
–— Solving Bivariate Polynomial Systems on a GPU —
Marc Moreno Maza and Wei Pan

Overview

We present a CUDA implementation of dense multivariate polynomial
arithmetic based on Fast Fourier Transforms (FFT) over finite fields.
The motivation of our work is to support polynomial system solvers
based on the notion of a regular chains [3] where the core algorithms [1]
rely on the theory of polynomial subresultants.

In [4], we have shown that the dominant cost of those algorithms can
be essentially reduced to that of subresultant chain computations.

Methodology

Following an idea proposed by Collins in [2], we compute subresultant
chains by evaluation-interpolation. Moreover, we rely on FFT tech-
niques: once the input polynomials are sampled on a so-called FFT
grid, we employ Brown’s Algorithm to compute the polynomial subre-
sultants at each sample.

All these computations are performed on the device for which we have
designed two specific implementations of Brown’s Algorithm. The first
one called fine grained requires that every sampled subresultant chain
has the same degree sequence of non-zero subresultants. This approach
creates more parallelism but fails if its assumption does not hold. When
this happens a coarse grained approach does the job without any as-
sumption but with reduced performance.

The sampled subresultant chains can be exploited by a high-level algo-
rithm running on the host. A simple case is that of resultant computa-
tion. A more advanced one is that of the bivariate solver algorithm of [5].

For efficiency reasons (locality, parallelism, . . . ) the case of n-variate
polynomials with n > 3 is reduced to the bivariate case via Kronecker’s
substitution. Another feature of our implementation is the use of ran-
dom translations of the form φa : x 7−→ x + a (applied to the polyno-
mials F ′, G′

∈ Zp[x, y], in order to find a valid FFT grid, that is, a FFT
grid at every point of which lc(F ′, y) and lc(G′, y) do not vanish.

Acknowledgements

Experimental results

The table below lists our experimental results for computing resultants
for trivariate random dense polynomials in x, y, z.

The first column shows the common partial degree d in x, y and z.
The second one, labelled by t0, is the timing for GPU supported code,
which includes host-device data transfers The third column, labelled by
t1, shows our pure CPU serial C code in the modpn library [5].

d t0 t1 t1/t0
10 0.25 0.98 3.9

11 0.24 1.10 4.6

12 0.30 4.96 16.5

13 0.31 5.52 17.8

14 0.32 6.07 19.0

15 0.78 8.95 11.5

16 0.65 31.65 48.7

17 0.66 34.55 52.3

18 3.46 47.54 13.7

19 0.73 51.04 69.9

20 0.75 43.12 57.5

Note that all but d = 15 and d = 18 employ the fine-grained version
of our implementations of Brown’s Algorithm. When the coarse-grained
method is forced to be used, the speedup it achieves drops significantly.
These data were obtained with an NVIDIA card GTX 285.

For our bivariate system solving benchmarks, the input polynomials are
dense with coefficients modulo p = 469762049. The figure below shows
the comparison of the running time with and without GPU acceleration.
The largest speedup we achieve is approximately 7.5, since univariate
polynomials GCDs are still computed on the host! These data were
obtained with an NVIDIA card Tesla 2050.

References

[1] C. Chen and M. Moreno Maza. Algorithms for computing triangular decompositions of polynomial systems. In proceedings

of ISSAC 2011. ACM Press, 2011.

[2] G.E. Collins. The calculation of multivariate polynomial resultants. Journal of the ACM, 18(4):515–532, 1971.

[3] M. Kalkbrener. A generalized Euclidean algorithm for computing triangular representations of algebraic varieties. J.

Symb. Comp., 15:143–167, 1993.

[4] X. Li, M. Moreno Maza, and W. Pan. Computations modulo regular chains. In Proc. ISSAC’09, pages 239–246, New
York, NY, USA, 2009. ACM Press.

[5] X. Li, M. Moreno Maza, R. Rasheed, and É. Schost. The modpn library: Bringing fast polynomial arithmetic into maple,
2008. To appear in the J. of Symbolic Computation.


