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Preliminaries Notions on loop invariants

Loop model under study

while C0 do
if C1

then
X := A1(X);

elif C2

then
X := A2(X);

· · ·
elif Cm
then

X := Am(X);
end if

end while

1 Loop variables: X = x1, . . . , xs,
rational value scalar

2 Conditions: each Ci is a quantifier free
formula in X over Q.

3 Assignments: Ai ∈ Q[X] inducing a
polynomial map Mi : Rs 7→ Rs

4 Initial condition: X-values defined by a
semi-algebraic system.
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Basic notions

x := a;
y := b;
while x < 10 do

x := x+ y5;
y := y + 1;

end do;

x, y, a, b are loop variables since they are
updated in the loop or used to update other
loop variables.

The set of the initial values of the loop is

{(x, y, a, b) | x = a, y = b, (a, b) ∈ R2}.

the loop trajectory of the above loop starting
at (x, y, a, b) = (1, 0, 1, 0) is the sequence:

(1, 0, 1, 0), (1, 1, 1, 0), (2, 2, 1, 0), (34, 3, 1, 0).

The reachable set R(L) of a loop L consists of all tuples of all
trajectories of L.

If x1, . . . , xs are the loop variables of L, then a polynomial
P ∈ Q[x1, . . . , xs] is a (plain) loop invariant of L whenever
R(L) ⊆ V (P ) holds.
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More notions

The inductive reachable set Rind(L) of a loop L is the reachable set of
the loop obtained from L by replacing the guard condition with true.
The absolute reachable set Rabs(L) of a loop L is the reachable set of
the loop obtained from L by replacing the guard condition with true,
ignoring the branch conditions and, at each iteration executing a
branch action selected randomly.
We clearly have

R(L) ⊆ Rind ⊆ Rabs

If x1, . . . , xs are the loop variables of L, then a polynomial
P ∈ Q[x1, . . . , xs] is an inductive (resp. absolute) loop invariant of L
whenever Rind(L) ⊆ V (P ) (resp. Rabs(L) ⊆ V (P )) holds.
We denote by I(L) (resp. Iind(L), Iabs(L)) the set of the
polynomials that are plain (resp. inductive, absolute) loop invariants
of L.
These are radical ideals such that

Iabs(L) ⊆ Iind(L) ⊆ I(L)
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Absolute invariants might be trivial

y1 := 0;
y2 := 0;
y3 := x1;
while y3 6= 0 do

if y2 + 1 = x2
then

y1 := y1 + 1;
y2 := 0;
y3 := y3 − 1;

else
y2 := y2 + 1;
y3 := y3 − 1;

end if
end do

Consider y1x2 + y2 + y3 = x1 (E).

If x1 = 0 then the equation (E) holds initially
and the loop is not entered.

If x1 6= 0 and x2 = 1 then (E) and
y2 + 1 = x2 hold before each iteration.

If x1 6= 0 and x2 6= 1 then the second action
preserves (E).

Therefore y1x2 + y2 + y3 − x1 ∈ I(L) and
y1x2 + y2 + y3 − x1 ∈ Iind(L) both hold.

If conditions are ignored, (x1, x2) = (0, 1) and
execute the first branch once, then we obtain

y1x2 = 1 and y2 + y3 = x1.

Then (E) is violated and we have

Iabs(L) = 〈0〉.
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Inductive invariants might not be plain invariants

x := 1;
while x 6= 1 do

x := x+ 1;
end do

x− 1 = 0 is an invariant but not an inductive
of the following loop.

Thus Iind(L) is strictly smaller than I(L)
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Computing inductive invariants via elimination ideals

y := 1;
x := 0;
while true do

z := x;
x := y;
y := z + y;

end while

Solving for (x, y) as a 2-variable recurrence

x(n+ 1) = y(n), y(n+ 1) =
x(n) + y(n), with x(0) = 0, y(0) = 1.

We obtain

x(n) =
(
√
5+1
2

)n√
5
− (−

√
5+1
2

)n√
5

,

y(n) =
√
5+1
2

(
√
5+1
2

)n√
5
− −

√
5+1
2

(−
√
5+1
2

)n√
5

.

Let u = (
√
5+1
2 )n, v = (−

√
5+1
2 )n, a =

√
5

Taking the dependencies u2 v2 = 1, a2 = 5 into
account, we want

〈x− au
5 + av

5 , y − a
a+1
2

u
5 + a−a+1

2
v
5 , a

2 −
5, u2v2 − 1〉 ∩ Q[x, y],

which is

〈1− y4 + 2xy3 + x2y2 − 2x3y − x4〉.
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A natural criterion

while C0 do
if C1

then
X := A1(X);

elif C2

then
X := A2(X);

· · ·
elif Cm
then

X := Am(X);
end if

end while

Let f ∈ Q[X] vanishing at each initial
condition.

Assume that for all i = 1 · · ·mwe have

ZR(Ai(ZR(f) ∩ ZR(Ci))) ⊆ ZR(f)

Then we have

f ∈ Iind(L).

This can be tested with the commands of

RegularChains:-SemiAlgebraicSetTools

based on the
RegularChains:-RealTriangularize

(C. Chen, J.H. Davenport, M.M.M.,
B. Xia & R. Xiao, ISSAC 2010 & 2011).
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Summary and notes

Computing Iind(L) is a better approximation of I(L) than Iabs(L).
The loop invariant generation methods of (E. Rodriguez-Carbonell &
D. Kapur, ISSAC04) and (L. Kovács, TACAS08) focus on Iabs(L).

In this talk, we target Iind(L) (easier to compute than I(L)) and call
it the Invariant Ideal of the loop L. Same goal as in the preprint (Bin
Wu, Liyong Shen, Min Wu, Zhengfeng Yang & Zhenbing Zeng, 2011).
We also want to avoid computing closed forms of loop variables, while

• not making any assumptions on the shape of the polynomial invariants,
• and avoiding an intensive use of expensive algebraic computations

other than linear algebra, for which costs are predictable.

In (Sankaranarayanan, Sipma & Manna, SIGPLAN 2004) (Y. Chen,
B. Xia, L. Yang, & N. Zhan, FMHRTS 2007) (D. Kapur Deduction
and Applications 2005) template polynomials are used. Morever, the
latter two use real QE.
The ”abstract interpretation” method (E. Rodriguez-Carbonell & D.
Kapur, Science of Computer Programming 2007) does not use
templates but uses of Gröbner bases heavily.
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D. Kapur, ISSAC04) and (L. Kovács, TACAS08) focus on Iabs(L).
In this talk, we target Iind(L) (easier to compute than I(L)) and call
it the Invariant Ideal of the loop L. Same goal as in the preprint (Bin
Wu, Liyong Shen, Min Wu, Zhengfeng Yang & Zhenbing Zeng, 2011).
We also want to avoid computing closed forms of loop variables, while

• not making any assumptions on the shape of the polynomial invariants,
• and avoiding an intensive use of expensive algebraic computations

other than linear algebra, for which costs are predictable.

In (Sankaranarayanan, Sipma & Manna, SIGPLAN 2004) (Y. Chen,
B. Xia, L. Yang, & N. Zhan, FMHRTS 2007) (D. Kapur Deduction
and Applications 2005) template polynomials are used. Morever, the
latter two use real QE.
The ”abstract interpretation” method (E. Rodriguez-Carbonell & D.
Kapur, Science of Computer Programming 2007) does not use
templates but uses of Gröbner bases heavily.
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Preliminaries Poly-geometric summations

Poly-geometrical expression

Notations

Let α1, . . . , αk be k elements of Q∗ \ {1}. Let n be a variable taking
non-negative integer values. We regard n, αn1 , . . . , α

n
k as independent

variables and we call αn1 , . . . , α
n
k n-exponential variables.

Definition

Any f ∈ Q[n, αn1 , . . . , α
n
k ] is called a poly-geometrical expression in n over

Q w.r.t. α1, . . . , αk. For such an f , we denote by f |n=i the evaluation of
f at i. For such f, g we write f = g whenever f |n=i = g|n=i holds for all i.
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Canonical form of a poly-geometrical expression

Definition

We say that f ∈ Q[n, αn1 , . . . , α
n
k ] is in canonical form if there exist

(1) c1, . . . , cm ∈ Q∗, and

(2) pairwise different couples (β1, e1), . . . , (βm, em) all in
(Q∗ \ {1})× Z≥0, and

(3) a polynomial c0(n) ∈ Q[n], such that

(4) each β1, . . . , βm is a product of some of the α1, . . . , αk and such that

(5) f(n) and
∑m

i=1 ci β
n
i n

ei + c0(n) are equal.

When this holds, the polynomial c0(n) is the exponential-free part of f(n).

Proposition

Let f a poly-geometrical expression in n over Q w.r.t. α1, . . . , αk. There
exists a unique poly-geometrical expression c in n over Q w.r.t. α1, . . . , αk
such that c is in canonical form and such that f and c are equal. We call c
the canonical form of f .



Preliminaries Poly-geometric summations

Examples of poly-geometrical expressions

Example

The closed form f := (n+1)2 n2

4 of
∑n

i=0 i
3 is a poly-geometrical expression

in n over Q without n-exponential variables.

Example

The expression g := n2 2(n+1) − n 2n 3
n
2 is a poly-geometrical in n over Q

w.r.t. 2,
√

3.

Example

The sum
∑n−1

i=1 i
k has n− 1 terms while its closed form below∑k

i=1

{
k
i

}
ni+1

i+1 ,

where
{
k
i

}
the number of ways to partition k into i non-zero summands,

has a fixed number of terms and thus is poly-geometrical in n over Q.
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Multiplicative relation ideal

Definition

Let A := (α1, . . . , αk) be a sequence of k non-zero elements of Q. Let
e := (e1, . . . , ek) be a sequence of k integers. We say that e is a multiplicative
relation on A if

∏k
i=1 α

ei
i = 1 holds. Such a relation is said non-trivial if there

exists i ∈ {1, . . . , n} s. t. ei 6= 0 holds. If there exists a non-trivial
multiplicative relation on A, we say that A is multiplicatively dependent;
otherwise, we say that A is multiplicatively independent. All multiplicative
relations of A form the multiplicative relation lattice on A,

Definition

Let A := (α1, . . . , αk) be a sequence of k elements of Q. Assume w.l.o.g. that
for some `, with 1 ≤ ` ≤ k, we have α1 6= 0, . . . , α` 6= 0, α`+1 = · · · αk = 0.
We associate each αi with a “new” variable yi. The binomial ideal
MRI(A; y1, . . . , yk) of Q[y1, y2, . . . , yk] generated by

{
∏

j∈{1,...,`}, vj>0

y
vj
j −

∏
i∈{1,...,`}, vi<0

y−vii | (v1, . . . , v`) ∈ Z},

and {y`+1, . . . , yk}, where Z is the multiplicative relation lattice.
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Multiplicative relation ideal: example

Definition

Let A := (α1, . . . , αk) be a sequence of k elements of Q. Assume w.l.o.g.
that for some `, with 1 ≤ ` ≤ k, we have α1 6= 0, . . . , α` 6= 0,
α`+1 = · · · αk = 0. We associate each αi with a “new” variable yi. The
binomial ideal MRI(A; y1, . . . , yk) of Q[y1, y2, . . . , yk] generated by

{
∏

j∈{1,...,`}, vj>0

y
vj
j −

∏
i∈{1,...,`}, vi<0

y−vii | (v1, . . . , v`) ∈ Z},

and {y`+1, . . . , yk}, where Z is the multiplicative relation lattice.

Example

Consider A = (1/2, 1/3,−1/6, 0). The multiplicative relation lattice of
(1/2, 1/3,−1/6) is generated by (2, 2,−2). Thus the MRI of A associated
with y1, y2, y3, y4 is

〈y21y22 − y23, y4〉.
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Weak multiplicative independence

Definition

Let A := (α1, . . . , αk) be a sequence of k non-zero algebraic numbers over
Q and let β ∈ Q. We say β is weakly multiplicatively independent w.r.t.
A, if there exist no non-negative integers e1, e2, . . . , ek such that
β =

∏k
i=1 α

ei
1 holds.

Furthermore, we say that A is weakly multiplicatively independent if

(i) α1 6= 1 holds, and

(ii) αi is weakly multiplicatively independent w.r.t.
{α1, . . . , αi−1, 1}, for all i = 2, . . . , s.
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Degree estimates for x satisfying x(n+ 1) = λx(n) + h(n)

Lemma

Let α1, . . . , αk ∈ Q \ {0, 1}. Let λ ∈ Q \ {9}. Let h(n) ∈ Q[n, αn1 , . . . , α
n
k ].

Consider the following single-variable recurrence relation R:

x(n+ 1) = λx(n) + h(n).

Then, there exists s(n) ∈ Q[n, αn1 , . . . , α
n
k ] such that we have

deg(s(n), αni ) ≤ deg(h(n), αni ) and deg(s(n), n) ≤ deg(h(n), n) + 1,

and such that

if λ = 1 holds, then s(n) solves R,
if λ 6= 1 holds, then there exists a constant c depending on x(0) (that is,
the initial value of x) such that c λn + s(n) solves R.

Moreover, in both cases, if the exponential-free part of the canonical form of
( 1
λ)n h(n) is 0, then deg(s(n), n) ≤ deg(h(n), n). can be required.

This latter hypothesis holds as soon as λ is weakly multiplicatively
independent w.r.t. α1, . . . , αk
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Preliminaries A variation on Bezout’s Theorem

Degree of an algebraic variety

Notations

Let K be an algebraically closed field. Let F ⊂ K[x1, x2, . . . , xs]. We
denote by VKs(F ) (or simply by V (F ) when no confusion is possible) the
zero set in Ks of F .

Definition

Let V ⊂ Ks be an r-dimensional equidimensional algebraic variety. The
number of points of intersection of V with an (n− r)-dimensional generic
linear subspace L ⊂ Ks is called the degree of V , denoted by deg(V ).

The degree of a non-equidimensional variety is defined to be the sum of
the degrees of its equidimensional components.

The degree of an ideal I ⊆ K[x1, x2, . . . , xs] is defined to be the degree of
the variety of I in Ks.
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A few well-known properties

Lemma

Let V ⊂ Ks be an r-dimensional equidimensional algebraic variety of degree
δ. Let L be an (n− r)-dimensional linear subspace. Then, L ∩ V is either
of positive dimensional or consists of no more than δ points.

Lemma

Let V ⊂ Ks be a algebraic variety. Let L be a linear map from Ks to Kk.
Then we have deg(L(V )) ≤ deg(V ).

Lemma (J. Heintz. Theor. Comput. Sci., 1983)

Let I ⊂ Q[x1, x2, . . . , xs] be a radical ideal of degree δ. Then there exist
finitely many polynomials in Q[x1, x2, . . . , xs] generating I and such that
each of this polynomial has total degree less than or equal to δ.

Lemma

Let V,W, V1, . . . , Ve ⊂ Ks be algebraic varieties s. t. V := W ∩ ∩ei=1 Vi
holds with dim(W ) = r. Then we have

deg(V ) ≤ deg(W ) max({deg(Vi) | i = 1 · · · e})r.
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A variation on Bezouts Theorem

Proposition

Let X = x1, x2, . . . , xs and Y = y1, y2, . . . , yt be pairwise different
s+ t variables.

Let M be an ideal in Q[Y ] of degree dM and dimension r.

Let f1, f2, · · · , fs be s polynomials in Q[Y ], with maximum total
degree df .

Denote by I the ideal 〈x1 − f1, x2 − f2, . . . , xs − fs〉.

Then, we have

deg(I +M) ≤ dM df
r.

Remark

Since I +M is an ideal of Q[X,Y ], a direct application of one of the
previous lemmas gives

deg(I +M) ≤ dM df
s+r.
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This bound is tight

Example

Consider the polynomials of Q[x, y, n,m]

g1 := x− n2 − n−m and g2 := y − n3 − 3n+ 1

and the ideals

M := 〈n2 −m3〉 and J := M + 〈g1, g2〉

With the notations of the proposition we have

dM := 3, r := 1 and df := 3

Thus the estimated degree is 3× 3. Meanwhile, the true degree of J is
indeed 9, which is computed as the (linear space) dimension of

Q(a, b, c, d, e)[x, y,m, n]/(J + 〈a x+ b y + c n+ dm+ e〉),

where a, b, c, d, e are indeterminates.
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The univariate case: recall

Definition

Given a recurrence R : x(n+ 1) = λx(n) + h(n) in Q, if h(n) is a
poly-geometrical expression in n over Q, then R is called a univariate
P -solvable recurrence.



Invariant ideal of P -solvable recurrences P -solvable recurrences

The multivariate case: setting

Let n1, . . . , nk be positive integers and define s := n1 + · · ·+ nk. Let M
be a block-diagonal square matrix over Q of order s, with shape:

M :=


Mn1×n1 0n1×n2

. . . 0n1×nk

0n2×n1 Mn2×n2

. . . 0n2×nk

. . .
. . .

. . .
. . .

0nk×n1 0nk×n2

. . . Mnk×nk

 .

Consider an s-variable recurrence relation R in x1, x2, . . . , xs, with shape:
x1(n+ 1)
x2(n+ 1)

...
xs(n+ 1)

 = M ×


x1(n)
x2(n)

...
xs(n)

+


f1n1×1
f2n2×1

...
fknk×1

 ,

where f1 is a vector of length n1 with coordinates in Q and where fi is a
tuple of length ni with coordinates in the polynomial ring
Q[x1, . . . , xn1+···+ni−1 ], for i = 2, . . . , k.
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The multivariate case: definition

Setting (recall)
x1(n+ 1)
x2(n+ 1)

...
xs(n+ 1)

 = M ×


x1(n)
x2(n)

...
xs(n)

+


f1n1×1
f2n2×1

...
fknk×1

 ,

where f1 is a vector over Q of length n1 and where fi is a tuple of length
ni with coordinates in Q[x1, . . . , xn1+···+ni−1 ], for i = 2, . . . , k.

Definition

Then, the recurrence relation R is called P -solvable over Q and the matrix
M is called the coefficient matrix of R.

The notion of P -solvable recurrence is equivalent to that of solvable
mapping in (E. Rodriguez-Carbonell & D. Kapur, ISSAC04) or that of
solvable loop in (L. Kovocs TACAS08) the respective contexts.
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Invariant ideal of P -solvable recurrences
Degree estimates for solutions of P -solvable

recurrences

Degree estimates for solutions of P -solvable recurrences: theorem

Assume M is in a Jordan normal form. Assume the eigenvalues λ1, . . . , λs
of M (counted with multiplicities) are different from 0, 1, with λi being
the i-th diagonal element of M . Assume for each block j the total degree
of any polynomial in fj (for i = 2 · · · k) is upper bounded by dj . For each
i, we denote by b(i) the block number of the index i, that is,∑b(i)−1

j=1 nj < i ≤
∑b(i)

j=1 nj .

Let D1 := n1 and for allj ∈ {2, . . . , k} let Dj := dj Dj−1 + nj . Then,
there exists a solution (y1, y2, . . . , ys) for R of the following form:

yi := ciλ
n
i + gi, i = 1 · · · s where

(a) ci is a constant depending only on the initial value of the recurrence;
(b) gi is a poly-geometrical expression in n w.r.t. λ1, . . . , λi−1, such that

deg(gi) ≤ Db(i).

Moreover, if {λ1, . . . , λs} is weakly multiplicatively independent, then, for
all i = 1, . . . , k, we can further choose yi such that we have

deg(gi, n) = 0 and deg(gi) ≤
∏

2≤t≤b(i) max(dt, 1).
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recurrences

Degree estimates for solutions of P -solvable recurrences: example

Consider the recurrence: x(n+ 1)
y(n+ 1)
z(n+ 1)

 :=

 2 0 0
0 3 0
0 0 3

 ×
 x(n)

y(n)
z(n)

 +

 0
x(n)2

x(n)3


Viewing the recurrence as two blocks (x) and (y, z), the degree upper
bounds are

D1 := n1 = 1 and D2 := d2D1 + n2 = 3× 1 + 2.

If we decouple the (y, z) block to the following two recurrences

y(n+ 1) = 3 y(n) + x(n)2 and z(n+ 1) = 3 z(n) + x(n)3,

then we deduce that the degree of the poly-geometrical expression for y
and z are upper bounded by 2 and 3 respectively.



Invariant ideal of P -solvable recurrences
Degree estimates for solutions of P -solvable

recurrences

Degree estimates: reduction to the Jordan normal form case

Let Q be a non-singular matrix such that J := QM Q−1 is a Jordan form
of M . Let the original recurrence R be

X(n+ 1) = M X(n) + F.

Consider the following recurrence RQ

Y (n+ 1) = J Y (n) +QF.

It is easy to check that if

(y1(n), y2(n), . . . , ys(n))

solves RQ, then
Q−1 (y1(n), y2(n), . . . , ys(n))

solves R. Note that an invertible matrix over Q maps a tuple of
poly-geometrical expressions to another tuple of poly-geometrical
expressions; moreover it preserves the highest degree among the
expressions in the tuple.



Invariant ideal of P -solvable recurrences Degree estimates for their invariant ideal

Plan

1 Preliminaries
Notions on loop invariants
Poly-geometric summations
A variation on Bezout’s Theorem

2 Invariant ideal of P -solvable recurrences
Degree estimates for solutions of P -solvable recurrences
P -solvable recurrences
Degree estimates for solutions of P -solvable recurrences
Degree estimates for their invariant ideal
Dimension estimates for their invariant ideal

3 Loop invariant generation via polynomial interpolation
A direct approach
A modular method
Experimentation
Maple Package: ProgramAnalysis



Invariant ideal of P -solvable recurrences Degree estimates for their invariant ideal

Degree estimates for the invariant ideal: theorem

Let R be a P -solvable recurrence relation with variables
(x1, x2, . . . , xs).

Let I ⊂ Q[x1, x2, . . . , xs] be the invariant ideal of R.

Let A = α1, α2, . . . , αs be the eigenvalues (counted with
multiplicities) of the coefficient matrix of R.

Let M be the multiplicative relation ideal of A associated with
variables y1, . . . , yk. Let r be the dimension of M.

Let f1(n, α
n
1 , . . . , α

n
k), . . . , fs(n, α

n
1 , . . . , α

n
k) be s poly-geometrical

expressions in n w.r.t. α1, α2, . . . , αs solving R.

Suppose R has a k-block configuration as (n1, 1), . . . , (nk, dk).

Let D1 := n1; and for all j ∈ {2, . . . , k}, let Dj := dj Dj−1 + nj .

Then, we have

deg(I) ≤ deg(M)Dr+1
k .

Moreover, if the degrees of n in fi, for i = 1 · · · s, are all 0, then we have

deg(I) ≤ deg(M)Dr
k.
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Degree estimates for the invariant ideal: example

Consider again solving for (x, y) as a 2-variable recurrence

x(n+ 1) = y(n), y(n+ 1) = x(n) + y(n), with x(0) = 0, y(0) = 1.

Recall that we obtained

x(n) =
(
√
5+1
2

)n√
5
− (−

√
5+1
2

)n√
5

,

y(n) =
√
5+1
2

(
√
5+1
2

)n√
5
− −

√
5+1
2

(−
√
5+1
2

)n√
5

.

Observe that A := −
√
5+1
2 ,

√
5+1
2 is weakly multiplicatively independent.

The multiplicative relation ideal of A associated with variables u, v is
generated by u2v2 − 1 and thus has degree 4 and dimension 1 in Q[u, v].
Therefore, the previous theorem implies that the degree of invariant ideal
bounded by 4× 11. This is sharp since this ideal is

〈1− y4 + 2xy3 + x2y2 − 2x3y − x4〉.
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Dimension estimates for the invariant ideal: theorem

Theorem

Using the same notations as in the definition of P -solvable recurrences.

Let λ1, λ2, . . . , λs be the eigenvalues of M counted with multiplicities.
Let M be the multiplicative relation ideal of λ1, λ2, . . . , λs.
Let r be the dimension of M. Let I be the invariant ideal of R.

Then, we have

dim(I) ≤ r + 1.

Moreover, for generic initial values,

1 we have r ≤ dim(I),
2 if 0 is not an eigenvalue of M and λ1, λ2, . . . , λs is weakly multiplicatively

independent, then we have r = dim(I).

Corollaries

1 If r + 1 < s holds, then I is not the zero ideal in Q[x1, x2, . . . , xs].
2 Assume that x1(0) := a1, . . . , xs(0) := as are independent indeterminates. If

the eigenvalues of R are multiplicatively independent, then the inductive
invariant ideal of the loop is the zero ideal in Q[a1, . . . , as, x1, x2, . . . , xs].
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Dimension estimates for the invariant ideal: example 1

Consider the recurrence:

(x(n+ 1), y(n+ 1)) := (3x(n) + y(n), 2 y(n))

with x(0) = a, y(0) = b.

On one hand, the two eigenvalues are 2 and 3 which are multiplicatively
independent.

Therefore, using the previous corollary, the invariant ideal of the
corresponding loop is trivial.

On the other hand, for loop variables (a, b, x, y), the reachable set of the
loop is

R := {(a, b, (a+b) 3i−b 2i, b 2i) | (a, b) ∈ Q2, i is a non-negative integer}.

Therefore, any polynomial vanishes on all points of R must be 0.
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Dimension estimates for the invariant ideal: example 2

Consider the linear recurrence

x(n+ 1) = 3x(n)− y(n), y(n+ 1) = 2 y(n)

with (x(0), y(0)) = (a, b).

The eigenvalues of the coefficient matrix are 2, 3, which are
multiplicatively independent.

One can check that, when a = b, the invariant ideal is generated by x− y.

However, generically, that is when a 6= b holds, the invariant ideal is the
zero ideal.
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Loop model under study: recall

while C0 do
if C1

then
X := A1(X);

elif C2

then
X := A2(X);

· · ·
elif Cm
then

X := Am(X);
end if

end while

1 Loop variables: X = x1, . . . , xs,
rational value scalar

2 Conditions: each Ci is a quantifier free
formula in X over Q.

3 Assignments: Ai ∈ Q[X] inducing a
polynomial map Mi : Rs 7→ Rs

4 Initial condition: X-values defined by a
semi-algebraic system.
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A direct approach

Input

(i) M := m1,m2, . . . ,mc is a sequence of monomials in the loop variables
X,

(ii) S := s1, s2, . . . , sr is a set of r points on the inductive trajectory of the
loop,

(iii) E is a polynomial system defining the loop initial values,
(iv) B is the transitions (C1, A1), . . . , (Cm, Am) of the loop.

Algorithm

1 L := BuildLinSys(M,S)
2 N := LinSolve(L) is full row rank and generates the null space of L.
3 F := ∅
4 For each row vector v ∈ N do

F := F ∪ {GenPoly(M,v)}
5 If Z(E) 6⊆ Z(F ) then return FAIL
6 For each branch (Ci, Ai) ∈ B do

if Ai(Z(F ) ∩ Z(Ci)) 6⊆ Z(F ) then return FAIL
7 Return F , a list of polynomial equation invariants for the target loop.
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A small-prime approach: algorithm

Algorithm

1 p := MaxMachinePrime(); Lp := BuildLinSysModp(M,S, p);
2 Np := LinSolveModp(Lp, p)
3 d := dim(Np); N := (Np); P := (p);
4 While p > 2 do

1 If d = 0 then return FAIL
2 N := RatRecon(N,P)
3 If N 6= FAIL then break;
4 p := PrevPrime(p); Lp := BuildLinSysModp(M,S, p);
Np := LinSolveModp(Lp, p)

5 If d > dim(Np) then d := dim(Np); N := (Np); P := (p)
6 else N := Append(N, Np); P := Append(P, p)

5 If p = 2 then return FAIL
6 F := ∅
7 For each row vector v ∈ N do

F := F ∪ {GenPoly(M,v)}
8 If Z(E) 6⊆ Z(F ) then return FAIL
9 For each branch (Ci, Ai) ∈ B do

if Ai(Z(F ) ∩ Z(Ci)) 6⊆ Z(F ) then return FAIL
10 Return F , a list of polynomial equation invariants for the target loop.
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A small-prime approach: complexity result

Proposition

Both algorithms run in singly exponential time w.r.t. number of loop
variables.

Indeed

the number of monomials of M is singly exponential w.r.t. number of
loop variables.

applying our criterion to certify the result can be reduced to an ideal
membership problem, which is singly exponential w.r.t. number of
loop variables.
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A small-prime approach: example

Consider the following recurrence relation on (x, y, z): x(n+ 1)
y(n+ 1)
z(n+ 1)

 =

 0 0 1
1 0 −3
0 1 3

  x(n)
y(n)
z(n)


with initial value (x(0), y(0), z(0)) = (1, 2, 3).

Note that the characteristic polynomial of the coefficient matrix has 1
as a triple root and the mult. rel. ideal of the eigenvalues is
0-dimensional.
So the invariant ideal of this recurrence has dimension either 0 or 1.
On the other hand, we can show that for all k ∈ N, we have
Mk 6= M ; so there are infinitely many points in the set
{(x(k), y(k), z(k)) | k ∈ N}, whenever (x(0), y(0), z(0)) 6= (0, 0, 0).
With our method, we compute the following invariant polynomials

x+ y + z − 6, y2 + 4yz + 4z2 − 6y − 24z + 20,

which generate a prime ideal of dimension 1, thus the invariant ideal
of this recurrence.
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Implementation of the small-prime approach

In Maple using LinearAlgebra and RegularChains.

The interpolation part is done naively: the template set M consists
of all monomials up to the target degree.

A sparse interpolation scheme is work in progress.

We handle semi-algebraic condiitons thenks to
RegularChains:-SemiAlgebraicSetTools

We have applied our code to all example programs used in (E.
Rodriguez-Carbonell & D. Kapur, 2007):

• We are able to find the loop invariants by trying total degree up to 4
for most loops within 60 seconds.

• In each case, we return a system of generators of the invariant ideal,
though we do not have a proof for that fact.
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Benchmarks procedure

“# vars” is the number of loop variables,
“deg” is the total degree tried for the methods which use a degree bound,
“PI” is the timing of the our method,
“AI” (Abstract Interpretation) is the timing of the method described in
(E. Rodriguez-Carbonell & D. Kapur, TCS 2007)
“FP” (ideal fix point, direct use of Gröbner basis techniques) is the timing
of the method described in (E. Rodriguez-Carbonell & D. Kapur, JSC
2007)
“SE” (solving and elimination , direct use of Gröbner basis techniques) is
the timing of the method described in (L. Kovocs TACAS08) and
implementated in the software ALIGATOR.
The time unit is the second;
the “NA” symbol in a time field means that the related method does
support the input program;
the “FAIL” symbol in a time field means that the output is not “correct”.
All the tests were done using an Intel Core 2 Quad CPU 2.40GHz with
8.0GB memory.
Computations of multiplicative relation lattice were done (not needed for
“PI”) on the same machine with GAP 4.4.12 + Alnuth 2.3.1 + KASH
2.5.
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Timings

prog.1 # vars deg PI AI FP SE

cohencu 4 3 0.6 0.93 0.28 0.13
cohencu 4 2 0.06 0.76 0.28 0.13
fermat 5 4 3.74 0.79 0.37 0.1
prodbin 5 3 1.4 0.74 0.36 0.13
rk07 6 3 3.1 2.23 NA 0.35
kov08 3 3 0.2 0.57 0.22 0.01
sum5 4 5 12 1.60 2.25 0.162

wensley2 3 3 0.4 0.84 0.39 0.21
int-factor 6 3 60.9 1.28 160.7 0.9
fib(coupled) 4 4 2.4 0.71 NA NA
fib(decoupled) 6 4 4.3 1.28 160.7 FAIL
non-inv2* 4 3 1.2 3.83 NA FAIL
coupled-5-1* 4 4 1.1 9.58 NA NA
coupled-5-2* 5 4 5.38 15.8 NA NA
mannadiv 3 3 0.1 0.83 NA 0.04
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ProgramAnalysis: package architecture
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Maple session: the input program in a file
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Maple session: the sample points
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Maple session: verifying the program
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Xie Xie!
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