Generating Loop Invariants via Polynomial Interpolation

Marc Moreno Maza Joint work with Rong Xiao

University of Western Ontario, Canada

ASCM 2012 - Beijing Key Laboratory of Mathematics Mechanization October 27, 2012

- Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
- 2 Invariant ideal of P-solvable recurrences
 - ullet Degree estimates for solutions of P-solvable recurrences
 - P-solvable recurrences
 - Degree estimates for solutions of P-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
- 3 Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Maple Package: ProgramAnalysis

- Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
 - Invariant ideal of P-solvable recurrences
 - Degree estimates for solutions of P-solvable recurrences
 - P-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
- 3 Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Maple Package: ProgramAnalysis

Loop model under study

```
while C_0 do
    if C_1
    then
          X := A_1(X);
    elif C_2
    then
          X := A_2(X):
    . . .
    elif C_m
    then
          X := A_m(X);
    end if
end while
```

- Loop variables: $X = x_1, \dots, x_s$, rational value scalar
- ② Conditions: each C_i is a quantifier free formula in X over \mathbb{Q} .
- $\textbf{ Assignments: } A_i \in \mathbb{Q}[X] \text{ inducing a polynomial map } M_i : \mathbb{R}^s \mapsto \mathbb{R}^s$
- Initial condition: X-values defined by a semi-algebraic system.

Basic notions

$$x := a;$$

 $y := b;$
while $x < 10$ do
 $x := x + y^5;$
 $y := y + 1;$

end do:

- x, y, a, b are loop variables since they are updated in the loop or used to update other loop variables.
- The set of the initial values of the loop is

$$\{(x, y, a, b) \mid x = a, y = b, (a, b) \in \mathbb{R}^2\}.$$

• The loop trajectory of the above loop starting at (x,y,a,b)=(1,0,1,0) is the sequence:

$$(1,0,1,0),(1,1,1,0),(2,2,1,0),(34,3,1,0).\\$$

- The reachable set R(L) of a loop L consists of all tuples of all trajectories of L.
- If x_1, \ldots, x_s are the loop variables of L, then a polynomial $P \in \mathbb{Q}[x_1, \ldots, x_s]$ is a (plain) loop invariant of L whenever $R(L) \subset V(P)$ holds.

More notions

- The inductive reachable set $R_{\mathrm{ind}}(L)$ of a loop L is the reachable set of the loop obtained from L by replacing the guard condition with true.
- The absolute reachable set $R_{\rm abs}(L)$ of a loop L is the reachable set of the loop obtained from L by replacing the guard condition with true, ignoring the branch conditions and, at each iteration executing a branch action selected randomly.
- We clearly have

$$R(L) \subseteq R_{\text{ind}} \subseteq R_{\text{abs}}$$

More notions

- The inductive reachable set $R_{\text{ind}}(L)$ of a loop L is the reachable set of the loop obtained from L by replacing the guard condition with true.
- The absolute reachable set $R_{\rm abs}(L)$ of a loop L is the reachable set of the loop obtained from L by replacing the guard condition with true, ignoring the branch conditions and, at each iteration executing a branch action selected randomly.
- We clearly have

$$R(L) \subseteq R_{\text{ind}} \subseteq R_{\text{abs}}$$

- If x_1, \ldots, x_s are the loop variables of L, then a polynomial $P \in \mathbb{Q}[x_1, \ldots, x_s]$ is an inductive (resp. absolute) loop invariant of L whenever $R_{\mathrm{ind}}(L) \subseteq V(P)$ (resp. $R_{\mathrm{abs}}(L) \subseteq V(P)$) holds.
- We denote by $\mathcal{I}(L)$ (resp. $\mathcal{I}_{\mathrm{ind}}(L), \mathcal{I}_{\mathrm{abs}}(L)$) the set of the polynomials that are plain (resp. inductive, absolute) loop invariants of L.
- These are radical ideals such that

$$\mathcal{I}_{abs}(L) \subseteq \mathcal{I}_{ind}(L) \subseteq \mathcal{I}(L)$$

Absolute invariants might be trivial

```
y_1 := 0:
y_2 := 0:
y_3 := x_1;
while y_3 \neq 0 do
    if y_2 + 1 = x_2
     then
          y_1 := y_1 + 1:
          y_2 := 0;
          y_3 := y_3 - 1;
     else
          y_2 := y_2 + 1;
          y_3 := y_3 - 1;
     end if
end do
```

- Consider $y_1x_2 + y_2 + y_3 = x_1$ (*E*).
- If $x_1 = 0$ then the equation (E) holds initially and the loop is not entered.
- If $x_1 \neq 0$ and $x_2 = 1$ then (E) and $y_2 + 1 = x_2$ hold before each iteration.
- If $x_1 \neq 0$ and $x_2 \neq 1$ then the second action preserves (E).
- Therefore $y_1x_2 + y_2 + y_3 x_1 \in \mathcal{I}(L)$ and $y_1x_2 + y_2 + y_3 x_1 \in \mathcal{I}_{\mathrm{ind}}(L)$ both hold.

Absolute invariants might be trivial

```
y_1 := 0:
y_2 := 0:
y_3 := x_1;
while y_3 \neq 0 do
    if y_2 + 1 = x_2
     then
          y_1 := y_1 + 1;
          y_2 := 0;
          y_3 := y_3 - 1;
     else
          y_2 := y_2 + 1;
          y_3 := y_3 - 1;
     end if
end do
```

- Consider $y_1x_2 + y_2 + y_3 = x_1$ (*E*).
- If $x_1 = 0$ then the equation (E) holds initially and the loop is not entered.
- If $x_1 \neq 0$ and $x_2 = 1$ then (E) and $y_2 + 1 = x_2$ hold before each iteration.
- If $x_1 \neq 0$ and $x_2 \neq 1$ then the second action preserves (E).
- Therefore $y_1x_2 + y_2 + y_3 x_1 \in \mathcal{I}(L)$ and $y_1x_2 + y_2 + y_3 x_1 \in \mathcal{I}_{ind}(L)$ both hold.
- If conditions are ignored, $(x_1, x_2) = (0, 1)$ and execute the first branch once, then we obtain $y_1x_2 = 1$ and $y_2 + y_3 = x_1$.
- ullet Then (E) is violated and we have

$$\mathcal{I}_{abs}(L) = \langle 0 \rangle.$$

Inductive invariants might not be plain invariants

$$\begin{aligned} x &:= 1; \\ \text{while } x \neq 1 \text{ do} \\ x &:= x + 1; \\ \text{end do} \end{aligned}$$

- \bullet x-1=0 is an invariant but not an inductive of the following loop.
- ullet Thus $\mathcal{I}_{\mathrm{ind}}(L)$ is strictly smaller than $\mathcal{I}(L)$

Computing inductive invariants via elimination ideals

y := 1;x := 0:

while true do z := x:

x := y;

y := z + y;

end while

• Solving for (x, y) as a 2-variable recurrence x(n+1) = y(n), y(n+1) =

 $x(n) = \frac{(\frac{\sqrt{5}+1}{2})^n}{\sqrt{5}} - \frac{(\frac{-\sqrt{5}+1}{2})^n}{\sqrt{5}},$

$$y(n) = \frac{\sqrt{5}+1}{2} \frac{(\frac{\sqrt{5}+1}{2})^n}{\sqrt{5}} - \frac{-\sqrt{5}+1}{2} \frac{(\frac{-\sqrt{5}+1}{2})^n}{\sqrt{5}}.$$

x(n) + y(n), with x(0) = 0, y(0) = 1.

- Let $u = (\frac{\sqrt{5}+1}{2})^n$, $v = (\frac{-\sqrt{5}+1}{2})^n$, $a = \sqrt{5}$
- Taking the dependencies $u^2 v^2 = 1, a^2 = 5$ into account, we want

$$\langle x - \frac{au}{5} + \frac{av}{5}, y - a\frac{a+1}{2}\frac{u}{5} + a\frac{-a+1}{2}\frac{v}{5}, a^2 - 5, u^2v^2 - 1 \rangle \cap \mathbb{Q}[x, y],$$

which is

$$(1-y^4+2xy^3+x^2y^2-2x^3y-x^4).$$

- $\bullet \ \ {\sf Computing} \ {\cal I}_{\rm ind}(L) \ \ {\sf is \ a \ \ better \ approximation \ of} \ {\cal I}(L) \ \ {\sf than} \ {\cal I}_{\rm abs}(L).$
- ullet The loop invariant generation methods of (E. Rodriguez-Carbonell & D. Kapur, ISSAC04) and (L. Kovács, TACAS08) focus on $\mathcal{I}_{\mathrm{abs}}(L)$.

- Computing $\mathcal{I}_{\mathrm{ind}}(L)$ is a better approximation of $\mathcal{I}(L)$ than $\mathcal{I}_{\mathrm{abs}}(L)$.
- The loop invariant generation methods of (E. Rodriguez-Carbonell & D. Kapur, ISSAC04) and (L. Kovács, TACAS08) focus on $\mathcal{I}_{abs}(L)$.
- In this talk, we target $\mathcal{I}_{\mathrm{ind}}(L)$ (easier to compute than $\mathcal{I}(L)$) and call it the Invariant Ideal of the loop L. Same goal as in (Bin Wu, Liyong Shen, Min Wu, Zhengfeng Yang & Zhenbing Zeng, 2011).

- Computing $\mathcal{I}_{\mathrm{ind}}(L)$ is a better approximation of $\mathcal{I}(L)$ than $\mathcal{I}_{\mathrm{abs}}(L)$.
- The loop invariant generation methods of (E. Rodriguez-Carbonell & D. Kapur, ISSAC04) and (L. Kovács, TACAS08) focus on $\mathcal{I}_{abs}(L)$.
- In this talk, we target $\mathcal{I}_{\mathrm{ind}}(L)$ (easier to compute than $\mathcal{I}(L)$) and call it the Invariant Ideal of the loop L. Same goal as in (Bin Wu, Liyong Shen, Min Wu, Zhengfeng Yang & Zhenbing Zeng, 2011).
- We also want to avoid computing closed forms of loop variables, while
 - not making any assumptions on the shape of the polynomial invariants,
 - and avoiding an intensive use of expensive algebraic computations other than linear algebra, for which costs are predictable.

- Computing $\mathcal{I}_{\mathrm{ind}}(L)$ is a better approximation of $\mathcal{I}(L)$ than $\mathcal{I}_{\mathrm{abs}}(L)$.
- The loop invariant generation methods of (E. Rodriguez-Carbonell & D. Kapur, ISSAC04) and (L. Kovács, TACAS08) focus on $\mathcal{I}_{abs}(L)$.
- In this talk, we target $\mathcal{I}_{\mathrm{ind}}(L)$ (easier to compute than $\mathcal{I}(L)$) and call it the Invariant Ideal of the loop L. Same goal as in (Bin Wu, Liyong Shen, Min Wu, Zhengfeng Yang & Zhenbing Zeng, 2011).
- We also want to avoid computing closed forms of loop variables, while
 - not making any assumptions on the shape of the polynomial invariants,
 - and avoiding an intensive use of expensive algebraic computations other than linear algebra, for which costs are predictable.
- In (Sankaranarayanan, Sipma & Manna, SIGPLAN 2004) (Y. Chen, B. Xia, L. Yang, & N. Zhan, FMHRTS 2007) (D. Kapur Deduction and Applications 2005) template polynomials are used. Moreover, the latter two use real QE.

- Computing $\mathcal{I}_{\mathrm{ind}}(L)$ is a better approximation of $\mathcal{I}(L)$ than $\mathcal{I}_{\mathrm{abs}}(L)$.
- The loop invariant generation methods of (E. Rodriguez-Carbonell & D. Kapur, ISSAC04) and (L. Kovács, TACAS08) focus on $\mathcal{I}_{abs}(L)$.
- In this talk, we target $\mathcal{I}_{\mathrm{ind}}(L)$ (easier to compute than $\mathcal{I}(L)$) and call it the Invariant Ideal of the loop L. Same goal as in (Bin Wu, Liyong Shen, Min Wu, Zhengfeng Yang & Zhenbing Zeng, 2011).
- We also want to avoid computing closed forms of loop variables, while
 - not making any assumptions on the shape of the polynomial invariants,
 and avoiding an intensive use of expensive algebraic computations other than linear algebra, for which costs are predictable.
- In (Sankaranarayanan, Sipma & Manna, SIGPLAN 2004) (Y. Chen, B. Xia, L. Yang, & N. Zhan, FMHRTS 2007) (D. Kapur Deduction and Applications 2005) template polynomials are used. Moreover, the latter two use real QE.
- The "abstract interpretation" method (E. Rodriguez-Carbonell & D. Kapur, Science of Computer Programming 2007) does not use templates but uses of Gröbner bases heavily.

- Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
 - Invariant ideal of P-solvable recurrences
 - ullet Degree estimates for solutions of P-solvable recurrences
 - P-solvable recurrences
 - ullet Degree estimates for solutions of P-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
- 3 Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Maple Package: ProgramAnalysis

Poly-geometrical expression

Notations

Let $\alpha_1, \ldots, \alpha_k$ be k elements of $\overline{\mathbb{Q}}^* \setminus \{1\}$. Let n be a variable taking non-negative integer values. We regard $n, \alpha_1^n, \ldots, \alpha_k^n$ as independent variables and we call $\alpha_1^n, \ldots, \alpha_k^n$ n-exponential variables.

Definition

Any $f\in\overline{\mathbb{Q}}[n,\alpha_1^n,\ldots,\alpha_k^n]$ is called a poly-geometrical expression in n over $\overline{\mathbb{Q}}$ w.r.t. α_1,\ldots,α_k . For such an f, we denote by $f|_{n=i}$ the evaluation of f at i. For such f,g we write f=g whenever $f|_{n=i}=g|_{n=i}$ holds for all i.

Examples of poly-geometrical expressions

Example

The closed form $f:=\frac{(n+1)^2\,n^2}{4}$ of $\sum_{i=0}^n i^3$ is a poly-geometrical expression in n over $\overline{\mathbb{Q}}$ without n-exponential variables.

Example

The expression $g:=n^2\,2^{(n+1)}-n\,2^n\,3^{\frac{n}{2}}$ is a poly-geometrical in n over $\overline{\mathbb{Q}}$ w.r.t. $2,\sqrt{3}$.

Example

The sum $\sum_{i=1}^{n-1} i^k$ has n-1 terms while its closed form below

$$\sum_{i=1}^{k} {k \brace i} \frac{n^{i+1}}{i+1},$$

where ${k \brace i}$ the number of ways to partition k into i non-zero summands, has a fixed number of terms and thus is poly-geometrical in n over $\overline{\mathbb{Q}}.$

Multiplicative relation ideal: example

Definition

Let $A:=(\alpha_1,\ldots,\alpha_k)$ be a sequence of k elements of $\overline{\mathbb{Q}}$. Assume w.l.o.g. that for some ℓ , with $1\leq \ell\leq k$, we have $\alpha_1\neq 0,\ldots,\alpha_\ell\neq 0$, $\alpha_{\ell+1}=\cdots\alpha_k=0$. We associate each α_i with a "new" variable y_i . The binomial ideal $\mathrm{MRI}(A;y_1,\ldots,y_k)$ of $\mathbb{Q}[y_1,y_2,\ldots,y_k]$ generated by

$$\{\prod_{j\in\{1,\ldots,\ell\},\,v_j>0}y_j^{v_j}-\prod_{i\in\{1,\ldots,\ell\},\,v_i<0}y_i^{-v_i}\mid (v_1,\ldots,v_\ell)\in Z\},\,$$

and $\{y_{\ell+1},\ldots,y_k\}$, where Z is the multiplicative relation lattice.

Example

Consider A=(1/2,1/3,-1/6,0). The multiplicative relation lattice of (1/2,1/3,-1/6) is generated by (2,2,-2). Thus the MRI of A associated with y_1,y_2,y_3,y_4 is

$$\langle y_1^2 y_2^2 - y_3^2, y_4 \rangle$$
.

Degree estimates for x satisfying $x(n+1) = \lambda x(n) + h(n)$

Lemma

Let $\alpha_1, \ldots, \alpha_k \in \overline{\mathbb{Q}} \setminus \{0, 1\}$. Let $\lambda \in \overline{\mathbb{Q}} \setminus \{0\}$. Let $h(n) \in \overline{\mathbb{Q}}[n, \alpha_1^n, \ldots, \alpha_k^n]$. Consider the following single-variable recurrence relation R:

$$x(n+1) = \lambda x(n) + h(n).$$

Then, there exists $s(n) \in \overline{\mathbb{Q}}[n,\alpha_1^n,\dots,\alpha_k^n]$ such that we have

$$\deg(s(n), \alpha_i^n) \le \deg(h(n), \alpha_i^n)$$
 and $\deg(s(n), n) \le \deg(h(n), n) + 1$,

and such that

- if $\lambda = 1$ holds, then s(n) solves R,
- if $\lambda \neq 1$ holds, then there exists a constant c depending on x(0) (that is, the initial value of x) such that $c \lambda^n + s(n)$ solves R.

- 1 Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
- Invariant ideal of P-solvable recurrences
 - ullet Degree estimates for solutions of P-solvable recurrences
 - P-solvable recurrences
 - ullet Degree estimates for solutions of P-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
- 3 Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Maple Package: ProgramAnalysis

- Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
- Invariant ideal of P-solvable recurrences
 - Degree estimates for solutions of P-solvable recurrences
 - P-solvable recurrences
 - ullet Degree estimates for solutions of P-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
- 3 Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Maple Package: ProgramAnalysis

The multivariate case: setting

Let n_1, \ldots, n_k be positive integers and define $s := n_1 + \cdots + n_k$. Let M be a block-diagonal square matrix over \mathbb{Q} of order s, with shape:

Consider an s-variable recurrence relation R in x_1, x_2, \ldots, x_s , with shape:

$$\begin{pmatrix} x_1(n+1) \\ x_2(n+1) \\ \vdots \\ x_s(n+1) \end{pmatrix} = M \times \begin{pmatrix} x_1(n) \\ x_2(n) \\ \vdots \\ x_s(n) \end{pmatrix} + \begin{pmatrix} \mathbf{f}_{1n_1 \times 1} \\ \mathbf{f}_{2n_2 \times 1} \\ \vdots \\ \mathbf{f}_{kn_k \times 1} \end{pmatrix},$$

where \mathbf{f}_1 is a vector of length n_1 with coordinates in \mathbb{Q} and where \mathbf{f}_i is a tuple of length n_i with coordinates in the polynomial ring $\mathbb{Q}[x_1,\ldots,x_{n_1+\cdots+n_{i-1}}]$, for $i=2,\ldots,k$.

The multivariate case: definition

Setting (recall)

$$\begin{pmatrix} x_1(n+1) \\ x_2(n+1) \\ \vdots \\ x_s(n+1) \end{pmatrix} = M \times \begin{pmatrix} x_1(n) \\ x_2(n) \\ \vdots \\ x_s(n) \end{pmatrix} + \begin{pmatrix} \mathbf{f}_{1n_1 \times 1} \\ \mathbf{f}_{2n_2 \times 1} \\ \vdots \\ \mathbf{f}_{kn_k \times 1} \end{pmatrix},$$

where \mathbf{f}_1 is a vector over \mathbb{Q} of length n_1 and where \mathbf{f}_i is a tuple of length n_i with coordinates in $\mathbb{Q}[x_1,\ldots,x_{n_1+\cdots+n_{i-1}}]$, for $i=2,\ldots,k$.

Definition

Then, the recurrence relation R is called P-solvable over $\mathbb Q$ and the matrix M is called the coefficient matrix of R.

The notion of P-solvable recurrence is equivalent to that of *solvable mapping* in (E. Rodriguez-Carbonell & D. Kapur, ISSAC04) or that of *solvable loop* (L. Kovocs TACAS08) in the respective contexts.

- 1 Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
- Invariant ideal of P-solvable recurrences
 - ullet Degree estimates for solutions of P-solvable recurrences
 - P-solvable recurrences
 - ullet Degree estimates for solutions of P-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
- 3 Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Maple Package: ProgramAnalysis

Degree estimates for solutions of P-solvable recurrences: theorem

Assume M is in a Jordan normal form. Assume the eigenvalues $\lambda_1, \ldots, \lambda_s$ of M (counted with multiplicities) are different from 0, 1, with λ_i being the *i*-th diagonal element of M. Assume for each block j the total degree of any polynomial in f_i (for $i = 2 \cdots k$) is upper bounded by d_i . For each i, we denote by b(i) the block number of the index i, that is,

$$\sum_{j=1}^{b(i)-1} n_j < i \le \sum_{j=1}^{b(i)} n_j.$$

Let $D_1 := n_1$ and for all $j \in \{2, \dots, k\}$ let $D_j := d_j D_{j-1} + n_j$. Then, there exists a solution (y_1, y_2, \dots, y_s) for R of the following form:

$$y_i := c_i \lambda_i^n + g_i, \quad i = 1 \cdots s \quad \text{where}$$

- (a) c_i is a constant depending only on the initial value of the recurrence;
- (b) g_i is a poly-geometrical expression in n w.r.t. $\lambda_1, \ldots, \lambda_{i-1}$, such that $\deg(g_i) \leq D_{b(i)}$.

Degree estimates for solutions of P-solvable recurrences: example

Consider the recurrence:

$$\begin{pmatrix} x(n+1) \\ y(n+1) \\ z(n+1) \end{pmatrix} := \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} \times \begin{pmatrix} x(n) \\ y(n) \\ z(n) \end{pmatrix} + \begin{pmatrix} 0 \\ x(n)^2 \\ x(n)^3 \end{pmatrix}$$

Viewing the recurrence as two blocks (x) and (y,z), the degree upper bounds are

$$D_1 := n_1 = 1$$
 and $D_2 := d_2D_1 + n_2 = 3 \times 1 + 2$.

If we decouple the (y,z) block to the following two recurrences

$$y(n+1) = 3y(n) + x(n)^2$$
 and $z(n+1) = 3z(n) + x(n)^3$,

then we deduce that the degree of the poly-geometrical expression for y and z are upper bounded by 2 and 3 respectively.

- Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
- 2 Invariant ideal of P-solvable recurrences
 - Degree estimates for solutions of P-solvable recurrences
 - P-solvable recurrences
 - ullet Degree estimates for solutions of P-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
- 3 Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Maple Package: ProgramAnalysis

Degree estimates for the invariant ideal: theorem

- Let R be a P-solvable recurrence relation with variables $(x_1, x_2, \ldots, x_s).$
- Suppose R has a k-block configuration as $(n_1, 1), \ldots, (n_k, d_k)$.
- Let $D_1 := n_1$; and for all $j \in \{2, ..., k\}$, let $D_i := d_i D_{i-1} + n_i$.
- Let $A = \lambda_1, \lambda_2, \dots, \lambda_s$ be the eigenvalues (counted with multiplicities) of the coefficient matrix of R.
- Let \mathcal{M} be the multiplicative relation ideal of A associated with variables y_1, \ldots, y_k . Let $r := \dim(\mathcal{M})$.
- Let $\mathcal{I} \subset \mathbb{Q}[x_1, x_2, \dots, x_s]$ be the invariant ideal of R.

Then, we have

$$\deg(\mathcal{I}) \leq \deg(\mathcal{M}) D_k^{r+1}$$
.

Degree estimates for the invariant ideal: example

Consider again solving for (x, y) as a 2-variable recurrence

$$x(n+1) = y(n), y(n+1) = x(n) + y(n), \text{ with } x(0) = 0, y(0) = 1.$$

Recall that we obtained

$$x(n) = \frac{(\frac{\sqrt{5}+1}{2})^n}{\sqrt{5}} - \frac{(\frac{-\sqrt{5}+1}{2})^n}{\sqrt{5}},$$

$$y(n) = \frac{\sqrt{5}+1}{2} \frac{(\frac{\sqrt{5}+1}{2})^n}{\sqrt{5}} - \frac{-\sqrt{5}+1}{2} \frac{(\frac{-\sqrt{5}+1}{2})^n}{\sqrt{5}}.$$

Observe that $A:=\frac{-\sqrt{5}+1}{2},\frac{\sqrt{5}+1}{2}$ is weakly multiplicatively independent. The multiplicative relation ideal of A associated with variables u, v is generated by u^2v^2-1 and thus has degree 4 and dimension 1 in $\mathbb{Q}[u,v]$. Therefore, the previous theorem implies that the degree of invariant ideal bounded by 4×1^{1} . This is sharp since this ideal is

$$(1-y^4+2xy^3+x^2y^2-2x^3y-x^4).$$

- 1 Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
- Invariant ideal of P-solvable recurrences
 - Degree estimates for solutions of P-solvable recurrences
 - P-solvable recurrences
 - ullet Degree estimates for solutions of P-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
- 3 Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Maple Package: ProgramAnalysis

Dimension estimates for the invariant ideal: theorem

Theorem

Using the same notations as in the definition of P-solvable recurrences.

- Let $\lambda_1, \lambda_2, \dots, \lambda_s$ be the eigenvalues of M counted with multiplicities.
- Let \mathcal{M} be the multiplicative relation ideal of $\lambda_1, \lambda_2, \dots, \lambda_s$.
- Let r be the dimension of \mathcal{M} . Let \mathcal{I} be the invariant ideal of R.

Then, we have

$$\dim(\mathcal{I}) \leq r + 1.$$

Moreover, for generic initial values,

- we have $r \leq \dim(\mathcal{I})$,
- ② if 0 is not an eigenvalue of M and $\lambda_1, \lambda_2, \ldots, \lambda_s$ is weakly multiplicatively independent, then we have $r = \dim(\mathcal{I})$.

Corollaries

- If r+1 < s holds, then \mathcal{I} is not the zero ideal in $\mathbb{Q}[x_1, x_2, \dots, x_s]$.
- ② Assume that $x_1(0) := a_1, \dots, x_s(0) := a_s$ are independent indeterminates. If the eigenvalues of R are multiplicatively independent, then the inductive invariant ideal of the loop is the zero ideal in $\mathbb{Q}[a_1, \dots, a_s, x_1, x_2, \dots, x_s]$.

- Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
 - Invariant ideal of P-solvable recurrences
 - ullet Degree estimates for solutions of P-solvable recurrences
 - P-solvable recurrences
 - ullet Degree estimates for solutions of P-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
- 3 Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Maple Package: ProgramAnalysis

Loop model under study: recall

```
while C_0 do
    if C_1
    then
          X := A_1(X);
    elif C_2
    then
          X := A_2(X):
    . . .
    elif C_m
    then
          X := A_m(X);
    end if
end while
```

- Loop variables: $X = x_1, \dots, x_s$, rational value scalar
- ② Conditions: each C_i is a quantifier free formula in X over \mathbb{Q} .
- $\textbf{ Assignments: } A_i \in \mathbb{Q}[X] \text{ inducing a polynomial map } M_i : \mathbb{R}^s \mapsto \mathbb{R}^s$
- Initial condition: X-values defined by a semi-algebraic system.

A direct approach

Input

- (i) $M:=m_1,m_2,\ldots,m_c$ is a sequence of monomials in the loop variables X,
- $(ii) \ S := s_1, s_2, \dots, s_r$ is a set of r points on the inductive trajectory of the loop,
- $\left(iii\right)~E$ is a polynomial system defining the loop initial values,
- (iv) B is the transitions $(C_1, A_1), \ldots, (C_m, A_m)$ of the loop.

Algorithm

- lacksquare L := BuildLinSys(M, S)
- ${f 2}$ $N:={\tt LinSolve}({\tt L})$ is full row rank and generates the null space of L.
- \bullet $F := \emptyset$
- lacksquare For each row vector $\mathbf{v} \in N$ do

$$F := F \cup \{ \mathtt{GenPoly}(M, \mathbf{v}) \}$$

- **1** If $Z(E) \not\subset Z(F)$ then return FAIL
- **③** For each branch $(C_i, A_i) \in B$ do if $A_i(Z(F) \cap Z(C_i))$ ⊄ Z(F) then return FAIL
- \odot Return F, a list of polynomial equation invariants for the target loop.

- Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
 - Invariant ideal of P-solvable recurrences
 - ullet Degree estimates for solutions of P-solvable recurrences
 - P-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
- 3 Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Maple Package: ProgramAnalysis

A small-prime approach: algorithm

Algorithm

```
 \textbf{0} \ \ p := \texttt{MaxMachinePrime}(); \ L_p := \texttt{BuildLinSysModp}(M, S, p);
```

- $N_p := \mathtt{LinSolveModp}(\mathtt{L}_p,\mathtt{p})$
- **3** $d := \dim(N_p)$; $\mathbf{N} := (N_p)$; $\mathbf{P} := (p)$; **4** While p > 2 do
 - $\bullet \ \ \mathsf{If} \ d = 0 \ \mathsf{then} \ \mathsf{return} \ \mathsf{FAIL}$
 - N := RatRecon(N, P)

 - $\begin{array}{l} \textbf{0} \ \ p := \texttt{PrevPrime}(p); \ L_p := \texttt{BuildLinSysModp}(M,S,p); \\ N_p := \texttt{LinSolveModp}(\texttt{L}_{\texttt{p}},\texttt{p}) \end{array}$
 - o If $d > \dim(N_p)$ then $d := \dim(N_p)$; $\mathbf{N} := (N_p)$; $\mathbf{P} := (p)$
 - $@ \ \mathsf{else} \ \mathbf{N} := \mathtt{Append}(\mathbf{N}, N_p); \ \mathbf{P} := \mathtt{Append}(\mathbf{P}, p) \\$
- **1** If p=2 then return FAIL
- $F := \emptyset$
- For each row vector \mathbf{v} ∈ N do
 $F := F \, \cup \, \{\mathtt{GenPoly}(M, \mathbf{v})\}$
- \blacksquare If $Z(E) \not\subseteq Z(F)$ then return FAIL
- For each branch $(C_i, A_i) \in B$ do
- if $A_i(Z(F) \cap Z(C_i)) \not\subseteq Z(F)$ then return FAIL Return F, a list of polynomial equation invariants for the target loop.

A small-prime approach: complexity result

Proposition

Both algorithms run in singly exponential time w.r.t. number of loop variables.

Indeed

- \bullet the number of monomials of M is singly exponential w.r.t. number of loop variables.
- applying our criterion to certify the result can be reduced to an ideal membership problem, which is singly exponential w.r.t. number of loop variables.

A small-prime approach: example

Consider the following recurrence relation on (x, y, z):

$$\left(\begin{array}{c} x(n+1) \\ y(n+1) \\ z(n+1) \end{array} \right) \; = \; \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & -3 \\ 0 & 1 & 3 \end{array} \right) \; \left(\begin{array}{c} x(n) \\ y(n) \\ z(n) \end{array} \right)$$

with initial value (x(0), y(0), z(0)) = (1, 2, 3).

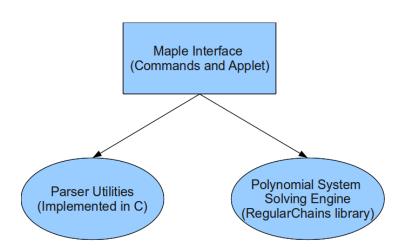
- Note that the characteristic polynomial of the coefficient matrix has 1 as a triple root and the mult. rel. ideal of the eigenvalues is 0-dimensional.
- So the invariant ideal of this recurrence has dimension either 0 or 1.
- On the other hand, we can show that for all $k \in \mathbb{N}$, we have $M^k \neq M$; so there are infinitely many points in the set $\{(x(k), y(k), z(k)) \mid k \in \mathbb{N}\}$, whenever $(x(0), y(0), z(0)) \neq (0, 0, 0)$.
- With our method, we compute the following invariant polynomials

$$x + y + z - 6$$
, $y^2 + 4yz + 4z^2 - 6y - 24z + 20$,

which generate a prime ideal of dimension 1, thus the invariant ideal of this recurrence.

- Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
 - Invariant ideal of P-solvable recurrences
 - ullet Degree estimates for solutions of P-solvable recurrences
 - P-solvable recurrences
 - ullet Degree estimates for solutions of P-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
- 3 Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Maple Package: ProgramAnalysis

ProgramAnalysis: package architecture



Maple session: the input program in a file

```
wensley2 := proc(P, Q, E)
local a, b, d, y,
   a := 0;
    b := 1/2 * Q
   d := 1;
    v := 0:
    \#PRE: Q > P \text{ and } P \ge 0 \text{ and } E > 0
    while E \leq d do
     if P < a + b then
      b := 1/2 * b:
      d := 1/2 * d
     else
      a := a + b;
      y := y + 1/2 * d
      b := 1/2 * b;
      d := 1/2 * d
     end if
    end do;
    \# POST: P/Q \ge y \text{ and } y > P/Q - E
    return y
end proc
```

Maple session: the sample points

$$\begin{bmatrix} \left[0,\frac{5}{2},1,0\right], \left[\frac{5}{2},\frac{5}{4},\frac{1}{2},\frac{1}{2}\right], \left[\frac{5}{2},\frac{5}{8},\frac{1}{4},\frac{1}{2}\right], \left[\frac{5}{2},\frac{5}{16},\frac{1}{8},\frac{1}{2}\right], \left[\frac{45}{16},\frac{5}{32},\frac{1}{16},\frac{9}{16}\right], \left[\frac{95}{32},\frac{5}{64},\frac{1}{42},\frac{1}{2}\right], \left[\frac{15}{32},\frac{5}{12},\frac{1}{128},\frac{19}{32}\right], \left[\frac{15}{256},\frac{5}{512},\frac{1}{256},\frac{153}{256}\right], \left[\frac{1535}{512},\frac{5}{12},\frac{1}{128},\frac{19}{32}\right], \left[\frac{1535}{12},\frac{5}{12},\frac{1}{128},\frac{153}{12}\right], \left[\frac{1535}{12},\frac{5}{12},\frac{1}{128},\frac{153}{12}\right], \left[\frac{1535}{12},\frac{5}{12},\frac{1}{128},\frac{153}{12}\right], \left[\frac{1285}{4096},\frac{5}{8192},\frac{1}{128},\frac{1}{8192},\frac{1}{8192},\frac{1}{8192}\right], \left[\frac{124575}{8192},\frac{5}{32768},\frac{1}{16384},\frac{4915}{8192}\right], \left[\frac{24575}{8192},\frac{5}{32768},\frac{1}{16384},\frac{4915}{8192}\right], \left[\frac{24575}{8192},\frac{5}{32768},\frac{1}{16384},\frac{4915}{8192}\right], \left[\frac{24575}{8192},\frac{5}{65536},\frac{1}{32768},\frac{393215}{8192},\frac{5}{262144},\frac{1}{131072},\frac{78643}{131072}\right], \left[\frac{393215}{131072},\frac{5}{524288},\frac{1}{1262144},\frac{78643}{131072}\right], \left[\frac{393215}{131072},\frac{5}{1048576},\frac{1}{524288},\frac{78643}{131072}\right], \left[\frac{3145725}{1048576},\frac{5}{2097152},\frac{1}{1048576},\frac{629145}{1048576}\right], \left[\frac{6291455}{2097152},\frac{5}{4194304},\frac{1}{2097152},\frac{1258291}{2097152}\right]$$

Maple session: verifying the program

```
> mplfile := cat(getenv("MXHOME"),"/mx-2012/programs/wensley2.mpl"):
  precond := [[Q>P, P>=0, E>0]];
  postcond := [[P >= Q*y , Q*y > P - Q*E]];
  quard := [[E<=d]];
  ineq invs := [P - Q*d < Q*y, Q*y <= P,y>=0];
                        precond := [P < 0, 0 \le P, 0 < E]
                       postcond := [[O v \le P, P - O E < O v]]
                               guard := [[E \le d]]
                     ineq invs := [-dO + P < Ov, Ov \le P, 0 \le v]
                                                                               (2.3.1)
> st := time():
  eq invs := LoopEqInv(mplfile); # compute equation invariants
  time()-st;
                     ea invs := [vO - a, dO - 2b, -2bv + ad]
                                     0.210
                                                                               (2.3.2)
> # verify the specification of the program
  st:=time():
  LoopVerify(precond, quard, [[op(eq invs), op(ineq invs)]], postcond);
  time()-st;
                                      true
                                      1.380
                                                                               (2.3.3)
```

Xie Xie!