Generating Loop Invariants via Polynomial Interpolation

Marc Moreno Maza Joint work with Rong Xiao

University of Western Ontario, Canada

East China Normal University May 24, 2012

Plan

Preliminaries

- Notions on loop invariants
- Poly-geometric summations
- A variation on Bezout's Theorem

Invariant ideal of *P*-solvable recurrences

- Degree estimates for solutions of *P*-solvable recurrences
- P-solvable recurrences
- Degree estimates for solutions of *P*-solvable recurrences
- Degree estimates for their invariant ideal
- Dimension estimates for their invariant ideal
- **3** Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Experimentation
 - Maple Package: ProgramAnalysis

Plan

- Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
 - A variation on Bezout's Theorem
 - Invariant ideal of *P*-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - *P*-solvable recurrences
 - Degree estimates for solutions of P-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
 - **b** Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Experimentation
 - Maple Package: ProgramAnalysis

Loop model under study

- Loop variables: $X = x_1, \ldots, x_s$, rational value scalar
- Onditions: each C_i is a quantifier free formula in X over Q.
- Solution 3 Solution 3
- Initial condition: X-values defined by a semi-algebraic system.

Basic notions

$$\begin{array}{l} x:=a;\\ y:=b;\\ \text{while } x<10 \text{ do}\\ x:=x+y^5;\\ y:=y+1;\\ \text{end do;} \end{array}$$

- x, y, a, b are loop variables since they are updated in the loop or used to update other loop variables.
- The set of the initial values of the loop is

$$\{(x,y,a,b) \mid x = a, y = b, (a,b) \in \mathbb{R}^2\}.$$

• the loop trajectory of the above loop starting at (x, y, a, b) = (1, 0, 1, 0) is the sequence:

(1, 0, 1, 0), (1, 1, 1, 0), (2, 2, 1, 0), (34, 3, 1, 0).

- The reachable set R(L) of a loop L consists of all tuples of all trajectories of L.
- If x_1, \ldots, x_s are the loop variables of L, then a polynomial $P \in \mathbb{Q}[x_1, \ldots, x_s]$ is a (plain) loop invariant of L whenever $R(L) \subseteq V(P)$ holds.

More notions

- The inductive reachable set $R_{ind}(L)$ of a loop L is the reachable set of the loop obtained from L by replacing the guard condition with true.
- The absolute reachable set $R_{abs}(L)$ of a loop L is the reachable set of the loop obtained from L by replacing the guard condition with true, ignoring the branch conditions and, at each iteration executing a branch action selected randomly.
- We clearly have

$$R(L) \subseteq R_{\text{ind}} \subseteq R_{\text{abs}}$$

- If x_1, \ldots, x_s are the loop variables of L, then a polynomial $P \in \mathbb{Q}[x_1, \ldots, x_s]$ is an inductive (resp. absolute) loop invariant of L whenever $R_{ind}(L) \subseteq V(P)$ (resp. $R_{abs}(L) \subseteq V(P)$) holds.
- We denote by $\mathcal{I}(L)$ (resp. $\mathcal{I}_{ind}(L), \mathcal{I}_{abs}(L)$) the set of the polynomials that are plain (resp. inductive, absolute) loop invariants of L.
- These are radical ideals such that

$$\mathcal{I}_{abs}(L) \subseteq \mathcal{I}_{ind}(L) \subseteq \mathcal{I}(L)$$

Absolute invariants might be trivial

- $y_1 := 0$: $y_2 := 0$: $y_3 := x_1;$ while $y_3 \neq 0$ do if $y_2 + 1 = x_2$ then $y_1 := y_1 + 1$: $y_2 := 0;$ $y_3 := y_3 - 1;$ else $y_2 := y_2 + 1;$ $y_3 := y_3 - 1;$ end if end do
- Consider $y_1x_2 + y_2 + y_3 = x_1 (E)$.
- If $x_1 = 0$ then the equation (E) holds initially and the loop is not entered.
- If $x_1 \neq 0$ and $x_2 = 1$ then (E) and $y_2 + 1 = x_2$ hold before each iteration.
- If $x_1 \neq 0$ and $x_2 \neq 1$ then the second action preserves (E).
- Therefore $y_1x_2 + y_2 + y_3 x_1 \in \mathcal{I}(L)$ and $y_1x_2 + y_2 + y_3 x_1 \in \mathcal{I}_{ind}(L)$ both hold.

Absolute invariants might be trivial

- $y_1 := 0$: $y_2 := 0$: $y_3 := x_1;$ while $y_3 \neq 0$ do if $y_2 + 1 = x_2$ then $y_1 := y_1 + 1;$ $y_2 := 0;$ $y_3 := y_3 - 1;$ else $y_2 := y_2 + 1;$ $y_3 := y_3 - 1;$ end if end do
- Consider $y_1x_2 + y_2 + y_3 = x_1 (E)$.
- If $x_1 = 0$ then the equation (E) holds initially and the loop is not entered.
- If $x_1 \neq 0$ and $x_2 = 1$ then (E) and $y_2 + 1 = x_2$ hold before each iteration.
- If $x_1 \neq 0$ and $x_2 \neq 1$ then the second action preserves (E).
- Therefore $y_1x_2 + y_2 + y_3 x_1 \in \mathcal{I}(L)$ and $y_1x_2 + y_2 + y_3 x_1 \in \mathcal{I}_{ind}(L)$ both hold.
- If conditions are ignored, $(x_1, x_2) = (0, 1)$ and execute the first branch once, then we obtain

 $y_1x_2 = 1$ and $y_2 + y_3 = x_1$.

• Then (E) is violated and we have

 $\mathcal{I}_{\rm abs}(L) = \langle 0 \rangle.$

Inductive invariants might not be plain invariants

$$x := 1;$$

while $x \neq 1$ do
 $x := x + 1;$
end do

- x 1 = 0 is an invariant but not an inductive of the following loop.
- $\bullet~{\rm Thus}~{\mathcal I}_{\rm ind}(L)$ is strictly smaller than ${\mathcal I}(L)$

Computing inductive invariants via elimination ideals

• Solving for (x, y) as a 2-variable recurrence x(n+1) = y(n), y(n+1) =x(n) + y(n), with x(0) = 0, y(0) = 1. We obtain y := 1: $x(n) = \frac{(\frac{\sqrt{5}+1}{2})^n}{\sqrt{5}} - \frac{(\frac{-\sqrt{5}+1}{2})^n}{\sqrt{5}},$ x := 0: while true do $y(n) = \frac{\sqrt{5}+1}{2} \frac{(\frac{\sqrt{5}+1}{2})^n}{\sqrt{\epsilon}} - \frac{-\sqrt{5}+1}{2} \frac{(\frac{-\sqrt{5}+1}{2})^n}{\sqrt{\epsilon}}.$ z := x: x := y;• Let $u = (\frac{\sqrt{5}+1}{2})^n$, $v = (\frac{-\sqrt{5}+1}{2})^n$, $a = \sqrt{5}$ y := z + y;• Taking the dependencies $u^2 v^2 = 1, a^2 = 5$ into end while account, we want $\langle x - \frac{au}{5} + \frac{av}{5}, y - a\frac{a+1}{2}\frac{u}{5} + a\frac{-a+1}{2}\frac{v}{5}, a^2 - u \rangle$ $5, u^2v^2 - 1\rangle \cap \mathbb{O}[x, y],$

which is

$$\langle 1 - y^4 + 2xy^3 + x^2y^2 - 2x^3y - x^4 \rangle.$$

A natural criterion

while C_0 do if C_1 then $X := A_1(X);$ elif C_2 then $X := A_2(X);$. . . elif C_m then $X := A_m(X)$: end if end while

- Let $f \in \mathbb{Q}[X]$ vanishing at each initial condition.
- Assume that for all $i = 1 \cdots m$ we have

 $Z_{\mathbb{R}}(A_i(Z_{\mathbb{R}}(f) \cap Z_{\mathbb{R}}(C_i))) \subseteq Z_{\mathbb{R}}(f)$

• Then we have

 $f \in \mathcal{I}_{\mathrm{ind}}(L).$

• This can be tested with the commands of

RegularChains:-SemiAlgebraicSetTools based on the RegularChains:-RealTriangularize (C. Chen, J.H. Davenport, M.M.M., B. Xia & R. Xiao, ISSAC 2010 & 2011).

- Computing $\mathcal{I}_{ind}(L)$ is a better approximation of $\mathcal{I}(L)$ than $\mathcal{I}_{abs}(L)$.
- The loop invariant generation methods of (E. Rodriguez-Carbonell & D. Kapur, ISSAC04) and (L. Kovács, TACAS08) focus on *I*_{abs}(*L*).

- Computing $\mathcal{I}_{ind}(L)$ is a better approximation of $\mathcal{I}(L)$ than $\mathcal{I}_{abs}(L)$.
- The loop invariant generation methods of (E. Rodriguez-Carbonell & D. Kapur, ISSAC04) and (L. Kovács, TACAS08) focus on $\mathcal{I}_{abs}(L)$.
- In this talk, we target $\mathcal{I}_{ind}(L)$ (easier to compute than $\mathcal{I}(L)$) and call it the Invariant Ideal of the loop L. Same goal as in the preprint (Bin Wu, Liyong Shen, Min Wu, Zhengfeng Yang & Zhenbing Zeng, 2011).

- Computing $\mathcal{I}_{ind}(L)$ is a better approximation of $\mathcal{I}(L)$ than $\mathcal{I}_{abs}(L)$.
- The loop invariant generation methods of (E. Rodriguez-Carbonell & D. Kapur, ISSAC04) and (L. Kovács, TACAS08) focus on $\mathcal{I}_{abs}(L)$.
- In this talk, we target $\mathcal{I}_{ind}(L)$ (easier to compute than $\mathcal{I}(L)$) and call it the Invariant Ideal of the loop L. Same goal as in the preprint (Bin Wu, Liyong Shen, Min Wu, Zhengfeng Yang & Zhenbing Zeng, 2011).
- We also want to avoid computing closed forms of loop variables, while
 - not making any assumptions on the shape of the polynomial invariants,
 - and avoiding an intensive use of expensive algebraic computations other than linear algebra, for which costs are predictable.

- Computing $\mathcal{I}_{ind}(L)$ is a better approximation of $\mathcal{I}(L)$ than $\mathcal{I}_{abs}(L)$.
- The loop invariant generation methods of (E. Rodriguez-Carbonell & D. Kapur, ISSAC04) and (L. Kovács, TACAS08) focus on $\mathcal{I}_{abs}(L)$.
- In this talk, we target $\mathcal{I}_{ind}(L)$ (easier to compute than $\mathcal{I}(L)$) and call it the Invariant Ideal of the loop L. Same goal as in the preprint (Bin Wu, Liyong Shen, Min Wu, Zhengfeng Yang & Zhenbing Zeng, 2011).
- We also want to avoid computing closed forms of loop variables, while
 - not making any assumptions on the shape of the polynomial invariants,
 - and avoiding an intensive use of expensive algebraic computations other than linear algebra, for which costs are predictable.
- In (Sankaranarayanan, Sipma & Manna, SIGPLAN 2004) (Y. Chen, B. Xia, L. Yang, & N. Zhan, FMHRTS 2007) (D. Kapur Deduction and Applications 2005) template polynomials are used. Morever, the latter two use real QE.

- Computing $\mathcal{I}_{ind}(L)$ is a better approximation of $\mathcal{I}(L)$ than $\mathcal{I}_{abs}(L)$.
- The loop invariant generation methods of (E. Rodriguez-Carbonell & D. Kapur, ISSAC04) and (L. Kovács, TACAS08) focus on $\mathcal{I}_{abs}(L)$.
- In this talk, we target $\mathcal{I}_{ind}(L)$ (easier to compute than $\mathcal{I}(L)$) and call it the Invariant Ideal of the loop L. Same goal as in the preprint (Bin Wu, Liyong Shen, Min Wu, Zhengfeng Yang & Zhenbing Zeng, 2011).
- We also want to avoid computing closed forms of loop variables, while
 - not making any assumptions on the shape of the polynomial invariants,
 - and avoiding an intensive use of expensive algebraic computations other than linear algebra, for which costs are predictable.
- In (Sankaranarayanan, Sipma & Manna, SIGPLAN 2004) (Y. Chen, B. Xia, L. Yang, & N. Zhan, FMHRTS 2007) (D. Kapur Deduction and Applications 2005) template polynomials are used. Morever, the latter two use real QE.
- The "abstract interpretation" method (E. Rodriguez-Carbonell & D. Kapur, Science of Computer Programming 2007) does not use templates but uses of Gröbner bases heavily.

Plan

- Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
 - A variation on Bezout's Theorem
 - Invariant ideal of *P*-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - *P*-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
 - **b** Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Experimentation
 - Maple Package: ProgramAnalysis

Poly-geometrical expression

Notations

Let $\alpha_1, \ldots, \alpha_k$ be k elements of $\overline{\mathbb{Q}}^* \setminus \{1\}$. Let n be a variable taking non-negative integer values. We regard $n, \alpha_1^n, \ldots, \alpha_k^n$ as independent variables and we call $\alpha_1^n, \ldots, \alpha_k^n$ n-exponential variables.

Definition

Any $f \in \overline{\mathbb{Q}}[n, \alpha_1^n, \dots, \alpha_k^n]$ is called a poly-geometrical expression in n over $\overline{\mathbb{Q}}$ w.r.t. $\alpha_1, \dots, \alpha_k$. For such an f, we denote by $f|_{n=i}$ the evaluation of f at i. For such f, g we write f = g whenever $f|_{n=i} = g|_{n=i}$ holds for all i.

Canonical form of a poly-geometrical expression

Definition

We say that $f \in \overline{\mathbb{Q}}[n, \alpha_1^n, \dots, \alpha_k^n]$ is in canonical form if there exist (1) $c_1, \dots, c_m \in \overline{\mathbb{Q}}^*$, and

- (2) pairwise different couples $(\beta_1, e_1), \ldots, (\beta_m, e_m)$ all in $(\overline{\mathbb{Q}}^* \setminus \{1\}) \times \mathbb{Z}_{\geq 0}$, and
- (3) a polynomial $c_0(n)\in\overline{\mathbb{Q}}[n],$ such that
- (4)~ each β_1,\ldots,β_m is a product of some of the α_1,\ldots,α_k and such that
- (5) f(n) and $\sum_{i=1}^{m} c_i \beta_i^n n^{e_i} + c_0(n)$ are equal.

When this holds, the polynomial $c_0(n)$ is the exponential-free part of f(n).

Proposition

Let f a poly-geometrical expression in n over $\overline{\mathbb{Q}}$ w.r.t. $\alpha_1, \ldots, \alpha_k$. There exists a unique poly-geometrical expression c in n over $\overline{\mathbb{Q}}$ w.r.t. $\alpha_1, \ldots, \alpha_k$ such that c is in canonical form and such that f and c are equal. We call c the canonical form of f.

Examples of poly-geometrical expressions

Example

The closed form $f := \frac{(n+1)^2 n^2}{4}$ of $\sum_{i=0}^n i^3$ is a poly-geometrical expression in n over $\overline{\mathbb{Q}}$ without n-exponential variables.

Example

The expression $g := n^2 2^{(n+1)} - n 2^n 3^{\frac{n}{2}}$ is a poly-geometrical in n over $\overline{\mathbb{Q}}$ w.r.t. $2, \sqrt{3}$.

Example

The sum $\sum_{i=1}^{n-1} i^k$ has n-1 terms while its closed form below $\sum_{i=1}^k \left\{ {k \atop i} \right\} \frac{n^{i+1}}{i+1},$

where ${k \atop i}$ the number of ways to partition k into i non-zero summands, has a fixed number of terms and thus is poly-geometrical in n over $\overline{\mathbb{Q}}$.

Multiplicative relation ideal

Definition

Let $A := (\alpha_1, \ldots, \alpha_k)$ be a sequence of k non-zero elements of $\overline{\mathbb{Q}}$. Let $\mathbf{e} := (e_1, \ldots, e_k)$ be a sequence of k integers. We say that \mathbf{e} is a multiplicative relation on A if $\prod_{i=1}^k \alpha_i^{e_i} = 1$ holds. Such a relation is said *non-trivial* if there exists $i \in \{1, \ldots, n\}$ s. t. $e_i \neq 0$ holds. If there exists a non-trivial multiplicative relation on A, we say that A is *multiplicatively dependent*; otherwise, we say that A is *multiplicatively independent*. All multiplicative relations of A form the multiplicative relation lattice on A,

Definition

Let $A := (\alpha_1, \ldots, \alpha_k)$ be a sequence of k elements of $\overline{\mathbb{Q}}$. Assume w.l.o.g. that for some ℓ , with $1 \le \ell \le k$, we have $\alpha_1 \ne 0, \ldots, \alpha_\ell \ne 0$, $\alpha_{\ell+1} = \cdots = \alpha_k = 0$. We associate each α_i with a "new" variable y_i . The binomial ideal $MRI(A; y_1, \ldots, y_k)$ of $\mathbb{Q}[y_1, y_2, \ldots, y_k]$ generated by

$$\{\prod_{j\in\{1,\ldots,\ell\},\,v_j>0}y_j^{v_j}-\prod_{i\in\{1,\ldots,\ell\},\,v_i<0}y_i^{-v_i} \mid (v_1,\ldots,v_\ell)\in Z\},\$$

and $\{y_{\ell+1},\ldots,y_k\}$, where Z is the multiplicative relation lattice.

Multiplicative relation ideal: example

Definition

Let $A := (\alpha_1, \ldots, \alpha_k)$ be a sequence of k elements of $\overline{\mathbb{Q}}$. Assume w.l.o.g. that for some ℓ , with $1 \le \ell \le k$, we have $\alpha_1 \ne 0, \ldots, \alpha_\ell \ne 0$, $\alpha_{\ell+1} = \cdots = \alpha_k = 0$. We associate each α_i with a "new" variable y_i . The binomial ideal $MRI(A; y_1, \ldots, y_k)$ of $\mathbb{Q}[y_1, y_2, \ldots, y_k]$ generated by

$$\{\prod_{j\in\{1,\dots,\ell\},\,v_j>0}y_j^{v_j}-\prod_{i\in\{1,\dots,\ell\},\,v_i<0}y_i^{-v_i} \mid (v_1,\dots,v_\ell)\in Z\},\$$

and $\{y_{\ell+1},\ldots,y_k\}$, where Z is the multiplicative relation lattice.

Example

Consider A = (1/2, 1/3, -1/6, 0). The multiplicative relation lattice of (1/2, 1/3, -1/6) is generated by (2, 2, -2). Thus the MRI of A associated with y_1, y_2, y_3, y_4 is

 $\langle y_1^2y_2^2-y_3^2,y_4\rangle.$

Weak multiplicative independence

Definition

Let $A := (\alpha_1, \ldots, \alpha_k)$ be a sequence of k non-zero algebraic numbers over $\overline{\mathbb{Q}}$ and let $\beta \in \overline{\mathbb{Q}}$. We say β is weakly multiplicatively independent w.r.t. A, if there exist no non-negative integers e_1, e_2, \ldots, e_k such that $\beta = \prod_{i=1}^k \alpha_1^{e_i}$ holds.

Furthermore, we say that A is weakly multiplicatively independent if

(i)
$$\alpha_1 \neq 1$$
 holds, and

 $\begin{array}{ll} (ii) & \alpha_i \text{ is weakly multiplicatively independent w.r.t.} \\ & \{\alpha_1,\ldots,\alpha_{i-1},1\}, \text{ for all } i=2,\ldots,s. \end{array}$

Degree estimates for x satisfying $x(n+1) = \lambda x(n) + h(n)$

Lemma

Let $\alpha_1, \ldots, \alpha_k \in \overline{\mathbb{Q}} \setminus \{0, 1\}$. Let $\lambda \in \overline{\mathbb{Q}} \setminus \{9\}$. Let $h(n) \in \overline{\mathbb{Q}}[n, \alpha_1^n, \ldots, \alpha_k^n]$. Consider the following single-variable recurrence relation R:

$$x(n+1) = \lambda x(n) + h(n).$$

Then, there exists $s(n)\in\overline{\mathbb{Q}}[n,\alpha_1^n,\ldots,\alpha_k^n]$ such that we have

 $\deg(s(n),\alpha_i^n) \leq \deg(h(n),\alpha_i^n) \quad \text{and} \quad \deg(s(n),n) \leq \deg(h(n),n) + 1,$

and such that

- if $\lambda = 1$ holds, then s(n) solves R,
- if $\lambda \neq 1$ holds, then there exists a constant c depending on x(0) (that is, the initial value of x) such that $c \lambda^n + s(n)$ solves R.

Moreover, in both cases, if the exponential-free part of the canonical form of $(\frac{1}{\lambda})^n h(n)$ is 0, then $\deg(s(n), n) \leq \deg(h(n), n)$. can be required. This latter hypothesis holds as soon as λ is weakly multiplicatively independent w.r.t. $\alpha_1, \ldots, \alpha_k$

Plan

- Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
 - A variation on Bezout's Theorem
 - Invariant ideal of *P*-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - *P*-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
 - **b** Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Experimentation
 - Maple Package: ProgramAnalysis

Degree of an algebraic variety

Notations

Let \mathbb{K} be an algebraically closed field. Let $F \subset \mathbb{K}[x_1, x_2, \dots, x_s]$. We denote by $V_{\mathbb{K}^s}(F)$ (or simply by V(F) when no confusion is possible) the zero set in \mathbb{K}^s of F.

Definition

Let $V \subset \mathbb{K}^s$ be an *r*-dimensional equidimensional algebraic variety. The number of points of intersection of V with an (n - r)-dimensional generic linear subspace $L \subset \mathbb{K}^s$ is called the degree of V, denoted by $\deg(V)$.

The degree of a non-equidimensional variety is defined to be the sum of the degrees of its equidimensional components.

The degree of an ideal $I \subseteq \mathbb{K}[x_1, x_2, \dots, x_s]$ is defined to be the degree of the variety of I in \mathbb{K}^s .

A few well-known properties

Lemma

Let $V \subset \mathbb{K}^s$ be an *r*-dimensional equidimensional algebraic variety of degree δ . Let *L* be an (n-r)-dimensional linear subspace. Then, $L \cap V$ is either of positive dimensional or consists of no more than δ points.

Lemma

Let $V \subset \mathbb{K}^s$ be a algebraic variety. Let L be a linear map from \mathbb{K}^s to \mathbb{K}^k . Then we have $\deg(L(V)) \leq \deg(V)$.

Lemma (J. Heintz. Theor. Comput. Sci., 1983)

Let $I \subset \mathbb{Q}[x_1, x_2, \ldots, x_s]$ be a radical ideal of degree δ . Then there exist finitely many polynomials in $\mathbb{Q}[x_1, x_2, \ldots, x_s]$ generating I and such that each of this polynomial has total degree less than or equal to δ .

Lemma

Let $V,W,V_1,\ldots,V_e\subset\mathbb{K}^s$ be algebraic varieties s. t. $V:=W\cap\cap_{i=1}^eV_i$ holds with $\dim(W)=r.$ Then we have

 $\deg(V) \le \deg(W) \max(\{\deg(V_i) \mid i = 1 \cdots e\})^r.$

A variation on Bezouts Theorem

Proposition

- Let $X = x_1, x_2, \ldots, x_s$ and $Y = y_1, y_2, \ldots, y_t$ be pairwise different s + t variables.
- Let M be an ideal in $\mathbb{Q}[Y]$ of degree d_M and dimension r.
- Let f_1, f_2, \cdots, f_s be s polynomials in $\mathbb{Q}[Y]$, with maximum total degree d_f .
- Denote by I the ideal $\langle x_1 f_1, x_2 f_2, \dots, x_s f_s \rangle$.

Then, we have

 $\deg(I+M) \leq d_M d_f^r.$

Remark

Since I+M is an ideal of $\mathbb{Q}[X,Y],$ a direct application of one of the previous lemmas gives

$$\deg(I+M) \leq d_M d_f^{s+r}.$$

This bound is tight

Example

Consider the polynomials of $\mathbb{Q}[x, y, n, m]$

$$g_1 := x - n^2 - n - m$$
 and $g_2 := y - n^3 - 3n + 1$

and the ideals

$$M := \langle n^2 - m^3 \rangle$$
 and $J := M + \langle g_1, g_2 \rangle$

With the notations of the proposition we have

$$d_M := 3, r := 1 \text{ and } d_f := 3$$

Thus the estimated degree is 3×3 . Meanwhile, the true degree of J is indeed 9, which is computed as the (linear space) dimension of

$$\mathbb{Q}(a,b,c,d,e)[x,y,m,n]/(J+\langle a\,x+b\,y+c\,n+d\,m+e\rangle),$$

where a, b, c, d, e are indeterminates.

Plan

- Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
 - A variation on Bezout's Theorem
- Invariant ideal of *P*-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - P-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
- Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Experimentation
 - Maple Package: ProgramAnalysis

Plan

- Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
 - A variation on Bezout's Theorem
- Invariant ideal of P-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - P-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
 - Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Experimentation
 - Maple Package: ProgramAnalysis

The univariate case: recall

Definition

Given a recurrence R: $x(n+1) = \lambda x(n) + h(n)$ in \mathbb{Q} , if h(n) is a poly-geometrical expression in n over \mathbb{Q} , then R is called a univariate P-solvable recurrence.

The multivariate case: setting

Let n_1, \ldots, n_k be positive integers and define $s := n_1 + \cdots + n_k$. Let M be a block-diagonal square matrix over \mathbb{Q} of order s, with shape:

$$M := \begin{pmatrix} \mathbf{M}_{n_1 \times n_1} & \mathbf{0}_{n_1 \times n_2} & \ddots & \mathbf{0}_{n_1 \times n_k} \\ \mathbf{0}_{n_2 \times n_1} & \mathbf{M}_{n_2 \times n_2} & \ddots & \mathbf{0}_{n_2 \times n_k} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_{n_k \times n_1} & \mathbf{0}_{n_k \times n_2} & \ddots & \mathbf{M}_{n_k \times n_k} \end{pmatrix}$$

Consider an *s*-variable recurrence relation R in x_1, x_2, \ldots, x_s , with shape:

$$\begin{pmatrix} x_1(n+1) \\ x_2(n+1) \\ \vdots \\ x_s(n+1) \end{pmatrix} = M \times \begin{pmatrix} x_1(n) \\ x_2(n) \\ \vdots \\ x_s(n) \end{pmatrix} + \begin{pmatrix} \mathbf{f}_{1n_1 \times 1} \\ \mathbf{f}_{2n_2 \times 1} \\ \vdots \\ \mathbf{f}_{kn_k \times 1} \end{pmatrix} ,$$

where \mathbf{f}_1 is a vector of length n_1 with coordinates in \mathbb{Q} and where \mathbf{f}_i is a tuple of length n_i with coordinates in the polynomial ring $\mathbb{Q}[x_1, \ldots, x_{n_1+\cdots+n_{i-1}}]$, for $i = 2, \ldots, k$.

,

The multivariate case: definition

Setting (recall)

$$\begin{pmatrix} x_1(n+1) \\ x_2(n+1) \\ \vdots \\ x_s(n+1) \end{pmatrix} = M \times \begin{pmatrix} x_1(n) \\ x_2(n) \\ \vdots \\ x_s(n) \end{pmatrix} + \begin{pmatrix} \mathbf{f}_{1n_1 \times 1} \\ \mathbf{f}_{2n_2 \times 1} \\ \vdots \\ \mathbf{f}_{kn_k \times 1} \end{pmatrix}$$

where \mathbf{f}_1 is a vector over \mathbb{Q} of length n_1 and where \mathbf{f}_i is a tuple of length n_i with coordinates in $\mathbb{Q}[x_1, \ldots, x_{n_1+\cdots+n_{i-1}}]$, for $i = 2, \ldots, k$.

Definition

Then, the recurrence relation R is called *P*-solvable over \mathbb{Q} and the matrix M is called the coefficient matrix of R.

The notion of *P*-solvable recurrence is equivalent to that of *solvable mapping* in (E. Rodriguez-Carbonell & D. Kapur, ISSAC04) or that of *solvable loop* in (L. Kovocs TACAS08) the respective contexts.

Plan

- Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
 - A variation on Bezout's Theorem
- Invariant ideal of *P*-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - P-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
- Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Experimentation
 - Maple Package: ProgramAnalysis

Degree estimates for solutions of *P*-solvable recurrences: theorem

Assume M is in a Jordan normal form. Assume the eigenvalues $\lambda_1, \ldots, \lambda_s$ of M (counted with multiplicities) are different from 0, 1, with λ_i being the *i*-th diagonal element of M. Assume for each block j the total degree of any polynomial in \mathbf{f}_j (for $i = 2 \cdots k$) is upper bounded by d_j . For each i, we denote by b(i) the block number of the index i, that is,

$$\sum_{j=1}^{b(i)-1} n_j < i \le \sum_{j=1}^{b(i)} n_j.$$

Let $D_1 := n_1$ and for $all j \in \{2, ..., k\}$ let $D_j := d_j D_{j-1} + n_j$. Then, there exists a solution $(y_1, y_2, ..., y_s)$ for R of the following form:

 $y_i := c_i \lambda_i^n + g_i, \quad i = 1 \cdots s$ where

(a) c_i is a constant depending only on the initial value of the recurrence; (b) g_i is a poly-geometrical expression in n w.r.t. $\lambda_1, \ldots, \lambda_{i-1}$, such that $\deg(g_i) \leq D_{b(i)}$.

Moreover, if $\{\lambda_1, \ldots, \lambda_s\}$ is weakly multiplicatively independent, then, for all $i = 1, \ldots, k$, we can further choose y_i such that we have

 $\deg(g_i, n) = 0$ and $\deg(g_i) \le \prod_{2 \le t \le b(i)} \max(d_t, 1)$.

Degree estimates for solutions of *P*-solvable recurrences: example

Consider the recurrence:

$$\begin{pmatrix} x(n+1) \\ y(n+1) \\ z(n+1) \end{pmatrix} := \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} \times \begin{pmatrix} x(n) \\ y(n) \\ z(n) \end{pmatrix} + \begin{pmatrix} 0 \\ x(n)^2 \\ x(n)^3 \end{pmatrix}$$

Viewing the recurrence as two blocks (x) and (y, z), the degree upper bounds are

$$D_1 := n_1 = 1$$
 and $D_2 := d_2 D_1 + n_2 = 3 \times 1 + 2$.

If we decouple the (y, z) block to the following two recurrences

$$y(n+1) = 3 y(n) + x(n)^2$$
 and $z(n+1) = 3 z(n) + x(n)^3$,

then we deduce that the degree of the poly-geometrical expression for y and z are upper bounded by 2 and 3 respectively.

Degree estimates: reduction to the Jordan normal form case

Let Q be a non-singular matrix such that $J := Q M Q^{-1}$ is a Jordan form of M. Let the original recurrence R be

$$X(n+1) = M X(n) + F.$$

Consider the following recurrence R_Q

$$Y(n+1) = JY(n) + QF.$$

It is easy to check that if

$$(y_1(n), y_2(n), \ldots, y_s(n))$$

solves R_O , then

$$Q^{-1}(y_1(n), y_2(n), \dots, y_s(n))$$

solves R. Note that an invertible matrix over $\overline{\mathbb{Q}}$ maps a tuple of poly-geometrical expressions to another tuple of poly-geometrical expressions; moreover it preserves the highest degree among the expressions in the tuple.

- Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
 - A variation on Bezout's Theorem
- Invariant ideal of P-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - P-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
 - Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Experimentation
 - Maple Package: ProgramAnalysis

Degree estimates for the invariant ideal: theorem

- Let R be a P-solvable recurrence relation with variables (x_1, x_2, \ldots, x_s) .
- Let $\mathcal{I} \subset \mathbb{Q}[x_1, x_2, \dots, x_s]$ be the invariant ideal of R.
- Let A = α₁, α₂,..., α_s be the eigenvalues (counted with multiplicities) of the coefficient matrix of R.
- Let \mathcal{M} be the multiplicative relation ideal of A associated with variables y_1, \ldots, y_k . Let r be the dimension of \mathcal{M} .
- Let $f_1(n, \alpha_1^n, \dots, \alpha_k^n), \dots, f_s(n, \alpha_1^n, \dots, \alpha_k^n)$ be s poly-geometrical expressions in n w.r.t. $\alpha_1, \alpha_2, \dots, \alpha_s$ solving R.
- Suppose R has a k-block configuration as $(n_1, 1), \ldots, (n_k, d_k)$.
- Let $D_1 := n_1$; and for all $j \in \{2, ..., k\}$, let $D_j := d_j D_{j-1} + n_j$.

Then, we have

 $\deg(\mathcal{I}) \le \deg(\mathcal{M}) D_k^{r+1}.$

Moreover, if the degrees of n in f_i , for $i = 1 \cdots s$, are all 0, then we have

 $\deg(\mathcal{I}) \le \deg(\mathcal{M}) D_k^r.$

Degree estimates for the invariant ideal: example

Consider again solving for (x,y) as a 2-variable recurrence

$$x(n+1) = y(n), y(n+1) = x(n) + y(n), \text{ with } x(0) = 0, y(0) = 1.$$

Recall that we obtained

$$\begin{array}{rcl} x(n) & = & \frac{(\frac{\sqrt{5}+1}{2})^n}{\sqrt{5}} - \frac{(\frac{-\sqrt{5}+1}{2})^n}{\sqrt{5}}, \\ y(n) & = & \frac{\sqrt{5}+1}{2} \, \frac{(\frac{\sqrt{5}+1}{2})^n}{\sqrt{5}} - \frac{-\sqrt{5}+1}{2} \, \frac{(\frac{-\sqrt{5}+1}{2})^n}{\sqrt{5}} \end{array}$$

Observe that $A := \frac{-\sqrt{5}+1}{2}, \frac{\sqrt{5}+1}{2}$ is weakly multiplicatively independent. The multiplicative relation ideal of A associated with variables u, v is generated by $u^2v^2 - 1$ and thus has degree 4 and dimension 1 in $\mathbb{Q}[u, v]$. Therefore, the previous theorem implies that the degree of invariant ideal bounded by 4×1^1 . This is sharp since this ideal is

$$\langle 1 - y^4 + 2xy^3 + x^2y^2 - 2x^3y - x^4 \rangle.$$

- Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
 - A variation on Bezout's Theorem
- 2 Invariant ideal of P-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - P-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
 - Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Experimentation
 - Maple Package: ProgramAnalysis

Dimension estimates for the invariant ideal: theorem

Theorem

Using the same notations as in the definition of P-solvable recurrences.

- Let $\lambda_1, \lambda_2, \ldots, \lambda_s$ be the eigenvalues of M counted with multiplicities.
- Let \mathcal{M} be the multiplicative relation ideal of $\lambda_1, \lambda_2, \ldots, \lambda_s$.
- Let r be the dimension of \mathcal{M} . Let \mathcal{I} be the invariant ideal of R.

Then, we have

$\dim(\mathcal{I}) \leq r+1.$

Moreover, for generic initial values,

```
• we have r \leq \dim(\mathcal{I}),
```

2 if 0 is not an eigenvalue of M and $\lambda_1, \lambda_2, \ldots, \lambda_s$ is weakly multiplicatively independent, then we have $r = \dim(\mathcal{I})$.

Corollaries

- If r+1 < s holds, then \mathcal{I} is not the zero ideal in $\mathbb{Q}[x_1, x_2, \dots, x_s]$.
- Assume that x₁(0) := a₁,..., x_s(0) := a_s are independent indeterminates. If the eigenvalues of R are multiplicatively independent, then the inductive invariant ideal of the loop is the zero ideal in Q[a₁,..., a_s, x₁, x₂,..., x_s].

Dimension estimates for the invariant ideal: example 1

Consider the recurrence:

$$(x(n+1), y(n+1)) := (3x(n) + y(n), 2y(n))$$

with x(0) = a, y(0) = b.

On one hand, the two eigenvalues are $2 \ {\rm and} \ 3$ which are multiplicatively independent.

Therefore, using the previous corollary, the invariant ideal of the corresponding loop is trivial.

On the other hand, for loop variables $(\boldsymbol{a},\boldsymbol{b},\boldsymbol{x},\boldsymbol{y}),$ the reachable set of the loop is

 $\mathfrak{R} := \{(a, b, (a+b) \, 3^i - b \, 2^i, \, b \, 2^i) \mid (a, b) \in \mathbb{Q}^2, \ i \text{ is a non-negative integer} \}.$

Therefore, any polynomial vanishes on all points of \Re must be 0.

Dimension estimates for the invariant ideal: example 2

Consider the linear recurrence

$$x(n+1) = 3x(n) - y(n), y(n+1) = 2y(n)$$

with (x(0), y(0)) = (a, b).

The eigenvalues of the coefficient matrix are 2, 3, which are multiplicatively independent.

One can check that, when a = b, the invariant ideal is generated by x - y.

However, generically, that is when $a \neq b$ holds, the invariant ideal is the zero ideal.

- Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
 - A variation on Bezout's Theorem
- 2 Invariant ideal of *P*-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - *P*-solvable recurrences
 - Degree estimates for solutions of P-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
- Soop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Experimentation
 - Maple Package: ProgramAnalysis

- Loop variables: X = x₁,..., x_s, rational value scalar
- Conditions: each C_i is a quantifier free formula in X over Q.
- Assignments: $A_i \in \mathbb{Q}[X]$ inducing a polynomial map $M_i : \mathbb{R}^s \mapsto \mathbb{R}^s$
- Initial condition: X-values defined by a semi-algebraic system.

A direct approach

Input

- (i) $M := m_1, m_2, \ldots, m_c$ is a sequence of monomials in the loop variables X,
- $(ii) \ S:=s_1,s_2,\ldots,s_r$ is a set of r points on the inductive trajectory of the loop,
- (iii) E is a polynomial system defining the loop initial values,
- (iv) B is the transitions $(C_1, A_1), \ldots, (C_m, A_m)$ of the loop.

Algorithm

- $\textcircled{O} \ L := \texttt{BuildLinSys}(M,S)$
- **2** N := LinSolve(L) is full row rank and generates the null space of L.

 $\textcircled{3} F := \emptyset$

 ${\small {\small @ }} {\small {\rm For each row vector } {\bf v} \in N {\rm \ do} }$

 $F:=F\,\cup\,\{\texttt{GenPoly}(M,\mathbf{v})\}$

- $\begin{tabular}{ll} \hline \begin{tabular}{ll} \hline \end{tabular} \hline \end{tabular} \begin{tabular}{ll} \hline \end{tabular} \hline \end{tabular} \hline \end{tabular} \hline \end{tabular} \hline \end{tabular} \hline \end{tabular} \hline \begin{tabular}{ll} \hline \end{tabular} \hline \end{$
- For each branch $(C_i, A_i) \in B$ do

if $A_i(Z(F) \cap Z(C_i)) \not\subseteq Z(F)$ then return FAIL

\bigcirc Return F, a list of polynomial equation invariants for the target loop.

- Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
 - A variation on Bezout's Theorem
- 2 Invariant ideal of *P*-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - P-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
- 8 Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Experimentation
 - Maple Package: ProgramAnalysis

loop.

A small-prime approach: algorithm

Algorithm

•
$$p := MaxMachinePrime(); L_p := BuildLinSysModp(M, S, p);$$

• $N_p := LinSolveModp(L_p, p)$
• $d := \dim(N_p); \mathbf{N} := (N_p); \mathbf{P} := (p);$
• While $p > 2$ do
• If $d = 0$ then return FAIL
• $N := RatRecon(\mathbf{N}, \mathbf{P})$
• If $N \neq FAIL$ then break;
• $p := PrevPrime(p); L_p := BuildLinSysModp(M, S, p);$
 $N_p := LinSolveModp(L_p, p)$
• If $d > \dim(N_p)$ then $d := \dim(N_p); \mathbf{N} := (N_p); \mathbf{P} := (p)$
• else $\mathbf{N} := Append(\mathbf{N}, N_p); \mathbf{P} := Append(\mathbf{P}, p)$
• If $p = 2$ then return FAIL
• $F := \emptyset$
• For each row vector $\mathbf{v} \in N$ do
 $F := F \cup \{\text{GenPoly}(M, \mathbf{v})\}$
• If $Z(E) \not\subseteq Z(F)$ then return FAIL
• For each branch $(C_i, A_i) \in B$ do
if $A_i(Z(F) \cap Z(C_i)) \not\subseteq Z(F)$ then return FAIL
• Return F , a list of polynomial equation invariants for the target

A small-prime approach: complexity result

Proposition

Both algorithms run in singly exponential time w.r.t. number of loop variables.

Indeed

- the number of monomials of M is singly exponential w.r.t. number of loop variables.
- applying our criterion to certify the result can be reduced to an ideal membership problem, which is singly exponential w.r.t. number of loop variables.

A small-prime approach: example

Consider the following recurrence relation on (x, y, z):

$$\begin{pmatrix} x(n+1) \\ y(n+1) \\ z(n+1) \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -3 \\ 0 & 1 & 3 \end{pmatrix} \begin{pmatrix} x(n) \\ y(n) \\ z(n) \end{pmatrix}$$

with initial value (x(0), y(0), z(0)) = (1, 2, 3).

- Note that the characteristic polynomial of the coefficient matrix has 1 as a triple root and the mult. rel. ideal of the eigenvalues is 0-dimensional.
- So the invariant ideal of this recurrence has dimension either 0 or 1.
- On the other hand, we can show that for all $k \in \mathbb{N}$, we have $M^k \neq M$; so there are infinitely many points in the set $\{(x(k), y(k), z(k)) \mid k \in \mathbb{N}\}$, whenever $(x(0), y(0), z(0)) \neq (0, 0, 0)$.
- With our method, we compute the following invariant polynomials

$$x + y + z - 6, y^2 + 4yz + 4z^2 - 6y - 24z + 20,$$

which generate a prime ideal of dimension 1, thus the invariant ideal

- Notions on loop invariants
- Poly-geometric summations
- A variation on Bezout's Theorem
- 2 Invariant ideal of *P*-solvable recurrences
 - Degree estimates for solutions of P-solvable recurrences
 - P-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
- 8 Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Experimentation
 - Maple Package: ProgramAnalysis

Implementation of the small-prime approach

- In MAPLE using LinearAlgebra and RegularChains.
- The interpolation part is done **naively**: the template set *M* consists of all monomials up to the target degree.
- A sparse interpolation scheme is work in progress.
- We handle semi-algebraic condiitons thenks to RegularChains:-SemiAlgebraicSetTools
- We have applied our code to all example programs used in (E. Rodriguez-Carbonell & D. Kapur, 2007):
 - We are able to find the loop invariants by trying total degree up to $4\,$ for most loops within 60 seconds.
 - In each case, we return a system of generators of the invariant ideal, though we do not have a proof for that fact.

Benchmarks procedure

- "# vars" is the number of loop variables,
- "deg" is the total degree tried for the methods which use a degree bound,
- "PI" is the timing of the our method,
- "Al" (Abstract Interpretation) is the timing of the method described in (E. Rodriguez-Carbonell & D. Kapur, TCS 2007)
- "FP" (ideal fix point, direct use of Gröbner basis techniques) is the timing of the method described in (E. Rodriguez-Carbonell & D. Kapur, JSC 2007)
- "SE" (solving and elimination , direct use of Gröbner basis techniques) is the timing of the method described in (L. Kovocs TACAS08) and implementated in the software ALIGATOR.
- The time unit is the second;
- the "NA" symbol in a time field means that the related method does support the input program;
- the "FAIL" symbol in a time field means that the output is not "correct".
- All the tests were done using an Intel Core 2 Quad CPU 2.40GHz with 8.0GB memory.
- Computations of multiplicative relation lattice were done (not needed for "PI") on the same machine with GAP 4.4.12 + Alnuth 2.3.1 + KASH 2.5.

Timings

prog. ¹	# vars	deg	PI	AI	FP	SE
cohencu	4	3	0.6	0.93	0.28	0.13
cohencu	4	2	0.06	0.76	0.28	0.13
fermat	5	4	3.74	0.79	0.37	0.1
prodbin	5	3	1.4	0.74	0.36	0.13
rk07	6	3	3.1	2.23	NA	0.35
kov08	3	3	0.2	0.57	0.22	0.01
sum5	4	5	12	1.60	2.25	0.16 ²
wensley2	3	3	0.4	0.84	0.39	0.21
int-factor	6	3	60.9	1.28	160.7	0.9
fib(coupled)	4	4	2.4	0.71	NA	NA
fib(decoupled)	6	4	4.3	1.28	160.7	FAIL
non-inv2*	4	3	1.2	3.83	NA	FAIL
coupled-5-1*	4	4	1.1	9.58	NA	NA
coupled-5-2*	5	4	5.38	15.8	NA	NA
mannadiv	3	3	0.1	0.83	NA	0.04

- Preliminaries
 - Notions on loop invariants
 - Poly-geometric summations
 - A variation on Bezout's Theorem
- 2 Invariant ideal of *P*-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - P-solvable recurrences
 - Degree estimates for solutions of *P*-solvable recurrences
 - Degree estimates for their invariant ideal
 - Dimension estimates for their invariant ideal
- 8 Loop invariant generation via polynomial interpolation
 - A direct approach
 - A modular method
 - Experimentation
 - Maple Package: ProgramAnalysis

ProgramAnalysis: package architecture

Maple session: the input program in a file

```
wensley2 := \operatorname{proc}(P, Q, E)
local a, b, d, y,
    a \coloneqq 0;
     b \coloneqq 1/2 * Q;
    d \coloneqq 1;
     v \coloneqq 0:
     \#PRE: Q > P \text{ and } P \ge 0 \text{ and } E > 0
     while E < d do
      if P < a + b then
       b := 1/2 * b:
       d \coloneqq 1/2 * d
      else
       a \coloneqq a + b;
       y \coloneqq y + 1/2 * d
        b := 1/2 * b;
       d \coloneqq 1/2 * d
      end if
     end do;
     \# POST: P/Q \ge y \text{ and } y > P/Q - E
     return y
end proc
```

Maple session: the sample points

Maple session: verifying the program

```
> mplfile := cat(getenv("MXHOME"),"/mx-2012/programs/wensley2.mpl"):
  precond := [[0>P, P>=0, E>0]];
  postcond := [[P \ge Q*y, Q*y \ge P - Q*E]];
  quard := [[E<=d]];</pre>
  ineq invs := [P - Q*d < Q*y, Q*y \le P,y>=0];
                         precond := [P < O, 0 \le P, 0 < E]
                       postcond := [[O y \leq P, P - O E < O y]]
                                guard := [[E \leq d]]
                     ineq invs := [-dO + P < Ov, Ov \le P, 0 \le v]
                                                                                 (2.3.1)
> st := time():
  eq invs := LoopEqInv(mplfile); # compute equation invariants
  time()-st;
                      ea invs := [vO - a, dO - 2b, -2bv + ad]
                                      0.210
                                                                                 (2.3.2)
> # verify the specification of the program
  st:=time():
  LoopVerify(precond, guard, [[op(eq invs), op(ineq invs)]], postcond);
  time()-st;
                                       true
                                      1.380
                                                                                 (2.3.3)
```

Xie Xie!