Bounds and algebraic algorithms in differential algebra: the ordinary case ${ }^{1}$

Oleg Golubitsky
Ontario Research Centre for Computer Algebra
University of Western Ontario
London, Ontario
Canada, N6A 5B7
oleg.golubitsky@gmail.com
Marc Moreno Maza
Ontario Research Centre for Computer Algebra
University of Western Ontario
London, Ontario
Canada, N6A 5B7
moreno@orcca.on.ca

Marina V. Kondratieva
Department of Mechanics and Mathematics
Moscow State University
Leninskie gory, Moscow
Russia, 119992
kondra_m@shade.msu.ru

Alexey Ovchinnikov
Department of Mathematics
North Carolina State University
Raleigh, North Carolina
USA, 27695-8205
aiovchin@ncsu.edu

Abstract

Consider the Rosenfeld-Groebner algorithm for computing a regular decomposition of a radical differential ideal. We propose a bound on the orders of derivatives occurring in all intermediate and final systems computed by this algorithm. We also reduce the problem of conversion of a regular decomposition of a radical differential ideal from one ranking to another to a purely algebraic problem.

Keywords: differential algebra, characteristic sets, radical differential ideals, regular decomposition.

1 Introduction

Consider the ring of ordinary differential polynomials $\mathbf{k}\{Y\}$, where \mathbf{k} is a differential field of characteristic 0 with derivation δ, and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ is a set whose elements are called differential indeterminates. Let $F \subset \mathbf{k}\{Y\}$ be a set of differential polynomials, then $[F]$ and $\{F\}$ denote the differential and radical differential ideals generated by F in $\mathbf{k}\{Y\}$, respectively. A differential ideal may not have a finite generating system, while a radical differential ideal always has one according to the Basis Theorem [13]. One of the central problems in constructive differential algebra is the problem of computing a canonical representation for a radical differential ideal.

The problem, in general, remains open, but an important contribution to it is provided by the Rosenfeld-Gröbner algorithm [2]. This algorithm inputs a set of differential polynomials F and a ranking [9] on the set of derivatives of the indeterminates. By applying differential pseudo-reductions $[13,9]$ to the elements of F and considering their initials and separants H_{F} (these operations depend on the ranking), the algorithm constructs finitely many systems of the form $F_{i}=0, H_{i} \neq 0$, where $F_{i}, H_{i} \subset \mathbf{k}\{Y\}, i=1, \ldots, m$. At any intermediate step of the algorithm, these systems are equivalent to F : each solution of $F=0$ is a solution of $F_{i}=0, H_{i} \neq 0$ for some i and vice versa. The algorithm terminates when all systems $F_{i}=0, H_{i} \neq 0$ become regular [2]. The resulting regular decomposition $\{F\}=\bigcap_{i=1}^{m}\left[F_{i}\right]: H_{i}^{\infty}$ solves the membership problem for $\{F\}[2]: f \in\{F\}$ iff the

[^0]differential pseudo-remainder of f w.r.t. F_{i} belongs to the algebraic ideal $\left(F_{i}\right): H_{i}^{\infty}$, for all $i \in\{1, \ldots, m\}$.

Computational complexity of the Rosenfeld-Gröbner algorithm is an open problem. Yet for the corresponding algebraic problem of computing a regular decomposition of a radical algebraic ideal in $\mathbf{k}[Y]$, bounds on complexity are known [15]. Thus, the first natural step towards obtaining complexity bounds in the differential case would be estimating the orders of derivatives occurring in the polynomials computed by the Rosenfeld-Gröbner algorithm. For systems of linear differential polynomials and systems of two differential polynomials in two indeterminates, Ritt [12] has proved that the Jacobi bound on the orders holds. The Rosenfeld-Gröbner algorithm was discovered later, but Ritt's techniques provide the starting point for our analysis of this algorithm.

2 Bound on the orders of derivatives

Our first result provides a bound for the orders of derivatives occurring in the systems $F_{i}=0, H_{i} \neq 0$ (for an arbitrary ranking). Let $m_{i}(F)$ be the maximal order of a derivative of the i-th indeterminate occurring in F, and let

$$
M(F)=\sum_{i=1}^{n} m_{i}(F) .
$$

We propose a modification of the Rosenfeld-Gröbner algorithm, in which for every intermediate system $F_{i}=0, H_{i} \neq 0$, we have

$$
M\left(F_{i} \cup H_{i}\right) \leq(n-1)!M(F) .
$$

Given a set F of differential polynomials and a ranking, the conventional RosenfeldGröbner algorithm at first computes a characteristic set \mathbb{C} of F, i.e., an autoreduced subset of F of the least rank. We replace this computation by that of a weak d-triangular subset of F of the least rank, which we call a weak characteristic set of F. A set $\mathbb{C} \subset$ $\mathbf{k}\{Y\} \backslash \mathbf{k}$ is called a weak d-triangular set [8, Definition 3.7], if the set of its leaders ld \mathbb{C} is autoreduced. In the ordinary case, \mathbb{C} is a weak d-triangular set if and only if the leading differential indeterminates lv $f, f \in \mathbb{C}$, are all distinct. The differential pseudo-remainder of a polynomial f w.r.t. a weak d-triangular set \mathbb{C} is defined via [8, Algorithm 3.13]. Weak characteristic sets satisfy the following property essential for the proof of our bound:

Lemma 1 Let F be a set of differential polynomials, and let \mathbb{C} be a weak characteristic set of F. Then $\operatorname{lv} \mathbb{C}=\operatorname{lv} F$.

Second, the Rosenfeld-Gröbner algorithm computes the differential pseudo-remainders of $F \backslash \mathbb{C}$ w.r.t. \mathbb{C}. The orders of derivatives of non-leading indeterminates (i.e., those not in $\operatorname{lv} \mathbb{C}$) occurring in these pseudo-remainders may be higher than those in F (unless the chosen ranking is orderly). In order to control this growth of orders, we construct a differential prolongation of the weak characteristic set \mathbb{C}, i.e., an algebraically triangular set \mathbb{B} such that the differential pseudo-reduction of $F \backslash \mathbb{C}$ w.r.t. \mathbb{C} can be replaced by the algebraic pseudo-reduction w.r.t. \mathbb{B}. We give the specification of the algorithm computing the differential prolongation, leaving out the details of the computation:

```
Algorithm Differentiate\&Autoreduce \(\left(\mathbb{C},\left\{m_{i}\right\}\right)\)
    Input: a weak d-triangular set \(\mathbb{C}=C_{1}, \ldots, C_{k}\) with ld \(\mathbb{C}=y_{1}^{\left(d_{1}\right)}, \ldots, y_{k}^{\left(d_{k}\right)}\),
    and a set of non-negative integers \(\left\{m_{i}\right\}_{i=1}^{k}, m_{i} \geq m_{i}(\mathbb{C})\)
    Output: set \(\mathbb{B}=\left\{B_{i}^{j} \mid 1 \leq i \leq k, 0 \leq j \leq m_{i}-d_{i}\right\}\) satisfying
        rk \(B_{i}^{j}=\operatorname{rk} C_{i}^{(j)}\)
        \(\mathbb{B} \subset\left[\mathbb{B}^{0}\right] \subset[\mathbb{C}] \subset[\mathbb{B}]: H_{\mathbb{B}}^{\infty}\), where \(\mathbb{B}^{0}=\left\{B_{i}^{0} \mid 1 \leq i \leq k\right\}\)
        \(H_{\mathbb{B}} \subset H_{\mathbb{C}}^{\infty}+[\mathbb{C}], \quad H_{\mathbb{B}}^{\infty} H_{\mathbb{C}} \subset H_{\mathbb{B}}^{\infty}+[\mathbb{B}]\)
        \(B_{i}^{j}\) are partially reduced w.r.t. \(\mathbb{C} \backslash\left\{C_{i}\right\}\)
    \(m_{i}(\mathbb{B}) \leq m_{i}(\mathbb{C})+\sum_{j=1}^{k}\left(m_{j}-d_{j}\right), i=k+1, \ldots, n\)
    or \(\{1\}\), if it is detected that \([\mathbb{C}]: H_{\mathbb{C}}^{\infty}=(1)\)
```

We obtain the following modification of the Rosenfeld-Gröbner algorithm:

```
Algorithm RGBound \(\left(F_{0}, H_{0}\right)\)
Input: sets of differential polynomials \(F_{0}, H_{0}\)
Output: a set \(T\) of regular systems such that \(\left\{F_{0}\right\}: H_{0}^{\infty}=\bigcap_{(\mathbb{A}, H) \in T}[\mathbb{A}]: H^{\infty}\),
    \(M(\mathbb{A} \cup H) \leq(n-1)!M\left(F_{0} \cup H_{0}\right)\) for \((\mathbb{A}, H) \in T\).
\(T:=\varnothing, \quad U:=\left\{\left(F_{0}, \varnothing, H_{0}\right)\right\}\)
while \(U \neq \varnothing\) do
    Take and remove any \((F, \mathbb{C}, H) \in U\)
    \(f:=\) an element of \(F\) of the least rank
    \(D:=\{C \in \mathbb{C} \mid \operatorname{lv} C=\operatorname{lv} f\}\)
    \(G:=F \cup D \backslash\{f\}\)
    \(\overline{\mathbb{C}}:=\mathbb{C} \backslash D \cup\{f\}\)
    \(\mathbb{B}:=\) Differentiate\&Autoreduce \(\left(\overline{\mathbb{C}},\left\{m_{i}(G \cup \overline{\mathbb{C}} \cup H) \mid y_{i} \in \operatorname{lv} \overline{\mathbb{C}}\right\}\right)\)
    if \(\mathbb{B} \neq\{1\}\) then
        \(\bar{F}:=\operatorname{algrem}(G, \mathbb{B}) \backslash\{0\}\)
        \(\bar{H}:=\operatorname{algrem}(H, \mathbb{B}) \cup H_{\mathbb{B}}\)
        if \(\bar{F} \cap \mathbf{k}=\varnothing\) and \(0 \notin \bar{H}\) then
            if \(\bar{F}=\varnothing\) then \(T:=T \cup\left\{\left(\mathbb{B}^{0}, \bar{H}\right)\right\}\) else \(U:=U \cup\{(\bar{F}, \overline{\mathbb{C}}, \bar{H})\}\)
    \(U:=U \cup\left\{(F \cup\{h\}, \mathbb{C}, H) \mid h \in H_{f} \backslash K\right\}\)
end while
return \(T\)
```


3 Algebraic conversion of characteristic sets

Our second result is a reduction of the problem of conversion of a regular decomposition of a radical differential ideal from one ranking to another to a purely algebraic problem. For the algebraic case, efficient modular algorithms are currently being developed [4] and implemented using the RegularChains library in Maple [10]; a parallel implementation on a shared memory machine in Aldor is also in progress [11].

We note that each regular component $\left[F_{i}\right]: H_{i}^{\infty}$ can be decomposed further into an intersection of characterizable differential ideals [7] of the form $I_{j}=\left[\mathbb{C}_{j}\right]: H_{\mathbb{C}_{j}}^{\infty}$, where \mathbb{C}_{j} is an autoreduced subset of I_{j} of the least rank (called a characteristic set [9] of I_{j}). Then we obtain a characteristic decomposition $\{F\}=\bigcap_{j=1}^{t} I_{j}$ of the radical differential ideal.

A prime differential ideal I is characterizable w.r.t. any ranking, and for any characteristic set \mathbb{C} of I, we have $I=[\mathbb{C}]: H_{\mathbb{C}}^{\infty}$. The minimal differential prime components (called
the essential prime components) of a characterizable ideal $I=[\mathbb{C}]: H_{\mathbb{C}}^{\infty}$ correspond to the minimal prime components of the algebraic ideal $(\mathbb{C}): H_{C}^{\infty}[7]$: an autoreduced set \mathbb{A} is a characteristic set of a minimal prime of $(\mathbb{C}): H_{\mathbb{C}}^{\infty}$ if and only if \mathbb{A} is a characteristic set of an essential prime component of I; the corresponding algebraic and differential prime components are equal to $(\mathbb{A}): H_{\mathbb{A}}^{\infty}$ and $[\mathbb{A}]: H_{\mathbb{A}}^{\infty}$, respectively. Moreover, the leading derivatives of \mathbb{A} coincide with those of \mathbb{C}.

We first consider a special case, when the given characterizable ideal $I=[\mathbb{C}]: H_{\mathbb{C}}^{\infty}$ is prime, and it is required to convert its characteristic set \mathbb{C} from one ranking to another (the problem of efficient conversion of characteristic sets of prime differential ideals from one ranking to another has been addressed in $[1,3,5]$).

Given the orders of derivatives occurring in \mathbb{C}, we provide a bound on the orders of derivatives occurring in a characteristic set of I w.r.t. the target ranking. Based on [14, Theorem 24] (if the target ranking is an elimination ranking) or [6, Theorem 6] (for an arbitrary target ranking), we can show that a bound of $n \cdot \max m_{i}(\mathbb{C})$ holds.

Using this bound, we find a prime algebraic sub-ideal $J \subset I$, which contains a characteristic set $\overline{\mathbb{C}}$ of I w.r.t. the target ranking. Then we compute the canonical algebraic characteristic set of J w.r.t. the target ranking and extract from it the canonical characteristic set of I.

We have carried out a preliminary implementation of this algorithm in Maple, using the RegularChains library.

Now consider the general case, when we are given an arbitrary characterizable differential ideal $I=[\mathbb{C}]: H_{\mathbb{C}}^{\infty}$ and need to compute its characteristic decomposition w.r.t. another ranking. Since the essential prime components of I correspond to the minimal primes of the algebraic ideal $(\mathbb{C}): H_{\mathbb{C}}^{\infty}$, and thus their characteristic sets can be computed from \mathbb{C} without applying differentiations, we have the bound $M=n \cdot \max m_{i}(\mathbb{C})$ for the characteristic sets of the essential primes of I w.r.t. the target ranking.

Let $d=\max _{f \in \mathbb{C}}(M-\operatorname{ord} \operatorname{ld} f)$, where $\operatorname{ld} f$ denotes the leading derivative of f w.r.t. the initial ranking and ord $\operatorname{ld} f$ is its order, and let

$$
\mathbb{C}^{(d)}=\left\{f^{(k)} \mid f \in \mathbb{C}, 0 \leq k \leq d\right\} .
$$

Applying a purely algebraic (and factorization-free) algorithm to the ideal $J=\left(\mathbb{C}^{(d)}\right): H_{\mathbb{C}}^{\infty}$, we compute its decomposition $J_{1}^{\prime} \cap \ldots \cap J_{l}^{\prime}$ into algebraic "bi-characterizable" components, i.e., ideals characterizable w.r.t. both initial and target rankings.

We observe that a component J_{i}^{\prime}, whose characteristic set w.r.t. the initial ranking has a set of leaders distinct from $\operatorname{ld} \mathbb{C}^{(d)}$, is a redundant component, i.e., $J=\cap_{j \neq i} J_{j}^{\prime}$. So, we can assume that the characteristic sets of J_{i}^{\prime} have leaders equal to ld $\mathbb{C}^{(d)}$ for all $i=1, \ldots, l$. We prove then that every minimal prime component Q of J_{i}^{\prime} is also a minimal prime component of J, hence it corresponds to an essential prime component P of I.

Now, due to the choice of d, every minimal prime of $J=\left(\mathbb{C}^{(d)}\right): H_{\mathbb{C}}^{\infty}$ contains a differential characteristic set of the corresponding essential prime of I w.r.t. any ranking. We take the canonical algebraic characteristic set of J_{i}^{\prime} w.r.t. the target ranking and extract from it the canonical characteristic set \mathbb{B}_{i} of I_{i}^{\prime}. Since the essential primes of I_{i}^{\prime} are those essential primes of I that contain the minimal primes of J_{i}^{\prime}, we obtain a characteristic decomposition w.r.t. the target ranking:

$$
I=\bigcap_{i=1}^{l} I_{i}^{\prime}=\bigcap_{i=1}^{l}\left[\mathbb{B}_{i}\right]: H_{\mathbb{B}_{i}}^{\infty} .
$$

References

[1] F. Boulier. Efficient computation of regular differential systems by change of rankings using Kähler differentials. Technical report, Université Lille, 1999.
[2] F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Representation for the radical of a finitely generated differential ideal. In Proc. ISSAC'95, pages 158-166. ACM Press, 1995.
[3] F. Boulier, F. Lemaire, and M. Moreno Maza. PARDI! Technical report, LIFL, 2001.
[4] X. Dahan, X. Jin, M. Moreno Maza, and É Schost. Change of ordering for regular chains in positive dimension. In Ilias S. Kotsireas, editor, Maple Conference 2006, pages 26-43, 2006.
[5] O. Golubitsky. Gröbner walk for characteristic sets of prime differential ideals. In V. Ganzha, E. Mayr, and E. Vorozhtsov, editors, Proc. 7th Workshop on Comp. Alg. in Sc. Comp., pages 207-221. TU München, Germany, 2004.
[6] O. Golubitsky, M. Kondratieva, and A. Ovchinnikov. Canonical characteristic sets of characterizable differential ideals. Preprint, 2005.
[7] E. Hubert. Factorization-free decomposition algorithms in differential algebra. J. Symb. Comput., 29:641-662, 2000.
[8] E. Hubert. Notes on triangular sets and triangulation-decomposition algorithms II: Differential systems. In Symbolic and Numerical Scientific Computing 2001, pages 40-87, 2003.
[9] E.R. Kolchin. Differential Algebra and Algebraic Groups. Academic Press, 1973.
[10] F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains library. In Ilias S. Kotsireas, editor, Maple Conference 2005, pages 355-368, 2005.
[11] M. Moreno Maza and Y. Xie. Parallelization of triangular decomposition. In Proc. of Algebraic Geometry and Geometric Modeling'06, Spain, 2006. University of Barcelona.
[12] J.F. Ritt. Jacobi's problem on the order of a system of differential equations. The Annals of Mathematics, 36(2):303-312, 1935.
[13] J.F. Ritt. Differential Algebra. Dover, 1950.
[14] B. Sadik. A bound for the order of characteristic set elements of an ordinary prime differential ideal and some applications. Applicable Algebra in Engineering, Communication and Computing, 10(3):251-268, 2000.
[15] Á. Szántó. Computation with Polynomial Systems. PhD thesis, Cornell University, 1999.

[^0]: ${ }^{1}$ The work has been supported by the Russian Foundation for Basic Research, project no. 05-0100671, by NSF Grant CCR-0096842, by NSERC Grant PDF-301108-2004, and by NSERC Grant RGPIN Algorithms and software for triangular decompositions of algebraic and differential systems.

