85) for ϕ, we have

R∗ |= ∀v1 · · · ∀vn(ϕ∗(v1, . . . , vn)⇔ (Cϕ)∗(v1, . . . , vn) = 1).

It follows that

R∗ |= ∀v1 · · · ∀vn(¬ϕ∗(v1, . . . , vn)⇔ (C¬ϕ)∗(v1, . . . , vn) = 1),

so (85) holds for ¬ϕ.
To verify (85) for ϕ ∧ ψ we observe that

R |= ∀v1 · · · ∀vn(Cϕ∧ψ(v1, . . . , vn) = Cϕ(v1, . . . , vn) · Cψ(v1, . . . , vn)),

and by Transfer the ∗-transform holds in R∗.
We now show that ∃vnϕ satisfies (85). For any real (n−1)-tuple a1, . . . , an−1

such that

R |= ∃vnϕ(a1, . . . , an−1, vn),

choose a real number f(a1, . . . , an−1) such that

R |= ϕ(a1, . . . , an−1, f(a1, . . . , an−1)).

Otherwise put f(a1, . . . , an−1) = 0. The real function f of n − 1 variables is
called a Skolem function for ∃vnϕ. Working in R we see that

R |= ∀v1 · · · ∀vn−1 C∃vnϕ(v1, . . . , vn−1) = Cϕ(v1, . . . , vn−1, f(v1, . . . , vn−1))
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and also

R |= ∀v1 · · · ∀vn(Cϕ(v1, . . . , vn) = 1⇒ C∃vnϕ(v1, . . . , vn−1) = 1).

It follows from Transfer that the ∗-transforms of these formulas hold in R∗.
Thus for any b1, . . . , bn−1 ∈ R∗, each statement below implies the next.

R∗ |= ∃vnϕ∗(b1, . . . , bn−1, vn)

R∗ |= ∃vn((Cϕ)∗(b1, . . . , bn−1, vn) = 1)

R∗ |= (C∃vnϕ)∗(b1, . . . , bn−1) = 1

R∗ |= (Cϕ)∗(b1, . . . , bn−1, f
∗(b1, . . . , bn−1)) = 1

R∗ |= ϕ∗(b1, . . . , bn−1, f
∗(b1, . . . , bn−1))

R∗ |= ∃vnϕ∗(b1, . . . , bn−1, vn).

We conclude that (85) holds for ∃vnϕ. a

The sentences which arise in beginning calculus are of a very simple form,
and the Transfer Axiom and Partial Solution Theorem are broad enough to
cover the cases of the Elementary Extension Principle which are needed in
proofs. It is important pedagogically that we are able to base the course on
the familiar concept of a system of equations and inequalities rather than on
the general notion of a formula in first order logic. Beginning calculus students
do not have the mathematical experience necessary to work with formulas with
even three quantifiers, such as the ε, δ definition of continuity. One advantage
of introducing the hyperreal numbers at the beginning of the calculus course
is that complicated first order formulas of L can often be replaced by simpler
formulas of L∗. This is especially true when the hyperreal relations x ≈ y and
x = st(y) are used. For example, the ε, δ condition for f to be continuous at
x,

∀ε(ε > 0⇒ ∃δ(δ > 0 ∧ ∀y(|x− y| < δ ⇒ |f(x)− f(y)| < ε))),

is equivalent to the simpler L∗ formula

∀y(y ≈ x⇒ f∗(y) ≈ f∗(x)).

15B. Superstructures

In classical analysis one goes beyond the real numbers and real functions. A
more appropriate object of study is the superstructure over the real numbers,
defined as follows.

Definition 15.4. The power set of a set X is the set P(X) of all subsets
of X,

P(X) = {Y : Y ⊆ X}.
The n-th cumulative power set of X is defined recursively by

V0(X) = X, Vn+1(X) = Vn(X) ∪ P(Vn(X)).
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The superstructure over X is the union of the cumulative power sets and is
denoted by V (X),

V (X) =

∞⋃
n=0

Vn(X).

The superstructure V (X) has a membership relation between elements of
Vn(X) and Vn+1(X), n = 0, 1, 2, . . . . We treat elements of X itself as atoms,
and assume that ∅ /∈ X and that no x ∈ X contains any elements of V (X).

We observe that for any superstructure V (X), we have

X ⊆ V1(X) ⊆ V2(X) ⊆ · · ·
and

X ∈ V1(X) ∈ V2(X) ∈ · · · .
Moreover, P(X) ∈ V (X), Vn(X) ∈ V (X) for each n, and if A ∈ V (X) \ X
then A ⊆ V (X). One usually takes the set X of atoms to be the set R of reals,
the set C of complex numbers, or some other structure under investigation.
Here we concentrate on the case where the set of atoms is X = R.

The sets Z of integers and N of natural numbers are important subsets of R
and elements of V (R). We may define an ordered pair 〈x, y〉 by

〈x, y〉 = {{x}, {x, y}}
and an ordered n-tuple, n > 2, as the function

〈x1, . . . , xn〉 = {〈1, x1〉, . . . , 〈n, xn〉}
from {1, . . . , n} into R. Thus all ordered n-tuples belong to V3(R), and all
real relations and functions in n variables belong to V4(R). Function spaces,
measures, and all other structures from classical analysis belong to V (R), and
even to, say, V100(R).

The following lemma is easily proved by induction on n.

Lemma 15.5. If n > 0 and x ∈ y ∈ Vn(R), then x ∈ Vn−1(R).

In order to be in a position to use infinitesimals in more advanced areas of
mathematics, we must extend the whole superstructure instead of just the real
numbers.

Definition 15.6. A superstructure embedding is a one to one mapping
∗ of V (R) into another superstructure V (S) such that

(i) R is a proper subset of S, r∗ = r for all r ∈ R, and R∗ = S.
(ii) For x, y ∈ V (R), x ∈ y if and only if x∗ ∈ y∗.

In view of (i), we will always write R∗ instead of S, and denote the super-
structure embedding by ∗ : V (R)→ V (R∗). Notice that by (i), V (R) ⊆ V (R∗)
and ∗ contains the identity map on R, but ∗ does not contain the identity map
on V (R).

To go further we need an analogue of the Elementary Extension Principle
for superstructure embeddings. An arbitrary embedding will not do; we want
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the embedding to preserve all properties of a certain kind. Assume hereafter
that ∗ : V (R)→ V (R∗) is a superstructure embedding.

We first form the first order predicate logic with the equality symbol, a
binary relation symbol ∈, and a constant symbol a for each element a ∈ V (R∗).
For simplicity we identify a with its constant symbol a. We call the language
L.

Definition 15.7. A bounded formula of L is an expression built accord-
ing to the following rules.

• If x and y are variables or constants, x = y and x ∈ y are bounded
formulas, called atomic formulas.

• If ϕ,ψ are bounded formulas, so are

(¬ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ⇒ ψ), (ϕ⇔ ψ).

• If u is a variable, c is a constant, and ϕ is a bounded formula, then
(∀u ∈ c)ϕ and (∃u ∈ c)ϕ are bounded formulas.

• If u, v are variables, ϕ is a bounded formula, and v does not appear in ϕ
in the form (∀v ∈ w) or (∃v ∈ w), then (∀u ∈ v)ϕ and (∃u ∈ v)ϕ are
bounded formulas.

The adjective bounded refers to the fact that the quantifiers in bounded
formulas of L are of the form (∀u ∈ x) or (∃u ∈ x).

A bounded sentence is a bounded formula in which each occurrence of a
variable u is within the scope of a quantifier of the form (∀u ∈ x) or (∃u ∈ x)
where x is another variable or constant. Note that if a bounded sentence
begins with a quantifier (∀u ∈ x) or (∃u ∈ x), x must be a constant.

For example, the property y =
⋃
x is expressed by the bounded formula

(∀u ∈ y)(∃v ∈ x)u ∈ v ∧ (∀v ∈ x)(∀u ∈ v)u ∈ y.
If x and y are constants, this is a bounded sentence.

Each bounded sentence is either true or false in the superstructure V (R∗).
The definition of the relation “ϕ is true in V (R∗)” is by induction on the
complexity of the bounded sentence ϕ. The quantifier clauses are:

(∃v ∈ c)ϕ(v) is true in V (R∗) iff ϕ(b) is true in V (R∗) for some b ∈ c,
(∀v ∈ c)ϕ(v) is true in V (R∗) iff ϕ(b) is true in V (R∗) for all b ∈ c.
The notation V (R∗) |= ϕ means “ϕ is true in V (R∗)”. Since V (R∗) is the

only structure under discussion, we sometimes suppress mention of V (R∗) and
say “ϕ is true” instead of “ϕ is true in V (R∗)”.

Remember that R ⊆ R∗ and V (R) ⊆ V (R∗). We call the elements of R
real numbers, the elements of V (R) \ R real sets, and arbitrary elements
of V (R) real entities. Similarly, elements of R∗, V (R∗) \ R∗, and V (R∗)
are called hyperreal numbers, hyperreal sets, and hyperreal entities
respectively. A real bounded formula is a bounded formula of L all of
whose constants are real entities. Since each element of a real set is a real
entity, a real bounded sentence has the same meaning in V (R) as in V (R∗).
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The superstructure embedding ∗ : V (R) → V (R∗) induces a mapping, called
the ∗-transform, from real bounded formulas to bounded formulas. The ∗-
transform ϕ∗ of a real bounded formula ϕ is defined as the bounded formula
obtained by replacing each constant c occurring in ϕ by its image c∗.

For example, the ∗-transform of the real bounded sentence

(∀x ∈ R)(x < 0 ∨ (∃y ∈ R)y · y = x)

is the bounded sentence

(∀x ∈ R∗)(x <∗ 0∗ ∨ (∃y ∈ R∗)y ·∗ y = x).

Definition 15.8. A nonstandard universe is a superstructure embedding
∗ : V (R) → V (R∗) which satisfies Leibniz’ Principle, which is the property
that for each real bounded sentence ϕ ∈ L, ϕ is true if and only if ϕ∗ is true.

Of course, Leibniz did not formulate his principle in anything like the present
form. In fact, first order predicate logic was not available until the work of
Frege and Peano in the late nineteenth century. The name “Leibniz’ Principle”
is used in the literature because Leibniz suggested that the real numbers should
be extended to a larger system which has the same elementary properties but
contains infinitesimals. The formal notion given here captures this intuitive
idea.

In Section 15D we will build a nonstandard universe. We now show that
Leibniz’ Principle implies the Elementary Extension Principle of Section 15A.

By the elementary part of the superstructure V (R) we will mean the set

R ∪
∞⋃
n=1

P(Rn)

of all elements of R and all relations (and hence functions) on R with finitely
many variables. By the elementary part of the nonstandard universe ∗ : V (R→
R∗ we mean the structure (•,R,R∗) where • is the restriction of the mapping
∗ to the elementary part of V (R). This mapping • associates with each real
relation P or function f a hyperreal relation P ∗ or function f∗.

Theorem 15.9. The elementary part of a nonstandard universe ∗ : V (R)→
V (R∗) satisfies the Elementary Extension Principle.

Proof. Given a first order sentence ϕ of L, let ϕR be the real bounded
sentence of L obtained by replacing each quantifier ∃vn occurring in ϕ by the
bounded quantifier (∃vn ∈ R), and replacing each quantifier ∀vn occurring in
ϕ by the bounded quantifier (∀vn ∈ R). Define ϕR∗ similarly. Then for each
sentence ϕ of L, we have

(ϕ∗)
R∗

=
(
ϕR)∗ .

From the definition of truth value we see that the following are equivalent:

R |= ϕ, ϕR is true,
(
ϕR)∗ is true, R∗ |= ϕ∗.

This completes the proof. a
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Theorem 15.10. The elementary part of a nonstandard universe ∗ : V (R)→
V (R∗) is a hyperreal number system which satisfies Axioms A–E for the hy-
perreal numbers.

Proof. Axiom A, that R is a complete ordered field, is satisfied by defini-
tion. Axiom B says that R∗ is an ordered field extension of R. By the definition
of a superstructure embedding, r∗ = r for each r ∈ R, so R∗ is an extension
of R. Each of the ordered field axioms is a first order sentence which holds
in R, so its ∗-transform holds in R∗ by the Elementary Extension Principle.
Therefore Axiom B is satisfied.

Axiom D, the Function Axiom, holds because the superstructure embedding
∗ gives us the natural extension f∗ of each real function f and the natural
extension <∗ of the real order relation <. Axiom E, the Transfer Axiom, is a
special case of the Elementary Extension Principle, which holds by Theorem
15.9.

It remains to prove Axiom C, that R∗ has a positive infinitesimal. By the
definition of a superstructure embedding, R∗ is a proper field extension of R,
so there is an element x ∈ R∗ \ R. Suppose first that x is infinite. Using only
Axioms A and B, it now follows that |x| is positive infinite, |x|−1 is positive,
and |x|−1 is infinitesimal (here we use Theorem 1.7, whose proof uses only
Axioms A and B). So in this case R∗ has a positive infinitesimal. Now suppose
that x is finite. The Standard Part Principle, Theorem 1.9, is also proved
using only Axioms A and B, and shows that there is a real number r such that
r−x is infinitesimal. Since x /∈ R, r−x 6= 0, and therefore R∗ has the positive
infinitesimal element |r − x|. This proves Axiom C. a

Theorem 15.10 has the following converse, which we will state without proof.
It shows that any hyperreal system can be extended to a nonstandard universe.
A proof can be found in the book [CK 1990], Section 4.4.

Theorem 15.11. Suppose that the triple (•,R,R∗) satisfies Axioms A–E
for the hyperreal numbers. Then there is a nonstandard universe ∗ : V (R) →
V (R∗) with elementary part (•,R,R∗).

15C. Standard, Internal, and External Sets

In this section we assume that ∗ : V (R)→ V (R∗) is a nonstandard universe.
By Theorem 15.10, it follows that Axioms A–E and all their consequences
hold for the real and hyperreal numbers. We will adopt the convention of
dropping asterisks on terms f∗(x1, . . . , xn) where f is a real function, and on
the hyperreal order relations <∗, ≤∗, >∗, ≥∗.

A number of new distinctions which did not arise in the hyperreal numbers
become important in a nonstandard universe. The image of the power set of
R will contain some but not all subsets of R∗, that is, [P(R)]∗ will be a proper
subset of P(R∗). For example, the set R of real numbers and the set N of
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natural numbers are subsets of R∗ but do not belong to [P(R)]∗. To see this
we note that the ∗-transform of the sentence

“Every nonempty bounded set in P(R) has a least upper bound”

holds in V (R∗). However, R and N are bounded but have no least upper bound
in R∗, so R and N cannot belong to [P(R)]∗.

It is useful to distinguish between four kinds of entities in V (R∗). An entity
b ∈ V (R∗) is said to be

real if b ∈ V (R),
standard if b = a∗ for some a ∈ V (R),
internal if b ∈ a∗ for some a ∈ V (R) \ R,
external if b is not internal.

Proposition 15.12. (i) Every standard entity is internal.
(ii) An entity x is internal if and only if x ∈ [Vn(R)]

∗
for some n.

(iii) Every element of an internal set is internal.

Proof. (i) If x is standard, x = a∗ for some real entity a. If a is a real
number, then x ∈ R∗ and R ∈ V (R). If a is a real set, then a ∈ P(a) ∈ V (R),
so x = a∗ ∈ [P(a)]∗. In each case, x is internal.

(ii) Since Vn(R) ∈ V (R), every element of [Vn(R)]∗ is internal. Suppose x is
internal, so that x ∈ a∗ for some a ∈ V (R) \ R. Then a ⊆ Vn(R) for some n,
so

(∀u ∈ a)u ∈ Vn(R).

By Leibniz’ Principle,

(∀u ∈ a∗)u ∈ [Vn(R)]
∗
,

and hence x ∈ [Vn(R)]∗.
(iii) Suppose x is an internal set and y ∈ x. By (ii), x ∈ [Vn(R)]

∗
for some

n. Since x is a set, n > 0. By Lemma 15.5,

(∀u ∈ Vn(R))(∀v ∈ u)v ∈ Vn−1(R).

By Leibniz’ Principle,

(∀u ∈ [Vn(R)]
∗
)(∀v ∈ u)v ∈ [Vn−1(R)]

∗
.

Hence y ∈ [Vn−1(R)]
∗
, so y is internal. a

Here are some examples.
Standard and real : Each r ∈ R. Each finite subset of R.
External and real : N,R.
Standard but not real : N∗,R∗.
Internal but not standard :

Each c ∈ R∗ \ R.
[a, b]∗ where a, b ∈ R∗ \ R.
The function h(x) = sin(Hx) where H is infinite.
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External but not real :
The monad of 0.
The galaxy of 0.
The standard part function st(·).

We remark that for every standard function g(x, y) and hyperreal constant
c, the function h(x) = g(x, c) is internal. Similarly, for any standard relation
P (x, y) are hyperreal constant c, the relation P (x, c) is internal.

A bounded formula of L is said to be internal if every constant occurring
in the formula is internal. For example, the ∗-transform of a real bounded
formula is an internal formula. Any formula formed from an internal formula
by replacing variables by internal constants is again an internal formula.

Theorem 15.13. Let A be a real set, A ∈ V (R) \ R.
(i) If B ⊆ A then B∗ ⊆ A∗.
(ii) [P(A)]∗ is equal to the set of all internal subsets of A∗.

Proof. (i) Since B ⊆ A, we have

(∀x ∈ B)x ∈ A.

By Leibniz’ Principle,

(∀x ∈ B∗)x ∈ A∗,
so B∗ ⊆ A∗.

(ii) First suppose X ∈ [P(A)]
∗
. Then X is internal, because P(A) ∈ V (R).

We have

(∀u ∈ P(A))(∀v ∈ u)v ∈ A.
By Leibniz’ Principle,

(∀u ∈ [P(A)]
∗
)(∀v ∈ u)v ∈ A∗.

Therefore (∀v ∈ X)v ∈ A∗, so X is an internal subset of A∗.
Now suppose that X is an internal subset of A∗. Then X ∈ B∗ for some

real set B. We have

(∀u ∈ B)((∀v ∈ u)v ∈ A⇒ u ∈ P(A)).

By Leibniz’ Principle,

(∀u ∈ B∗)((∀v ∈ u)v ∈ A∗ ⇒ u ∈ [P(A)]
∗
).

But X ∈ B∗ and (∀v ∈ X)v ∈ A∗. Therefore X ∈ [P(A)]
∗
. a

Several basic notions such as open set, continuity, and differentiability, split
into two separate notions when applied to internal functions and relations.
Consider an internal function f on R∗ and a point c ∈ R∗. Let R+ be the set
of positive reals. f is said to be S-continuous at c if it satisfies the real ε, δ
condition

(∀ε ∈ R+)(∃δ ∈ R+)(∀x ∈ R∗)(|x− c| < δ ⇒ |f(x)− f(c)| < ε).
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This is not an internal formula, because it has the constant R+. f is said to
be ∗-continuous at c if it satisfies the hyperreal ε, δ condition

(∀ε ∈ R∗+)(∃δ ∈ R∗+)(∀x ∈ R∗)(|x− c| < δ ⇒ |f(x)− f(c)| < ε),

which is an internal formula.
Theorem 5.5 shows that if f is a standard function and c is real, then f

is S-continuous at c if and only if f is ∗-continuous at c. This can also be
proved by Leibniz’ Principle. First we use Leibniz’ Principle to show that for
each real ε, δ ∈ R+, we may replace (∀x ∈ R∗) by (∀x ∈ R) in the definition
of S-continuous, and then we use Leibniz’ Principle again to show that f
is S-continuous if and only if it is ∗-continuous. The two notions are not
equivalent when f is only assumed to be internal. Here are two examples. Let
H be positive infinite. The internal function f(x) = sin(Hx) is everywhere
∗-continuous but nowhere S-continuous. The internal function

g(x) =

{
1/H if x ∈ Q∗

0 if x /∈ Q∗

where Q is the set of rational numbers, is everywhere S-continuous but nowhere
∗-continuous.

Some properties of the real numbers are never preserved by a superstructure
embedding. For example, the field R of real numbers is Archimedean but the
larger field R∗ of hyperreal numbers is not. The Archimedean Property cannot
be expressed by an internal formula. A field is Archimedean if every element
is less than some natural number. Formally we have

(∀x ∈ R)(∃n ∈ N)x < n but ¬(∀x ∈ R∗)(∃n ∈ N)x < n.

The ∗-transform of the Archimedean Property has a different meaning and is
true for the hyperreal numbers,

(∀x ∈ R∗)(∃n ∈ N∗)x < n.

Thus R∗ is ∗-Archimedean but not Archimedean.
A second example is the completeness property. R is complete but R∗ is

not. Formally,

(∀x ∈ P(R))ϕ(x) but ¬(∀x ∈ P(R∗))ϕ∗(x),

where ϕ(x) is the bounded real formula stating that if x is nonempty and has
an upper bound in R then x has a least upper bound in R. However, R∗ is
∗-complete, that is,

(∀x ∈ [P(R)]∗)ϕ∗(x).

∗-completeness states that every internal subset of R∗ which is nonempty and
has an upper bound in R∗ has a least upper bound in R∗. A third example is
induction on the natural numbers. We have

(∀x ∈ P(N))(0 ∈ x ∧ (∀y ∈ x)(y + 1 ∈ x)⇒ x = N),
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but by considering x = N as an element of P(N∗) we see that

¬(∀x ∈ P(N∗))(0 ∈ x ∧ (∀y ∈ x)(y + 1 ∈ x)⇒ x = N∗).

However, N∗ does satisfy ∗-induction, that is, induction for internal subsets of
N∗,

(∀x ∈ [P(N)]∗)(0 ∈ x ∧ (∀y ∈ x)(y + 1 ∈ x)⇒ x = N∗).
We conclude this section with some consequences of Leibniz’ Principle. The

next theorem is very useful in practice when one wants to show that a set is
internal.

Theorem 15.14. (Internal Definition Principle) If ϕ(x, y1, . . . , yn) is a
bounded formula with no constants, and c, b1, . . . , bn are internal sets, then

{x ∈ c : ϕ(x, b1, . . . , bn)}
is an internal set.

Proof. By Proposition 15.12, there is a natural number m such that the
elements c, b1, . . . , bn all belong to [Vm(R)]∗. By the axioms of set theory, the
following real bounded sentence is true:

(∀y1, . . . , yn, z ∈ Vm(R))(∃u ∈ Vm+1(R))u = {x ∈ z : ϕ(x, y1, . . . , yn)}.
By Leibniz’ Principle, the ∗-transform of this sentence is true. It follows that

{x ∈ c : ϕ(x, b1, . . . , bn)} ∈ [Vm+1(R)]
∗
.

Therefore the set on the left is internal. a

Theorem 15.15. (Overspill Principle) Let X be an internal subset of R∗.
(i) If c ∈ R∗ and X contains the monad of c, then there is a real δ > 0 such

that

(c− δ, c+ δ)∗ ⊆ X.
(ii) If X contains infinitely many natural numbers then X contains a positive

infinite hyperinteger.

Proof. (i) Let

Y = {y ∈ R∗ : 0 < y ≤ 1 ∧ (∀u ∈ (c− y, c+ y)∗)u ∈ X}.
By the Internal Definition Principle 15.14, the set Y is internal. Y is a subset
of R∗ and is bounded above by 1. Since X contains the monad of c, every
positive infinitesimal belongs to Y . By the ∗-transform of the completeness
property of the reals, Y has a least upper bound b ∈ R∗. Then b is positive
but not infinitesimal, so there is a real number δ such that 0 < δ < b. Then
δ ∈ Y and hence

(c− δ, c+ δ)∗ ⊆ X.
(ii) Let K be a positive infinite hyperinteger. By the Internal Definition

Principle, the set

Y = {x ∈ X : x ∈ N∗ ∧ x ≤ K}
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is internal, and has the upper bound K. Y is nonempty because it contains
the infinite set X ∩N. By the ∗-transform of the completeness property of the
reals, Y has a least upper bound b. Since Y contains an infinite subset of N, b
must be positive infinite. Take an infinite c < b. Then c is not an upper bound
of Y , so there exists H ∈ Y such that H > c. Then H is infinite, H ∈ N∗, and
H ∈ X. a

For example, suppose f is an internal function from R∗ into R∗, which is
∗-continuous at every point x ≈ c. By the Internal Definition Principle, the
set

X = {x ∈ R∗ : f is ∗-continuous at x}
is internal and contains the monad of c. Then by the Overspill Principle, there
is a real δ > 0 such that (c− δ, c+ δ)∗ ⊆ X and thus f is ∗-continuous at every
point of (c− δ, c+ δ)∗.

Corollary 15.16. (Robinson’s Principle) Let f be an internal function
from N∗ into R∗. If f(n) is infinitesimal for all finite n, then there is an
infinite H ∈ N∗ such that f(K) is infinitesimal for all K ≤ H in N∗.

Proof. Let

Y = {n ∈ N∗ : (∀m ∈ N∗)(m ≤ n⇒ |f(m)| ≤ 1/(n+ 1)}.

By the Internal Definition Principle, Y is internal. By hypothesis, N ⊆ Y ⊆
N∗. By Theorem 15.15, Y contains a positive infinite hyperinteger H. Then
for all K ≤ H in N∗, |f(K)| ≤ 1/(H + 1) and hence f(K) is infinitesimal. a

15D. Bounded Ultrapowers

In this section we build a nonstandard universe. One way to do this is to
apply the logical compactness theorem for the theory of types ([Henkin 1950]),
as in the book [Robinson 1970]. Another method, which we will adopt here,
is the bounded ultrapower.

Our method here will have two stages. First, we build a bounded ultrapower
of the superstructure V (R). This is a generalization of the ultrapower of the
real number system R given in Section 1G. Then we use a method known
as the Mostowski collapse to map this ultrapower into a new superstructure
V (R∗).

The notion of a free ultrafilter over a set I was given in Definition 1.41.
Theorem 1.42 shows that there exists a free ultrafilter over every infinite set.
Hereafter we let U be a free ultrafilter over N.

Definition 15.17. A countable sequence a = 〈a0, a1, a2, . . . 〉 of elements of
V (R) is said to be bounded in V (R) if there is a fixed n ∈ N such that each
ai belongs to Vn(R).
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We will build the bounded ultrapower of V (R) modulo U . The elements
of the bounded ultrapower are going to be equivalence classes of bounded
sequences in V (R), and the equivalence relation is determined by U .

Definition 15.18. Two bounded sequences a, b in V (R) are said to be U-
equivalent, in symbols a =U b, if

{n : an = bn} ∈ U.

Lemma 15.19. The relation =U is an equivalence relation on the set of
bounded sequences in V (R).

Proof. =U is obviously reflexive and symmetric. We show that =U is
transitive. Assume a =U b and b =U c. Let

X = {n : an = bn}, Y = {n : bn = cn}, Z = {n : an = cn}.
Then X ∈ U and Y ∈ U , so X ∩Y ∈ U . But X ∩Y ⊆ Z, so Z ∈ U , and hence
a =U c. a

Definition 15.20. For each a be a bounded sequence in V (R), we define
aU to be the U -equivalence class of a,

aU = {b : a =U b}.
The bounded ultrapower

∏
U V (R) of the set V (R) is the set∏

U

V (R) = {aU : a is bounded in V (R)}.

The natural embedding of V (R) into
∏
U V (R) is the mapping

i : V (R)→
∏
U

V (R)

defined by
i(x) = 〈x, x, x, . . . 〉U

for each x ∈ V (R). That is, i(x) = x if x ∈ R, and i(x) is the U -equivalence
class of the constant sequence 〈x, x, x, . . . 〉 otherwise.

The U-membership relation ∈U on
∏
U V (R) is defined by

aU ∈U bU iff {n : an ∈ bn} ∈ U.

Lemma 15.21. The relation aU ∈U bU depends only on the equivalence
classes aU , bU . That is, if a =U a′ and b =U b′ then

{n : an ∈ bn} ∈ U iff {n : a′n ∈ b′n} ∈ U.

Proof. Suppose {n : an ∈ bn} ∈ U . Then

{n : a′n ∈ b′n} ⊇ {n : an ∈ bn} ∩ {n : an = a′n} ∩ {n : bn = b′n}.
The right side belongs to U , so the left side belongs to U , and hence
a′ ∈U b′. a

Lemma 15.22. The natural embedding i : V (R)→
∏
U V (R) is one to one.
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Proof. If x 6= y then 〈x, x, x, . . . 〉 and 〈y, y, y, . . . 〉 are never equal, and
∅ /∈ U , so i(x) 6= i(y). a

Definition 15.23. The ultrapower
∏
U R of R modulo U is the set∏

U

R = {bU : b maps N into R}.

In Section 1G we defined
∏
U R in a slightly different way, replacing the

equivalence class of a constant sequence 〈r, r, . . . 〉 by r itself to make
∏
U R

an extension of R. This time we postpone that replacement to the next step,
when we form the set R∗ of hyperreal numbers.

Observe that the following conditions are equivalent:

aU ∈
∏
U

R,

{n : bn ∈ R} = N for some b =U a,

{n : an ∈ R} ∈ U,
aU ∈U i(R).

Lemma 15.24. The set {i(r) : r ∈ R} is a proper subset of
∏
U R.

Proof. R is a subset of
∏
U R because i(r) = 〈r, r, . . . 〉U ∈

∏
U R for each

r ∈ R. Let a be a one to one mapping of N into R. Then aU ∈
∏
U R. However,

for each r ∈ R, the set {n : an = r} has at most one element and hence is not
in U , so aU 6= i(r). a

Lemma 15.25. Suppose aU , bU ∈
∏
U V (R) \

∏
U R and aU 6= bU . Then

{cU : cU ∈U aU} 6= {cU : cU ∈U bU}.

Proof. The intersection of the two sets {n : an ⊆ bn}, {n : bn ⊆ an} does
not belong to U , because their intersection {n : an = bn} does not belong to
U . Therefore one of these sets does not belong to U , say

{n : an ⊆ bn} /∈ U.
Then its complement X does belong to U ,

X = {n : an \ bn 6= ∅} ∈ U.
For each n ∈ X choose cn ∈ an \ bn, and for n ∈ N \X choose cn = 0. Then
cU ∈U aU but not cU ∈U bU . a

We have defined the bounded ultrapower and proved some basic lemmas.
We now turn to the second stage, the Mostowski collapse.

We begin at the bottom level by forming the set R∗ of hyperreal numbers.
As in Section 1G, the idea is to start with

∏
U R and replace i(r) by r itself

for each real r. But this time, we want to use R∗ as the set of atoms of
a superstructure V (R∗), so we must also make sure that no element of R∗
contains any elements of V (R∗).
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Lemma 15.26. There is a set R∗ and a function j0 such that:
(i) j0 maps

∏
U R one to one onto R∗,

(ii) j0(i(r)) = r for each r ∈ R, and hence R ⊆ R∗,
(iii) ∅ /∈ R∗ and no element of R∗ contains any elements of V (R∗).

Proof. There are many ways to do this. One way is to take a set λ of
cardinality greater than V (R) and define

j0(aU ) =

{
r if r ∈ R and aU = i(r),

aU × {λ} otherwise.

a

Hereafter we let R∗ and j0 be as in Lemma 15.26.

Theorem 15.27. There is a unique one to one mapping

j :
∏
U

V (R)→ V (R∗),

called the Mostowski collapse of
∏
U V (R), such that:

(i) j(x) = j0(x) for x ∈
∏
U R.

(ii) j(aU ) = {j(bU ) : bU ∈U aU} for all aU ∈
∏
U V (R) \

∏
U R.

Proof. For each k ∈ N we consider the ultrapower of the set Vk(R), which
is defined by ∏

U

Vk(R) = {aU : a maps N into Vk(R)}.

Then ∏
U

V (R) =

∞⋃
k=0

∏
U

Vk(R),∏
U

R =
∏
U

V0(R) ⊆
∏
U

V1(R) ⊆
∏
U

V2(R) ⊆ · · · .

We define j restricted to
∏
U Vk(R) by induction on k. For k = 0, j restricted

to
∏
U V0(R) is the mapping j0 from Lemma 15.26. Suppose we already have

defined j restricted to
∏
U Vk(R). For aU ∈

∏
U Vk+1(R) \

∏
U Vk(R), define

j(aU ) = {j(bU ) : bU ∈U aU}.

This definition is unambiguous because by Lemma 15.5, whenever bU ∈U aU
we have

{n : bn ∈ Vk(R)} ⊇ {n : bn ∈ an} ∈ U,
so bU ∈

∏
U Vk(R). Conditions (i) and (ii) hold by definition. j is one to one

by Lemma 15.25. To show that there is at most one function satisfying (i) and
(ii), one proves by induction on k that the restriction of j to

∏
U Vk(R) is the

only function with properties (i) and (ii). a
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Definition 15.28. The embedding ∗ : V (R) → V (R∗) is the composition
of the natural embedding i and the Mostowski collapse j, that is, for a ∈
V (R), a∗ = j(i(a)).

∏
U V (R) V (R∗)

V (R)@
@@I

�
���

-

i ∗

j

Lemma 15.29. The mapping ∗ : V (R)→ V (R∗) built from a bounded ultra-
power

∏
U V (R) is a superstructure embedding.

Proof. Since i and j are one to one, their composition ∗ is one to one. By
Lemmas 15.24 and 15.26, R is a proper subset of R∗ and r∗ = r for each r ∈ R.
Taking R as an element of V (R), we have

j(i(R)) = j(〈R,R, . . . 〉U ) =

{
j(aU ) : aU ∈

∏
U

R

}
= R∗.

Finally, for x, y ∈ V (R),

x ∈ y iff i(x) ∈U i(y) iff j(i(x)) ∈ j(i(y)) iff x∗ ∈ y∗.

a

The following theorem of  Loś will show that Leibniz’ Principle holds for this
superstructure embedding.

Theorem 15.30. ( Loś’ Theorem) Given a bounded ultrapower
∏
U V (R),

let ϕ(v1, . . . , vn) be a bounded formula with no constants and let a1U , . . . , a
n
U ∈∏

U V (R). Then

ϕ(j(a1U ), . . . , j(anU )) is true

if and only if

{k ∈ N : ϕ(a1(k), . . . , an(k))} ∈ U.

Proof. We use induction on the complexity of formulas. The theorem
holds for atomic formulas by the definition of aU = bU and aU ∈U bU . For
the induction steps it suffices to assume the theorem for ϕ(v1, . . . , vn) and
ψ(v1, . . . , vn) and prove the theorem for ¬ϕ, ϕ ∧ ψ, and (∃v1 ∈ v2)ϕ.

For ¬ϕ we observe that the following are equivalent.

¬ϕ∗(j(a1U ), . . . , j(anU ))

{k ∈ N : ϕ(a1(k), . . . , an(k))} /∈ U
{k ∈ N : ¬ϕ(a1(k), . . . , an(k))} ∈ U
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For ϕ ∧ ψ we use the following equivalences.

(ϕ ∧ ψ)∗(j(a1U ), . . . , j(anU ))

ϕ∗(j(a1U ), . . . , j(anU ))∧ψ
∗(j(a1U ), . . . , j(anU ))

{k ∈ N : ϕ(a1(k), . . . , an(k))} ∈ U and {k ∈ N : ψ1(a(k), . . . , an(k))} ∈ U
{k ∈ N : ϕ(a1(k), . . . , an(k))} ∩ {k ∈ N : ϕ(a1(k), . . . , an(k))} ∈ U
{k ∈ N : (ϕ ∧ ψ)(a1(k), . . . , an(k))} ∈ U.

The theorem for (∃v1 ∈ v2)ϕ again follows from a sequence of equivalent
statements.

(∃v1 ∈ j(a2U ))ϕ∗(v1, j(a2U ), . . . , j(anU ))

For some a1U ∈U a2U , ϕ
∗(j(a1U ), . . . , j(anU ))

{k ∈ N : For some a1(k) ∈ a2(k), ϕ(a1(k), . . . , an(k))} ∈ U
{k ∈ N : (∃v1 ∈ a2(k))ϕ(v1, a2(k), . . . , an(k))} ∈ U.

a

Theorem 15.31. There exists a nonstandard universe. In fact, for each
free ultrafilter U over N, the superstructure embedding ∗ : V (R)→ V (R∗) built
by the bounded ultrapower modulo U is a nonstandard universe.

Proof. By Theorem 1.42 there exists a free ultrafilter U over N. For a real
bounded sentence ψ,  Loś’ Theorem 15.30 shows that ψ∗ is true if and only if
{k ∈ N : ψ is true} ∈ U . Since N ∈ U , this is equivalent to the truth of ψ.
Hence Leibniz’ Principle holds for ∗ : V (R)→ V (R∗). a

15E. Saturation and Uniqueness

By Theorem 1.38, the field of real numbers is, up to isomorphism, the unique
complete ordered field. Furthermore, there is a definable complete ordered
field.

In this section we present the analogous results for hyperreal number systems
and for nonstandard universes. The theorems in this section use some fairly
advanced methods from model theory and are stated without proof.

The hyperreal number system (∗,R,R∗) is not uniquely characterized by
Axioms A–E, even up to isomorphism. This lack of uniqueness does not mat-
ter much in practice, but can be unsettling. In this section we remedy the
situation by introducing one more axiom, the Saturation Axiom, which is im-
portant in applications beyond calculus and which does give uniqueness up
to isomorphism. Saturation is different from completeness but has a similar
appeal.
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The most natural formulation of the Saturation Axiom requires the existence
of an uncountable inaccessible cardinal. The default foundation for mathemat-
ics is usually taken to be the system ZFC, Zermelo-Fraenkel set theory plus the
Axiom of Choice. The Axiom of Inaccessibility in set theory, which says that
there are uncountable inaccessible cardinals, cannot be proved in ZFC (if ZFC
is consistent). But the justification of the axioms of ZFC, based on the idea of
a cumulative hierarchy of sets, also justifies the Axiom of Inaccessibility. For
this reason, it is considered acceptable to add the Axiom of Inaccessibility to
ZFC when convenient.

We now introduce the notion of an inaccessible cardinal and state the Axiom
of Inaccessibility in set theory. We will then introduce the Saturation Axiom
for hyperreal numbers, and an analogous property for nonstandard universes.

Definition 15.32. A cardinal number κ is said to be inaccessible if:
(i) For any set x of cardinality less than κ, the power set P(x) has cardinality

less than κ.
(ii) For any set of sets X = {xi : i ∈ I} such that I and each xi has cardi-

nality less than κ, the union
⋃
i∈I xi has cardinality less than κ.

The Axiom of Inaccessibility in set theory is the axiom that there exists
an uncountable inaccessible cardinal.

The first infinite cardinal ℵ0 is inaccessible. In ZFC, the axiom of infinity
gives the existence of ℵ0. The Axiom of Inaccessibility is the simplest example
of a strong axiom of infinity, and is a common addition to the axioms of ZFC.

We now state the Saturation Axiom for a hyperreal number system (∗,R,R∗).

Saturation Axiom
Let S be a set of equations and inequalities involving real functions, hyperreal

constants, and variables, such that S has smaller cardinality than R∗. If every
finite subset of S has a hyperreal solution, then S has a hyperreal solution.

To state the uniqueness theorem, we need the notion of an isomorphism
between two hyperreal number systems.

Definition 15.33. Let (∗,R,R∗) and (•,R,R•) be two hyperreal number
systems with the same real part R. An isomorphism between them is a map-
ping h : R∗ → R• such that:

(i) h(r) = r for each r ∈ R,
(ii) h is an ordered field isomorphism from R∗ onto R•,
(iii) For each real function f of n variables and x1, . . . , xn ∈ R∗,

f•(hx1, . . . , hxn) = h(f∗(x1, . . . , xn)).

Two hyperreal number systems with the same real part R are said to be
isomorphic if there is an isomorphism between them.
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Theorem 15.34. Assume the Axiom of Inaccessibility. There for each com-
plete ordered field R there is up to isomorphism a unique structure (∗,R,R∗)
which satisfies Axioms A–E and the Saturation Axiom, such that the cardinal-
ity of R∗ is the first uncountable inaccessible cardinal.

One might ask whether there exist structures in cardinalities other than the
first uncountable inaccessible cardinal which satisfy Axioms A–E and the Sat-
uration Axiom. The set theory ZFC plus Axiom of Inaccessibility is not strong
enough to decide this question, which depends on the behavior of cardinal ex-
ponents. However, the analogue of Theorem 15.34 can be shown to hold for
every uncountable inaccessible cardinal. If the generalized continuum hypoth-
esis never holds, i.e. κ+ < 2κ for all infinite cardinals κ, then such structures
exist only in uncountable inaccessible cardinals. So it is natural to require the
size of the hyperreal structure to be the first uncountable inaccessible cardinal.

There is a similar uniqueness theorem for nonstandard universes.

Definition 15.35. A nonstandard universe ∗ : V (R)→ V (R∗) is said to be
saturated if for every set X of internal sets such that the cardinality of X
is less than the cardinality of R∗, if every finite subset of X has nonempty
intersection then X has nonempty intersection.

We say that ∗ : V (R)→ V (R∗) has the inaccessibility property if both R∗
and the set of all internal sets have cardinality equal to the first uncountable
inaccessible cardinal.

Definition 15.36. Let ∗ : V (R) → V (R∗) and • : V (R) → V (R•) be two
nonstandard universes with the same real part R. An isomorphism between
them is a mapping h : V (R∗)→ V (R•) such that:

(i) h(r) = r for each r ∈ R,
(ii) h maps R∗ one to one onto R•,
(iii) For each X ∈ V (R∗) \ R∗,

h(X) = {h(u) : u ∈ X}.
(iv) For each A ∈ V (R), h(A∗) = A•.
Two nonstandard universes with the same real part R are said to be iso-

morphic if there is an isomorphism between them.

Here is an easy lemma.

Lemma 15.37. If h is an isomorphism between two nonstandard universes
∗ : V (R)→ V (R∗) and • : V (R)→ V (R•), then h(A) = A for each A ∈ V (R),
h maps V (R∗) one to one onto V (R•), and h is an extension of an isomorphism
between the elementary parts of ∗ : V (R)→ V (R∗) and • : V (R)→ V (R•).

We can now state a uniqueness theorem for nonstandard universes.

Theorem 15.38. Assume the Axiom of Inaccessibility. Then for each com-
plete ordered field R there is up to isomorphism a unique nonstandard universe
∗ : V (R)→ V (R∗) which is saturated and has the inacessibility property.
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Theorems 15.34 and 15.38 have analogues in ordinary ZFC set theory, with-
out the Axiom of Inaccessibility. However, these results replace the notion of a
saturated structure with a more complicated notion, called a special structure.
Here we have chosen to assume the Axiom of Inaccessibility in order to get a
more natural uniqueness result.

One can also prove a result like Theorem 15.34 but where R∗ is a proper
class. This approach would require an extension of ZFC with proper classes,
and a corresponding result for nonstandard universes would need a notion of
superstructure over a proper class.

In Section 1G we presented the result of Kanovei and Shelah [KS 2004],
which gives a definable hyperreal number system (∗,R,R∗) that satisfies Ax-
ioms A–E. This was done with an iterated ultrapower. One can also build
definable structures in Theorems 15.34 and 15.38.

In the set theory ZFC plus the Axiom of Inaccessibility, we say that a set
X is definable by a first order formula θ(v) if one can prove that X is the
unique set such that θ(X) holds. The following two theorems are implicit in
the paper of Kanovei and Shelah, and are proved with an iterated ultrapower
which is similar to but more elaborate than the one in Section 1G .

Theorem 15.39. Assume the Axiom of Inaccessibility. There is a definable
hyperreal number system (∗,R,R∗) which satisfies Axioms A–E and the Satura-
tion Axiom, such that the cardinality of R∗ is the first uncountable inaccessible
cardinal.

Theorem 15.40. Assume the Axiom of Inaccessibility. There is a defin-
able nonstandard universe ∗ : V (R) → V (R∗) which is saturated and has the
inacessibility property.

The superstructure method given here is not the only approach to infinites-
imal analysis. Other approaches extend the language of ZFC by adding new
primitive symbols to the language in some way. One of these, Nelson’s Internal
Set Theory, has been used extensively, and several extensions of this theory
have been studied (see the article of Hrbacek in [CNR 2006] for a survey).

The superstructure method has been the most common approach in the
literature, because it stays close to the traditional classical foundations of
mathematics, working within ZFC, or ZFC with the Axiom of Inaccessibility.
Theorems 15.38 and 15.40 strengthen this point by showing that one can work
with a nonstandard universe which is definable and is uniquely characterized
up to isomorphism by Leibniz’ Principle, saturation, and the inaccessibility
property.
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