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Abstract

Consider the Rosenfeld-Groebner algorithm for computing a regular decomposi-

tion of a radical differential ideal. We propose a bound on the orders of derivatives

occurring in all intermediate and final systems computed by this algorithm. We also

reduce the problem of conversion of a regular decomposition of a radical differential

ideal from one ranking to another to a purely algebraic problem.
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1 Introduction

Consider the ring of ordinary differential polynomials k{Y }, where k is a differential field
of characteristic 0 with derivation δ, and Y = {y1, . . . , yn} is a set whose elements are
called differential indeterminates. Let F ⊂ k{Y } be a set of differential polynomials,
then [F ] and {F} denote the differential and radical differential ideals generated by F in
k{Y }, respectively. A differential ideal may not have a finite generating system, while
a radical differential ideal always has one according to the Basis Theorem [13]. One of
the central problems in constructive differential algebra is the problem of computing a
canonical representation for a radical differential ideal.

The problem, in general, remains open, but an important contribution to it is provided
by the Rosenfeld-Gröbner algorithm [2]. This algorithm inputs a set of differential poly-
nomials F and a ranking [9] on the set of derivatives of the indeterminates. By applying
differential pseudo-reductions [13, 9] to the elements of F and considering their initials
and separants HF (these operations depend on the ranking), the algorithm constructs
finitely many systems of the form Fi = 0, Hi 6= 0, where Fi, Hi ⊂ k{Y }, i = 1, . . . ,m. At
any intermediate step of the algorithm, these systems are equivalent to F : each solution of
F = 0 is a solution of Fi = 0, Hi 6= 0 for some i and vice versa. The algorithm terminates
when all systems Fi = 0, Hi 6= 0 become regular [2]. The resulting regular decomposi-
tion {F} =

⋂m

i=1[Fi] : H∞
i solves the membership problem for {F} [2]: f ∈ {F} iff the
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differential pseudo-remainder of f w.r.t. Fi belongs to the algebraic ideal (Fi) : H∞
i , for

all i ∈ {1, . . . ,m}.
Computational complexity of the Rosenfeld-Gröbner algorithm is an open problem.

Yet for the corresponding algebraic problem of computing a regular decomposition of a
radical algebraic ideal in k[Y ], bounds on complexity are known [15]. Thus, the first natu-
ral step towards obtaining complexity bounds in the differential case would be estimating
the orders of derivatives occurring in the polynomials computed by the Rosenfeld-Gröbner
algorithm. For systems of linear differential polynomials and systems of two differential
polynomials in two indeterminates, Ritt [12] has proved that the Jacobi bound on the or-
ders holds. The Rosenfeld-Gröbner algorithm was discovered later, but Ritt’s techniques
provide the starting point for our analysis of this algorithm.

2 Bound on the orders of derivatives

Our first result provides a bound for the orders of derivatives occurring in the systems
Fi = 0, Hi 6= 0 (for an arbitrary ranking). Let mi(F ) be the maximal order of a derivative
of the i-th indeterminate occurring in F , and let

M(F ) =
n∑

i=1

mi(F ).

We propose a modification of the Rosenfeld-Gröbner algorithm, in which for every inter-
mediate system Fi = 0, Hi 6= 0, we have

M(Fi ∪ Hi) ≤ (n − 1)!M(F ).

Given a set F of differential polynomials and a ranking, the conventional Rosenfeld-
Gröbner algorithm at first computes a characteristic set C of F , i.e., an autoreduced
subset of F of the least rank. We replace this computation by that of a weak d-triangular
subset of F of the least rank, which we call a weak characteristic set of F . A set C ⊂
k{Y }\k is called a weak d-triangular set [8, Definition 3.7], if the set of its leaders ld C is
autoreduced. In the ordinary case, C is a weak d-triangular set if and only if the leading
differential indeterminates lv f , f ∈ C, are all distinct. The differential pseudo-remainder
of a polynomial f w.r.t. a weak d-triangular set C is defined via [8, Algorithm 3.13]. Weak
characteristic sets satisfy the following property essential for the proof of our bound:

Lemma 1 Let F be a set of differential polynomials, and let C be a weak characteristic

set of F . Then lv C = lv F .

Second, the Rosenfeld-Gröbner algorithm computes the differential pseudo-remainders of
F \ C w.r.t. C. The orders of derivatives of non-leading indeterminates (i.e., those not
in lv C) occurring in these pseudo-remainders may be higher than those in F (unless
the chosen ranking is orderly). In order to control this growth of orders, we construct a
differential prolongation of the weak characteristic set C, i.e., an algebraically triangular
set B such that the differential pseudo-reduction of F \C w.r.t. C can be replaced by the
algebraic pseudo-reduction w.r.t. B. We give the specification of the algorithm computing
the differential prolongation, leaving out the details of the computation:
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Algorithm Differentiate&Autoreduce(C, {mi})

Input: a weak d-triangular set C = C1, . . . , Ck with ld C = y
(d1)
1 , . . . , y

(dk)
k ,

and a set of non-negative integers {mi}
k
i=1, mi ≥ mi(C)

Output: set B = {Bj
i | 1 ≤ i ≤ k, 0 ≤ j ≤ mi − di} satisfying

rk B
j
i = rk C

(j)
i

B ⊂ [B0] ⊂ [C] ⊂ [B] : H∞
B

, where B
0 = {B0

i | 1 ≤ i ≤ k}
HB ⊂ H∞

C
+ [C], H∞

B
HC ⊂ H∞

B
+ [B]

B
j
i are partially reduced w.r.t. C \ {Ci}

mi(B) ≤ mi(C) +
∑k

j=1(mj − dj), i = k + 1, . . . , n

or {1}, if it is detected that [C] : H∞
C

= (1)

We obtain the following modification of the Rosenfeld-Gröbner algorithm:

Algorithm RGBound(F0, H0)
Input: sets of differential polynomials F0, H0

Output: a set T of regular systems such that {F0} : H∞
0 =

⋂
(A,H)∈T

[A] : H∞,

M(A ∪ H) ≤ (n − 1)!M(F0 ∪ H0) for (A, H) ∈ T.

T := ∅, U := {(F0, ∅, H0)}
while U 6= ∅ do

Take and remove any (F, C, H) ∈ U

f := an element of F of the least rank
D := {C ∈ C | lv C = lv f}
G := F ∪ D \ {f}
C̄ := C \ D ∪ {f}
B :=Differentiate&Autoreduce(C̄, {mi(G ∪ C̄ ∪ H) | yi ∈ lv C̄})
if B 6= {1} then

F̄ := algrem(G, B) \ {0}
H̄ := algrem(H, B) ∪ HB

if F̄ ∩ k = ∅ and 0 6∈ H̄ then

if F̄ = ∅ then T := T ∪ {(B0, H̄)} else U := U ∪ {(F̄ , C̄, H̄)}
U := U ∪ {(F ∪ {h}, C, H) | h ∈ Hf \ K}

end while

return T

3 Algebraic conversion of characteristic sets

Our second result is a reduction of the problem of conversion of a regular decomposition
of a radical differential ideal from one ranking to another to a purely algebraic problem.
For the algebraic case, efficient modular algorithms are currently being developed [4] and
implemented using the RegularChains library in Maple [10]; a parallel implementation
on a shared memory machine in Aldor is also in progress [11].

We note that each regular component [Fi] : H∞
i can be decomposed further into an

intersection of characterizable differential ideals [7] of the form Ij = [Cj] : H∞
Cj

, where Cj

is an autoreduced subset of Ij of the least rank (called a characteristic set [9] of Ij). Then
we obtain a characteristic decomposition {F} =

⋂t

j=1 Ij of the radical differential ideal.
A prime differential ideal I is characterizable w.r.t. any ranking, and for any character-

istic set C of I, we have I = [C] : H∞
C

. The minimal differential prime components (called

3



the essential prime components) of a characterizable ideal I = [C] : H∞
C

correspond to the
minimal prime components of the algebraic ideal (C) : H∞

C [7]: an autoreduced set A is
a characteristic set of a minimal prime of (C) : H∞

C
if and only if A is a characteristic set

of an essential prime component of I; the corresponding algebraic and differential prime
components are equal to (A) : H∞

A
and [A] : H∞

A
, respectively. Moreover, the leading

derivatives of A coincide with those of C.
We first consider a special case, when the given characterizable ideal I = [C] : H∞

C

is prime, and it is required to convert its characteristic set C from one ranking to another
(the problem of efficient conversion of characteristic sets of prime differential ideals from
one ranking to another has been addressed in [1, 3, 5]).

Given the orders of derivatives occurring in C, we provide a bound on the orders of
derivatives occurring in a characteristic set of I w.r.t. the target ranking. Based on [14,
Theorem 24] (if the target ranking is an elimination ranking) or [6, Theorem 6] (for an
arbitrary target ranking), we can show that a bound of n · max mi(C) holds.

Using this bound, we find a prime algebraic sub-ideal J ⊂ I, which contains a char-
acteristic set C̄ of I w.r.t. the target ranking. Then we compute the canonical algebraic
characteristic set of J w.r.t. the target ranking and extract from it the canonical charac-
teristic set of I.

We have carried out a preliminary implementation of this algorithm in Maple, using
the RegularChains library.

Now consider the general case, when we are given an arbitrary characterizable dif-
ferential ideal I = [C] : H∞

C
and need to compute its characteristic decomposition w.r.t.

another ranking. Since the essential prime components of I correspond to the minimal
primes of the algebraic ideal (C) : H∞

C
, and thus their characteristic sets can be computed

from C without applying differentiations, we have the bound M = n · max mi(C) for the
characteristic sets of the essential primes of I w.r.t. the target ranking.

Let d = maxf∈C(M − ord ld f), where ld f denotes the leading derivative of f w.r.t.
the initial ranking and ord ld f is its order, and let

C
(d) = {f (k) | f ∈ C, 0 ≤ k ≤ d}.

Applying a purely algebraic (and factorization-free) algorithm to the ideal J = (C(d)) : H∞
C

,
we compute its decomposition J ′

1∩ . . .∩J ′
l into algebraic “bi-characterizable” components,

i.e., ideals characterizable w.r.t. both initial and target rankings.
We observe that a component J ′

i , whose characteristic set w.r.t. the initial ranking
has a set of leaders distinct from ld C

(d), is a redundant component, i.e., J = ∩j 6=iJ
′
j.

So, we can assume that the characteristic sets of J ′
i have leaders equal to ld C

(d) for all
i = 1, . . . , l. We prove then that every minimal prime component Q of J ′

i is also a minimal
prime component of J , hence it corresponds to an essential prime component P of I.

Now, due to the choice of d, every minimal prime of J = (C(d)) : H∞
C

contains a
differential characteristic set of the corresponding essential prime of I w.r.t. any ranking.
We take the canonical algebraic characteristic set of J ′

i w.r.t. the target ranking and
extract from it the canonical characteristic set Bi of I ′

i. Since the essential primes of
I ′
i are those essential primes of I that contain the minimal primes of J ′

i , we obtain a
characteristic decomposition w.r.t. the target ranking:

I =
l⋂

i=1

I ′
i =

l⋂

i=1

[Bi] : H∞
Bi

.
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