
ARTICLE IN PRESS

Journal of Symbolic Computation () –
www.elsevier.com/locate/jsc

A bound for the Rosenfeld–Gröbner algorithmI

Oleg Golubitskya,1, Marina Kondratievab, Marc Moreno Mazaa,2,
Alexey Ovchinnikovc,3

a University of Western Ontario, Department of Computer Science, London, Ontario, Canada N6A 5B7
b Moscow State University, Department of Mechanics and Mathematics, Leninskie gory, Moscow, 119992, Russia

c North Carolina State University, Department of Mathematics, Raleigh, NC 27695-8205, USA

Received 24 April 2007; accepted 17 December 2007

Abstract

We consider the Rosenfeld–Gröbner algorithm for computing a regular decomposition of a radical
differential ideal generated by a set of ordinary differential polynomials in n indeterminates. For a set of
ordinary differential polynomials F , let M(F) be the sum of maximal orders of differential indeterminates
occurring in F . We propose a modification of the Rosenfeld–Gröbner algorithm, in which for every
intermediate polynomial system F , the bound M(F) 6 (n − 1)!M(F0) holds, where F0 is the initial
set of generators of the radical ideal. In particular, the resulting regular systems satisfy the bound. Since
regular ideals can be decomposed into characterizable components algebraically, the bound also holds for
the orders of derivatives occurring in a characteristic decomposition of a radical differential ideal.
c© 2008 Elsevier Ltd. All rights reserved.

Keywords: Differential algebra; Characteristic sets; Radical differential ideals; Decomposition into regular components

I The work was partially supported by the Russian Foundation for Basic Research, project no. 05-01-00671.
E-mail addresses: oleg.golubitsky@gmail.com (O. Golubitsky), kondrmar@rol.ru (M. Kondratieva),

moreno@csd.uwo.ca (M. Moreno Maza), aiovchin@math.uic.edu (A. Ovchinnikov).
URLs: http://publish.uwo.ca/∼ogolubit/ (O. Golubitsky), http://shade.msu.ru/∼kondra m/ (M. Kondratieva),

http://www.csd.uwo.ca/∼moreno/ (M. Moreno Maza), http://www.math.uic.edu/∼aiovchin/ (A. Ovchinnikov).
1 This author was also partially supported by NSERC Grant PDF-301108-2004.
2 This author was also partially supported by NSERC Grant RGPIN Algorithms and software for triangular

decompositions of algebraic and differential systems.
3 Current address: University of Illinois at Chicago, Department of Mathematics, Statistics, and Computer Science,

851 S. Morgan Street, Chicago, IL 60607-7045, USA. Fax: +1 312 996 1491.
This author was also partially supported by NSF Grant CCR-0096842.

0747-7171/$ - see front matter c© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2007.12.002

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

http://www.elsevier.com/locate/jsc
mailto:oleg.golubitsky@gmail.com
mailto:kondrmar@rol.ru
mailto:moreno@csd.uwo.ca
mailto:aiovchin@math.uic.edu
http://publish.uwo.ca/~ogolubit/
http://publish.uwo.ca/~ogolubit/
http://publish.uwo.ca/~ogolubit/
http://publish.uwo.ca/~ogolubit/
http://publish.uwo.ca/~ogolubit/
http://shade.msu.ru/~kondra_m/
http://shade.msu.ru/~kondra_m/
http://shade.msu.ru/~kondra_m/
http://shade.msu.ru/~kondra_m/
http://shade.msu.ru/~kondra_m/
http://shade.msu.ru/~kondra_m/
http://www.csd.uwo.ca/~moreno/
http://www.csd.uwo.ca/~moreno/
http://www.csd.uwo.ca/~moreno/
http://www.csd.uwo.ca/~moreno/
http://www.csd.uwo.ca/~moreno/
http://www.csd.uwo.ca/~moreno/
http://www.math.uic.edu/~aiovchin/
http://www.math.uic.edu/~aiovchin/
http://www.math.uic.edu/~aiovchin/
http://www.math.uic.edu/~aiovchin/
http://www.math.uic.edu/~aiovchin/
http://www.math.uic.edu/~aiovchin/
http://dx.doi.org/10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
2 O. Golubitsky et al. / Journal of Symbolic Computation () –

1. Introduction

This paper is about constructive differential algebra. We consider the following bounding
problem in it. The input is a set F of ordinary differential polynomials, that is, ordinary algebraic
differential equations. The output is a bound for orders of all intermediate polynomials and
the output of the Rosenfeld–Gröbner algorithm, which decomposes the radical differential ideal
generated by F into characterizable components.

So, our main result concerns algorithms dealing with algebraic differential equations. Many
different problems can be attributed to this topic. One can, for instance, test membership to a
radical differential ideal, compute the Kolchin dimensional polynomial. Generally, there are two
radical differential ideal decomposition algorithms, although they have variations.

The Ritt–Kolchin algorithm (Ritt, 1950, Section V.5 for the ordinary differential case) and
(Kolchin, 1973, Section IV.9 for the partial differential case) computes a prime decomposition of
a radical differential ideal. This algorithm is based on the concept of characteristic set; it proceeds
by computing a sequence of characteristic sets of decreasing rank and terminates because any
such sequence is finite (Ritt, 1950, Section I.5), (Kolchin, 1973, Section I.10).

The Ritt–Kolchin algorithm also relies on the solution of the so-called factorization problem:
given an autoreduced set, determine whether the corresponding algebraic saturated ideal is prime
and, if it is not, find two polynomials outside the ideal whose product belongs to the ideal
(Kolchin, 1973, Section IV.9, Problem (a)). Due to the complexity of the factorization problem, it
was desirable to avoid it, which was accomplished by the Rosenfeld–Gröbner algorithm proposed
in Boulier et al. (1995). Instead of decomposing a given radical differential ideal into prime
components, this algorithm represents it as an intersection of regular differential ideals (Boulier
et al., 1995); the correctness of the algorithm, in addition to the above-mentioned theorems, is
provided by the Lazard Lemma, which states that regular ideals are radical. Different proofs of
this lemma can be found in Boulier et al. (1997), Morrison (1999), Hubert (2000) and Boulier
et al. (2006).

The Rosenfeld–Gröbner algorithm is the first decomposition algorithm in differential algebra
that has been actually implemented to our knowledge. It forms an integral part of the diffalg
package in the computer algebra system Maple. Updates of this package are available at
http://www-sop.inria.fr/cafe/Evelyne.Hubert/diffalg/. A more efficient implementation of this
algorithm in C language by F. Boulier can be found at the website http://www.lifl.fr/∼boulier/
BLAD/.

Various improvements of the Rosenfeld–Gröbner algorithm have been proposed in Boulier
et al. (1997), Boulier (1999), Boulier et al. (2001), Hubert (2000, 2003, 2004) and Bouziane
et al. (2001). They all avoid the factorization problem and for this reason are called factorization-
free. However, no theoretical bound for the computational complexity of any of these algorithms
is known.

We make the first step towards the goal of estimating this complexity: we bound the orders
of all differential polynomials appearing in the computations. The main results of this work
are proven only for the ordinary case. In order to obtain our bound in Proposition 14, we
have modified this algorithm (see Algorithms 3 and 5) a little bit. The main idea is to perform
differential reduction very carefully. We do this in Algorithm 2. Then, Theorem 17 allows us to
use any differential reduction and if the orders of polynomials increase too much we just truncate
them (see Algorithm 4).

It would be good to have a bound that would tell us how many times we need to differentiate
the original system in the beginning of the algorithm, so that the rest of the computation can

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

http://www-sop.inria.fr/cafe/Evelyne.Hubert/diffalg/
http://www-sop.inria.fr/cafe/Evelyne.Hubert/diffalg/
http://www-sop.inria.fr/cafe/Evelyne.Hubert/diffalg/
http://www-sop.inria.fr/cafe/Evelyne.Hubert/diffalg/
http://www-sop.inria.fr/cafe/Evelyne.Hubert/diffalg/
http://www-sop.inria.fr/cafe/Evelyne.Hubert/diffalg/
http://www-sop.inria.fr/cafe/Evelyne.Hubert/diffalg/
http://www-sop.inria.fr/cafe/Evelyne.Hubert/diffalg/
http://www.lifl.fr/~boulier/BLAD/
http://www.lifl.fr/~boulier/BLAD/
http://www.lifl.fr/~boulier/BLAD/
http://www.lifl.fr/~boulier/BLAD/
http://www.lifl.fr/~boulier/BLAD/
http://www.lifl.fr/~boulier/BLAD/

ARTICLE IN PRESS
O. Golubitsky et al. / Journal of Symbolic Computation () – 3

be performed by a purely algebraic decomposition algorithm, for instance (Wang, 1993) or
(Moreno Maza, 1999). Since for algebraic decomposition algorithms complexity estimates are
known (see Szántó (1999)), such a bound would yield a complexity estimate for the differential
decomposition as well. In this paper, however, we do not provide such a bound and, moreover,
conjecture that it would have solved the Ritt problem (Ritt, 1950). We leave the discovery of such
bound and/or the proof of this conjecture for future research.

The paper is organized as follows. We give an introduction to differential algebra in Section 2.
Then we describe the original Rosenfeld–Gröbner algorithm in Section 3. Section 4 is devoted to
the bound on the orders of derivatives computed by a modified version of the Rosenfeld–Gröbner
algorithm.

2. Definitions and notation

Differential algebra studies systems of polynomial partial differential equations from the
algebraic point of view. The approach is based on the concept of differential ring introduced
by Ritt. Recent tutorials on the constructive theory of differential ideals are presented in Boulier
(2000, 2006), Hubert (2003) and Sit (2002). A differential ring is a commutative ring with the
unity endowed with a set of derivations ∆ = {δ1, . . . , δm}, which commute pairwise. The case
of ∆ = {δ} is called ordinary. If R is an ordinary differential ring and y ∈ R, we denote δk y by
y(k).

Construct the multiplicative monoid Θ = {δ
k1
1 δ

k2
2 · · · δ

km
m
∣∣ ki > 0} of derivative operators.

Let Y = {y1, . . . , yn} be a set whose elements are called differential indeterminates. The
elements of the set ΘY = {θy | θ ∈ Θ, y ∈ Y } are called derivatives. Derivative operators
from Θ act on derivatives as θ1(θ2 yi) = (θ1θ2)yi for all θ1, θ2 ∈ Θ and 1 6 i 6 n.

The ring of differential polynomials in differential indeterminates Y over a differential field k
is a ring of commutative polynomials with coefficients in k in the infinite set of variables ΘY (see
Kolchin (1973), Kondratieva et al. (1999) and Ritt (1950)). This ring is denoted k{y1, . . . , yn} or
k{Y }. We consider the case of char k = 0 only. An ideal I in k{Y } is called differential, if for
all f ∈ I and δ ∈ ∆, δ f ∈ I . We denote differential polynomials by f, g, h, . . . and use letters
I, J, p for ideals.

Let F ⊂ k{y1, . . . , yn} be a set of differential polynomials. For the differential and radical
differential ideal generated by F in k{y1, . . . , yn}, we use notations [F] and {F}, respectively.
We need the notion of reduction for algorithmic computations. First, we introduce a ranking on
the set of derivatives. A ranking (Kolchin, 1973) is a total order > on the set ΘY satisfying the
following conditions for all θ ∈ Θ and u, v ∈ ΘY :

(1) θu > u,

(2) u > v =⇒ θu > θv.

Let u be a derivative, that is, u = θy j for a derivative operator

θ = δ
k1
1 δ

k2
2 · · · δkm

m ∈ Θ

and 1 6 j 6 n. The order of u is defined as

ord u = ord θ = k1 + · · · + km .

If f is a differential polynomial, f 6∈ k, then ord f denotes the maximal order of derivatives
appearing effectively in f .

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
4 O. Golubitsky et al. / Journal of Symbolic Computation () –

A ranking > is called orderly if ord u > ord v implies u > v for all derivatives u and v. A
ranking >el is called an elimination ranking if yi >el y j implies θ1 yi >el θ2 y j for all θ1, θ2 ∈ Θ .
Let a ranking > be fixed. The derivative θy j of the highest rank appearing in a differential
polynomial f ∈ k{y1, . . . , yn} \ k is called the leader of f . We denote the leader by ld f or u f .
The indeterminate y j is called the leading variable of f and denoted by lv f. Represent f as a
univariate polynomial in u f :

f = i f ud
f + a1ud−1

f + · · · + ad .

The monomial ud
f is called the rank of f and is denoted by rk f. Extend the ranking relation on

derivative variables to ranks: ud1
1 > ud2

2 if either u1 > u2 or u1 = u2 and d1 > d2.
The polynomial i f is called the initial of f . Apply any δ ∈ ∆ to f :

δ f =
∂ f

∂u f
δu f + δi f ud

f + δa1ud−1
f + · · · + δad .

The leader of δ f is δu f and the initial of δ f is called the separant of f , denoted s f . If θ ∈ Θ\{1},
then θ f is called a proper derivative of f . Note that the initial of any proper derivative of f is
equal to s f .

We say that a differential polynomial f is partially reduced w.r.t. g if no proper derivative
of ug appears in f . A differential polynomial f is algebraically reduced w.r.t. g if degug

f <

degug
g. A differential polynomial f is reduced w.r.t. a differential polynomial g if f is partially

and algebraically reduced w.r.t. g. Consider any subset A ⊂ k{y1, . . . , yn} \ k. We say that
A is autoreduced (respectively, algebraically autoreduced) if each element of A is reduced
(respectively, algebraically reduced) w.r.t. all the others.

Every autoreduced set is finite (Kolchin, 1973, Chapter I, Section 9) (but an algebraically
autoreduced set in a ring of differential polynomials may be infinite). For autoreduced sets we
use capital letters A, B, C, . . . and notation A = A1, . . . , Ap to specify the list of the elements of
A arranged in order of increasing rank.

We denote the sets of initials and separants of elements of A by iA and sA, respectively. Let
HA = iA ∪ sA. Let S be a finite set of differential polynomials. Denote by S∞ the multiplicative
set containing 1 and generated by S. Let I be an ideal in a commutative ring R. The saturated
ideal I : S∞ is defined as {a ∈ R | ∃s ∈ S∞

: sa ∈ I }. If I is a differential ideal then I : S∞ is
also a differential ideal (see Kolchin (1973)).

Consider two polynomials f and g in k{y1, . . . , yn}. Let I be the differential ideal generated
by g. Applying a finite number of pseudo-divisions, one can compute a differential partial
remainder f1 and a differential remainder f2 of f w.r.t. g such that there exist s ∈ s∞

g and
h ∈ H∞

g satisfying s f ≡ f1 and h f ≡ f2 mod I with f1 and f2 partially reduced and
reduced w.r.t. g, respectively (see Hubert (2000) for definitions and the algorithm for computing
remainders). We denote by d–rem(f, A) the differential remainder of a polynomial f w.r.t. an
autoreduced set A. Denote also

AlgebraicRemainder(f, B)

= {g | g alg. reduced w.r.t B, h f − g ∈ (B) for some h ∈ i∞B },

DifferentialRemainder(f, C)

= {g | g reduced w.r.t. C, h f − g ∈ [C] for some h ∈ H∞

C },

where B is algebraically autoreduced and C is differentially autoreduced.

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
O. Golubitsky et al. / Journal of Symbolic Computation () – 5

Let A = A1, . . . , Ar and B = B1, . . . , Bs be (algebraically) autoreduced sets. We say that A
has lower rank than B if

• there exists k 6 r, s such that rk Ai = rk Bi for 1 6 i < k, and rk Ak < rk Bk ,
• or if r > s and rk Ai = rk Bi for 1 6 i 6 s.

We say that rk A = rk B if r = s and rk Ai = rk Bi for 1 6 i 6 r .
The following notion of a characteristic set in characteristic zero is crucial in our further

discussions. It was first introduced by Ritt for prime differential ideals, and then extended by
Kolchin to arbitrary differential ideals.

Definition 1 (Ritt, 1950, Section I.5). An autoreduced subset of the lowest rank in a set X ⊂

k{Y } is called a characteristic set of X .

A characteristic set exists for any set X ⊂ k{Y } due to the fact that every family of autoreduced
sets contains one of the least rank (Kolchin, 1973, Section I.10, Proposition 3).

As is mentioned in (Kolchin, 1973, Lemma 8, page 82), in the case of char k = 0, a set A is
a characteristic set of a proper differential ideal I if each element of I reduces to zero w.r.t. A.
Moreover, the leaders and the correspondent degrees of these leaders of any two characteristic
sets of I coincide.

Definition 2 (Hubert, 2000, Definition 2.6). A differential ideal I in k{y1, . . . , yn} is said to
be characterizable if there exists a characteristic set A of I in Kolchin’s sense such that
I = [A] : H∞

A . We call any such characteristic set A a characterizing set of I .

In other words, an ideal is characterizable if reduction to zero (by one of its characteristic sets)
implies membership. As a consequence of the Lazard Lemma, characterizable ideals are radical
(Hubert, 2000, Theorem 4.4).

3. Rosenfeld–Gröbner algorithm for the ordinary case

A system of ordinary differential equations and inequalities A = 0, H 6= 0, where A, H ⊂

k{Y }, is called regular (see Boulier et al. (1995)), if A is autoreduced, H is partially reduced
w.r.t. A, and H ⊇ HA, where HA is the set of initials and separants of elements of A (in the
partial differential case it is also required that the set A is coherent, but in the ordinary case this
condition holds for any autoreduced set A). For a regular system A = 0, H 6= 0, the differential
ideal [A] : H∞ is also called regular. Every regular ideal is radical (see Boulier et al. (1995)),
and, according to the Rosenfeld Lemma, f ∈ [A] : H∞ if and only if the partial remainder of f
w.r.t. A belongs to the algebraic ideal (A) : H∞.

The Rosenfeld–Gröbner algorithm proposed in Boulier et al. (1995, 1997) computes a regular
decomposition of a given radical differential ideal {F}, i.e., a representation

{F} =

k⋂
i=1

[Ai] : H∞

i ,

where [Ai] : H∞

i are regular differential ideals.
We begin with the following version of the Rosenfeld–Gröbner algorithm. It is very similar to

the original algorithm presented in Boulier et al. (1995), except for the fact that we consider the

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
6 O. Golubitsky et al. / Journal of Symbolic Computation () –

ordinary case and need not deal with coherence. We also note that some of the regular systems
computed by the version of the algorithm presented here may correspond to unit ideals; this can
be checked later on by means of Gröbner basis computations as in Boulier et al. (1995) or via
polynomial GCD computations modulo regular chains as in Boulier and Lemaire (2000).

Finally, we use the suggestion given in Boulier et al. (1997, Section 5.5.2) and Hubert (2003,
Improvements, page 73): it is recommended to reduce the multiplicative set H of initials and
separants. If it turns out that one of them reduces to zero, then the corresponding saturated
component contains 1 and therefore need not be considered. We incorporate these ideas in
Algorithm 1.

Algorithm 1. Rosenfeld–Gröbner(F0, H0)

INPUT: finite sets of differential polynomials F0, H0
and a differential ranking

OUTPUT: a finite set T of regular systems such that
{F0} : H∞

0 =
⋂

(A,H)∈T
[A] : H∞

T := ∅, U := {(F0, H0)}

while U 6= ∅ do
Take and remove any (F, H) ∈ U
C := characteristic set of F

F̄ := d–rem(F \ C, C) \ {0}

H̄ := d–rem(H, C) ∪ HC
if F̄ ∩ k = ∅ and 0 6∈ H̄ then

if F̄ = ∅ then T := T ∪ {(C, H̄)}

else U := U ∪ {(F̄ ∪ C, H̄)}

end if
end if
U := U ∪ {(F ∪ {h}, H) | h ∈ HC, h 6∈ k ∪ H}

end while
return T

Given a set F of differential polynomials, the Rosenfeld–Gröbner algorithm at first computes
a characteristic set C of F , i.e., an autoreduced subset of F of the least rank. It may happen
that lv C (lv F (for example, take F = {x + y, y} w.r.t. a ranking such that x > y, then
C = {y}, lv C = {y}, and lv F = {x, y}). In other words, inclusion F1 ⊂ F2 does not
imply that for the corresponding characteristic sets C1 and C2, we have C1 ⊆ C2. We need the
latter property, in order to obtain the bound, so we are going to relax the requirement that C is
autoreduced.

A subset C of k{Y } \ k is called a weak d-triangular set (Hubert, 2003, Definition 3.7), if the
set of its leaders ld C is autoreduced. In the ordinary case, C is a weak d-triangular set if and only
if the leading differential indeterminates lv f , f ∈ C, are all distinct. A partially autoreduced
weak d-triangular set is called d-triangular (Hubert, 2003, Definition 3.7). For a polynomial f
and a weak d-triangular set C, the pseudo-remainder d–rem(f, C) is defined via Hubert (2003,
Algorithm 3.13).

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
O. Golubitsky et al. / Journal of Symbolic Computation () – 7

We will replace the reduction of F w.r.t. an autoreduced set in the Rosenfeld–Gröbner
algorithm by that w.r.t. a weak d-triangular set. We note that the version of the algorithm
presented in Hubert (2003, Section 6) (Algorithms 6.8, 6.10, and 6.11) also computes differential
pseudo-remainders w.r.t. weak d-triangular sets. Since the output regular systems must be
partially autoreduced, at the very end, partial autoreduction of the weak d-triangular set C via
Hubert (2003, Algorithm 6.8) is carried out.

Alternatively, one could perform partial autoreduction every time a weak d-triangular set
is updated. In the following section, we show how to perform this autoreduction, as well as
computation of differential pseudo-remainders, so that the inequality

M(F ∪ H) 6 (n − 1)!M(F0 ∪ H0)

is preserved (see formulae (1) and (2)).

4. Modified Rosenfeld–Gröbner algorithm

For a set of differential polynomials F we let

mi (F) = max
f ∈F

ordyi f, (1)

that is, mi (F) is the maximal order of the differential indeterminate yi ∈ Y occurring in the set
F . If yi does not occur in F , we set mi (F) = 0. Let

M(F) =

n∑
i=1

mi (F). (2)

We propose a modification of the Rosenfeld–Gröbner algorithm (see Algorithm 3), in which for
every intermediate system (F, C, H) ∈ U , the bound

M(F ∪ C ∪ H) 6 (n − 1)!M(F0 ∪ H0) (3)

holds, where F0 = 0, H0 6= 0 is the input system of equations and inequalities corresponding to
the radical differential ideal {F0} : H∞

0 .
In formula (3) we have a factor (n − 1)!. If the number of variables is equal to 1 or 2 it

disappears. In the case of n = 2 Ritt proved the Jacobi bound for |F0| = 2 and empty H0 by the
direct computation and his result does not have any multiple either. Consider the intuition behind
the case of n > 3 by looking at a particular example.

Example 3. Let n > 3 and F0 = x1 + x2 + · · · + xn, x1
′ with the elimination ranking

x1 > x2 > · · · > xn . Then mx1 = 1, mx2 = · · · = mxn = 0 and

M(F0) = 1 + 0 + · · · + 0 = 1.

In order to find a characteristic set of the prime differential ideal [F0] we reduce x ′

1 w.r.t.
x1 + x2 + · · · + xn and get x ′

2 + · · · + x ′
n . The output consists of two polynomials:

C = x ′

2 + · · · + x ′
n, x1 + x2 + · · · + xn .

We have: mx1(C) = 0 and mx2(C) = · · · = mxn (C) = 1. Hence,

M(C) = 0 + 1 + · · · + 1 = n − 1 = (n − 1)M(F0).

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
8 O. Golubitsky et al. / Journal of Symbolic Computation () –

For this particular example, the algorithm stops here, so we obtain a factor of (n − 1). In general,
further reductions might give new factors of (n − 2), (n − 3), . . . , 2, 1, which would accumulate
into (n − 1)!. Unfortunately, we do not know an example where all these factors would actually
appear, and therefore do not claim that the bound is sharp.

4.1. Algebraic computation of differential remainders

The Rosenfeld–Gröbner algorithm requires the computation of differential pseudo-remainders
R = d–rem(F \ C, C). If the ranking on derivatives is not orderly, the orders of some (non-
leading) derivatives may grow as a result of the differential pseudo-reduction, so that we may
have mi (R) > mi (F) for some i ∈ {1, . . . , n}. To ensure a bound on mi (R), we construct a
triangular set4 B, such that the computation of the differential pseudo-remainders d–rem(F, C)

can be replaced by the computation of algebraic pseudo-remainders algrem(F, B), and, at the
same time, B satisfies a bound on the orders of derivatives occurring in it.

For a set B of differential polynomials and a differential indeterminate v ∈ lv B, let

Bv = { f ∈ B | lv f = v}.

Assume that B is algebraically triangular, which implies that for any non-empty subset A ⊂ B,
elements of A of the minimal and maximal ranks are uniquely defined and denoted, respectively,
by min A and max A. Define the following two subsets of B:

B0
= {min Bv | v ∈ lv B}

B∗
= {max Bv | v ∈ lv B}.

Also, for a set {mi }
k
i=1 of non-negative integer numbers and an arbitrary set F of differential

polynomials, let

F{mi } = { f ∈ F | ordyi f 6 mi , i = 1, . . . , k}.

Algorithm 2. Differentiate&Autoreduce(C, {mi })

INPUT: a weak d-triangular set C = C1, . . . , Ck with ld C = y(d1)
1 , . . . , y(dk)

k ,

and a set of non-negative integers {mi }
k
i=1, mi > mi (C)

OUTPUT: set B =

{
B j

i

∣∣ 1 6 i 6 k, 0 6 j 6 mi − di

}
satisfying

• rk B j
i = rk C (j)

i

• B j
i are reduced w.r.t. C \ {Ci }

• mi (B) 6 mi , i = 1, . . . , k
• mi (B) 6 mi (C) +

∑k
j=1(m j − d j), i = k + 1, . . . , n

• B ⊂
[
B0
]

⊂ [C] ⊂ [B] : H∞

B
• HB ⊂ H∞

C + [C], HC ⊂ (H∞

B + [B]) : H∞

B

or {1}, if it is detected that [C] : H∞

C = (1)

4 A set is called triangular if the leaders of its elements are distinct.

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
O. Golubitsky et al. / Journal of Symbolic Computation () – 9

1 D := C, B := ∅
2 while D ∪ (δB∗){mi } 6= ∅ do
3 f := min

(
D ∪ (δB∗){mi }

)
4 if f ∈ D then
5 f̄ := algrem(f, B)

6 D := D \ { f }

7 else
8 f̄ := algrem(f, B0

∪ (δB0
\ { f }))

9 end if
10 if rk f̄ 6= rk f then return {1} end if
11 B := B ∪

{
f̄
}

12 end while
13 return B

Algorithm Differentiate&Autoreduce (see Algorithm 2), which we present, is quite a
technical tool helping us to prove our bound. Before we prove its correctness and termination,
let us discuss it informally. The triangular set B computed by the algorithm can be thought of as
a result of an autoreduction of a differential prolongation of the input set C = {C1, . . . , Ck}, i.e.,
of the set

C̃ = {δ j Ci | 1 6 i 6 k, 0 6 j 6 mi − di }.
3

In particular, we have rk B = rk C̃, unless the autoreduction process cancels one of the initials,
in which case we can show that [C] : H∞

C = (1).
However, if one wants to make this autoreduction completely algebraic (in order to control the

growth of orders), one has to be careful, because in the above set C̃ there may appear derivatives
of some ld Ci of order higher than those that appear in ld C̃, which cannot be cancelled by an
algebraic reduction. For example, if C = {y1, y2 + y′

1}, m1 = 1, m2 = 2, and the ranking is
elimination with y1 < y2, then

C̃ = {y1, y′

1, y2 + y′

1, y′

2 + y′′

1 , y′′

2 + y′′′

1 },

and in the last two polynomials the derivatives y′′

1 , y′′′

1 cannot be cancelled by algebraic reduction
w.r.t. y1 and y′

1.
This problem is avoided by computing the elements of B in the order of increasing rank

(which is ensured by line 3 of Algorithm 2). If the polynomials are added to B in this order, it is
guaranteed that the algebraic pseudo-remainder f̄ computed in line 5 or 8 does not contain any
derivatives which could be reduced differentially, but not algebraically, w.r.t. the current set B.
For this reason, algebraic reductions are sufficient for computing B. See Lemma 9 for the precise
statement and proof of this fact.

In fact, only the coefficients of the polynomial f are being reduced in lines 5 and 8 (that is,
ld f is not among the leaders of the polynomials w.r.t. which it is being reduced; see Lemma 10
for the proof). That is, if u = ld f and

f = adud
+ · · · + a1u + a0,

3 Here di is the degree of rk Ci = y
di
i .

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
10 O. Golubitsky et al. / Journal of Symbolic Computation () –

where a0, . . . , ad are free of u, one could define

coeffAlgrem(f, B) = bdud
+ · · · + b1u + b0,

where b0, . . . , bd are polynomials algebraically reduced w.r.t. B and satisfying

hai − bi ∈ (B), i = 0, . . . , d

for some h ∈ i∞B . Then lines 5 and 8 could be equivalently replaced with
5 f̄ = coeffAlgrem(f, B)

8 f̄ = coeffAlgrem(f, B0
∪ δB0).

Example 4. Let f = y + x and B = t x + 1 in the polynomial ring k[t, x, y] with t < x < y.
We have

algrem(f, B) = t (y + x) − (t x + 1) = t y − 1 6= y − 1 = algrem(1, B) · y

+ algrem(x, B).

We illustrate these considerations on the above differential example:

(1) Start with B = ∅.
(2) Add y1 to B. We have B0

= {y1} and δB0
= {y′

1}.
(3) The algebraic pseudo-remainder of y′

1 w.r.t. (δB0
\ {y′

1}) ∪ B0 is y′

1. Add it to B.
(4) The algebraic pseudo-remainder of y2 + y′

1 w.r.t. (δB0
\ {y2}) ∪ B0 is y2. Add it to B. We

have B0
= {y1, y2} and δB0

= {y′

1, y′

2}.
(5) The algebraic pseudo-remainder of y′

2 w.r.t. (δB0
\ {y′

2}) ∪ B0 is y′

2. Add it to B.
(6) The algebraic pseudo-remainder of y′′

2 w.r.t. (δB0
\ {y′

2}) ∪ B0 is y′′

2 . Add it to B.
(7) We obtain B = {y1, y′

1, y2, y′

2, y′′

2 }.

Let us make an informal remark which may help the interested reader to cope with rather
technical specifications of Algorithm 2. The following group of specifications:

• rk B j
i = rk C (j)

i ,

• B ⊂
[
B0
]

⊂ [C],

• HB ⊂ H∞

C + [C],

implies that

AlgebraicRemainder(f, B) ⊂ DifferentialRemainder(f, C),

if the order of f w.r.t. yi does not exceed mi . This is the main property that allows us to use
algebraic reduction in Algorithm 3 instead of the differential reduction in Algorithm 1. However,
the remaining “inverse” inclusions

[C] ⊂ [B] : H∞

B , HC ⊂ (H∞

B + [B]) : H∞

B ,

which are not taken into account by the above relationship between the algebraic and differential
remainders, are also necessary for Algorithm 3 to be correct.4 After the reduction, the orders of

4 These inclusions are necessary to justify the validity of reducing w.r.t. B and adding to F the initials and separants
of f , which are not elements of B, but elements of C̄. The initials and separants of B cannot be added, because this may
lead to an increase of the order of derivatives of non-leading differential indeterminates and prevent us from proving the
bound.

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
O. Golubitsky et al. / Journal of Symbolic Computation () – 11

derivatives of yi ’s appearing in the remainder will not exceed di for the leading yi ’s (i.e., for
1 6 i 6 k). For the non-leading yi ’s, the orders are bounded by the inequality

mi (B) 6 mi (C) +

k∑
j=1

(m j − d j), i = k + 1, . . . , n. (4)

We will use the following two auxiliary lemmas in the proof of correctness of algorithm
Differentiate&Autoreduce.

Lemma 5. Let C be a weak d-triangular set in the ring of differential polynomials k{Y } with
derivations ∆ = {δ1, . . . , δm}. Assume that a ranking on the set of derivatives ΘY is fixed. Let
f ∈ k{Y } be a differential polynomial with ld f 6∈ Θ ld C, and let f →C g. Then

• rk g < rk f ⇒ i f ∈ [C] : H∞

C
• rk g = rk f ⇒ ∃ h ∈ H∞

C such that h · i f − ig ∈ [C], h · s f − sg ∈ [C].

Proof. Let rk f = ud , and let A = {p ∈ ΘC | ld p < u}. Then for every p ∈ A, p and ip are
free of u. Since f →C g and u 6∈ Θ ld C, there exist polynomials h ∈ i∞A , A1, . . . , Ak ∈ A and
αa, . . . , αk ∈ k{Y } such that

h · f = g +

k∑
i=1

αi Ai . (5)

The maximal degree of u present in (5) is equal to d. Replace every occurrence of ud by a new
variable v, and consider (5) as an equality between two polynomials in v, in which polynomials
h, A1, . . . , Ak are free of v. We have therefore:

h ·
d f

dv
=

dg

dv
+

k∑
i=1

dαi

dv
Ai .

It remains to notice that d f
dv

= i f and

dg

dv
=

{
0, rk g < rk f
ig, rk g = rk f,

hence we obtain

• rk g < rk f ⇒ i f ∈ (A) : i∞A ⊂ [C] : H∞

C .
• rk g = rk f ⇒ h · i f − ig ∈ (A) ⊂ [C], where h ∈ i∞A ⊂ H∞

C .

Consider now (5) as an equality between two polynomials in u, in which h, A1, . . . , Ak are free
of u. We have therefore:

h ·
d f

du
=

dg

du
+

k∑
i=1

dαi

du
Ai .

It remains to notice that d f
du = s f and, if rk g = rk f , dg

du = sg , hence h · s f − sg ∈ (A) ⊂ [C],
where h ∈ i∞A ⊂ H∞

C . �

Remark 6. The above lemma also holds when the set of derivations ∆ is empty, in which case
k{Y } = k[Y] is a ring of algebraic polynomials, C ⊂ k[Y] is a triangular set, →C is the algebraic
pseudo-reduction relation w.r.t. C, and [C] = (C) is an ideal in k[Y].

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
12 O. Golubitsky et al. / Journal of Symbolic Computation () –

Lemma 7 (Hubert, 2003, Lemma 6.9). Let H and K be two sets of differential polynomials, and
let I be a differential ideal. If K ⊂ (H∞

+ I) : H∞, then I : H∞
= I : (H ∪ K)∞.

The proof of specifications of Algorithm Differentiate&Autoreduce is divided into three
lemmas. We will:

• first prove the statements about the ranks of the elements of B,
• then about their orders, and
• finally, the inclusions.

All these statements hold only if the condition in line 10 is never satisfied, that is, throughout the
algorithm rk f̄ = rk f ; we assume this in the first two lemmas. In the third one, we will show
that, if rk f̄ 6= rk f for some f , then the ideal [C] : H∞

C must be the unit ideal.

Lemma 8. (1) If the output B of Algorithm Differentiate&Autoreduce is not {1}, then it has the
form

B =

{
B j

i

∣∣ 1 6 i 6 k, 0 6 j 6 mi − di

}
,

where rk B j
i = rk C (j)

i .
(2) Algorithm Differentiate&Autoreduce terminates.

Proof. For i = 1, . . . , k, let

µi =

{
mi (ld B) − di , yi ∈ lv B
−1, otherwise.

The first statement follows from the following invariants of the while-loop:

− 1 6 µi 6 mi − di , i = 1, . . . , k (I1)

B =

{
B j

i

∣∣ 1 6 i 6 k, 0 6 j 6 µi

}
(I2)

rk B j
i = rk C (j)

i , (1 6 i 6 k, 0 6 j 6 µi) (I3)

lv B ∩ lv D = ∅ (I4)

D ⊂ C (I5)

For all f ∈ B, g ∈ D, rk f < rk g. (I6)

One can check immediately that the above invariants hold at the beginning of the first iteration
of the while-loop. Assume that we are at the beginning of some iteration and the invariants hold;
show that they will also hold at the end of this iteration. Let f be the polynomial computed in
line 3, and let y(d)

i = ld f . We have two cases:

• f ∈ D. By (I5) and the fact that the leading variables of the elements of C are distinct, we
have rk f = rk Ci . By (I4) lv f 6∈ lv B, whence by definition of µi we have µi = −1. Since
rk f̄ = rk f , at the end of the iteration we will have B0

i = f̄ with rk B0
i = rk Ci , and µi = 0.

Thus, invariants (I1)–(I3) will hold.
Invariants (I4) and (I5) also continue to hold due to the assignments in lines 6 and 11 and

the fact that sets D and B do not change elsewhere throughout the iteration of the while-loop.
The choice of f in line 3 and the assignment in line 6 also imply that at the end of the iteration
we have rk f̄ = rk f < rk g for all g ∈ D, whence invariant (I6) is preserved.

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
O. Golubitsky et al. / Journal of Symbolic Computation () – 13

• f ∈ (δB∗){mi }. By (I2) and (I3), µi > 0 and rk f = rk C (µi +1)
i . Hence, at the end of the

iteration µi increases by one, while f̄ with rk f̄ = rk f is added to B, thus preserving
invariants (I1)–(I3). Note also that lv f ∈ lv B, whence lv B is preserved as well. Hence,
due to the fact that D remains unchanged throughout the iteration, invariants (I4) and (I5) are
preserved. The facts that rk f̄ = rk f ≤ rk g for all g ∈ D (due to the choice of f in line 3)
and that lv f̄ 6∈ lv D (due to (I4)) imply the preservation of (I6) at the end of the iteration.

The above also proves the termination of the algorithm: at each iteration exactly one of the µi
is incremented, whence the number of iterations does not exceed

k∑
i=1

(mi − di + 1). �

Lemma 9. If the output B of Algorithm Differentiate&Autoreduce is not {1}, then:

(1) The elements B j
i of B are reduced w.r.t. C \ {Ci },

(2) mi (B) 6 mi , i = 1, . . . , k,
(3) ms(B) 6 ms(C) +

∑k
t=1(mt − dt), s = k + 1, . . . , n.

Proof. The first two statements are implied by the fact that mi (rk B) 6 mi , i = 1, . . . , k, which
is a consequence of Lemma 8, and the following invariants:

mt

(
B j

i

)
6 dt , (1 6 i 6= t 6 k, 0 6 j 6 µi) (I7)

B j
i are differentially reduced w.r.t. B0

\

{
B0

i

}
. (I8)

The invariants hold at the beginning of the first iteration of the while-loop, since B = ∅. Assume
that they hold at the beginning of some iteration; show that they will hold at the end of this
iteration as well. We have two cases:

• f ∈ D. Let us show that

mt (f) 6 dt + µt , yt ∈ lv B. (6)

The fact that yt ∈ lv B, according to (I3), implies µt > 0. We may assume that yt is present
in f : otherwise mt (f) = 0 and (6) will trivially hold due to the fact that dt > 0 and µt > 0.
According to (I1), two cases are possible:

(1) 0 6 µt < mt − dt . Then there exists a polynomial g ∈ (δB)∗
{mi }

with lv g = yt . By

(I3), ld g = y(dt +µt +1)
t . Since, due to (I4), yt cannot be the leading variable of f , yet yt

is present in f , y(mt (f))
t < ld f . Since f is an element of D ∪ (δB)∗

{mi }
of the least rank,

ld f ≤ ld g. Combining these statements, we obtain

y(mt (f))
t < ld f ≤ ld g = y(dt +µt +1)

t ,

which implies (6).
(2) µt = mt − dt . Then, due to (I5) and the condition on the input C we have mt (f) 6 mt ,

which yields (6).

Inequality (6) and invariant (I7) imply that the algebraic remainder f̄ computed in line 5 is
differentially reduced w.r.t. B0 and satisfies

mt
(

f̄
)

6 dt , yt ∈ lv B. (7)

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
14 O. Golubitsky et al. / Journal of Symbolic Computation () –

Note also that due to (I6), B is differentially reduced w.r.t. f̄ . Thus, invariant (I8) also holds
at the end of the iteration. Taking into account that for all g ∈ D we have rk f̄ = rk f 6 rk g,
we obtain

mt
(

f̄
)

6 dt , yt ∈ lv D. (8)

Together inequalities (7) and (8) yield invariant (I7) at the end of the iteration.
• f ∈ (δB∗){mi }. By (I7), mt (f) 6 dt + 1, for t such that yt ∈ lv B \ {lv f }. This inequality

and invariant (I7) imply that the algebraic remainder f̄ computed in line 8 is differentially
reduced w.r.t. B0

\ {B0
i } and satisfies mt (f̄) 6 dt . Thus, we obtain that invariants (I7) and (I8)

also hold at the end of the iteration.

Finally, we prove the bound for the orders of non-leading derivatives in the output:

ms(B) 6 ms(C) +

k∑
t=1

(mt − dt), s = k + 1, . . . , n.

This bound holds due to the following invariant:

ms(B) 6 ms(C) +

∑
{t :µt>0}

µt , s = k + 1, . . . , n. (9)

Assume that (9) holds at the beginning of an iteration, and let s ∈ {k + 1, . . . , n}. We then
have:

(1) If f ∈ D, no differentiations occur during the iteration and the sum remains unchanged,
whence (9) is preserved.

(2) If f ∈ (δB∗){mi }, then f = δg for some g ∈ B, whence ms(f) 6 ms(B) + 1. Similarly,

ms

(
B0

∪ δB0
)

6 ms(B) + 1.

Thus, according to line 8, ms
(

f̄
)

6 ms(B) + 1, and so at the end of the iteration ms(B) is
increased at most by one. At the same time, as was shown in Lemma 8, Case 2, exactly one
of the µi is incremented, whereby the sum in (9) increases by 1. Thus, (9) is preserved. �

Lemma 10. If the output B of Algorithm Differentiate&Autoreduce is not {1}, then the
inclusions

B ⊂ [B0
] ⊂ [C] ⊂ [B] : H∞

B , HB ⊂ H∞

C + [C], HC ⊂ (H∞

B + [B]) : H∞

B

hold, otherwise ideal [C] : H∞

C is the unit ideal.

Proof. The inclusions are implied by the following invariants:

B ⊂

[
B0
]

⊂ [C] (I9)

HB ⊂ H∞

C + [C] (I10)

C \ D ⊂ [B] : H∞

B (I11)

HC\D ⊂ (H∞

B + [B]) : H∞

B . (I12)

The invariants hold at the beginning of the first iteration of the while-loop, since B = ∅ and
D = C. Assume that they hold at the beginning of some iteration; show that either the algorithm
terminates at this iteration with the output {1} or the invariants will hold at the end of this iteration.
We have two cases:

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
O. Golubitsky et al. / Journal of Symbolic Computation () – 15

• f ∈ D. Then by (I5) f ∈ C. Since f̄ = algrem(f, B), we have f̄ ∈ (B ∪ { f }). Then,
according to (I9), f̄ ∈ [C]. As was shown in Lemma 8, Case 1, f̄ is added to B0 in line
11, thus preserving (I9). Next, due to (I4), ld f 6∈ ld B. Thus, Lemma 5 (see also Remark 6)
applies to the algebraic remainder computed in line 5. We conclude from it that

rk f̄ 6= rk f ⇒ i f ∈ [B] : H∞

B . (10)

We will use this statement later to justify the output {1}, in case the condition in line 10 is
satisfied. For now, assume that rk f̄ = rk f . Then, from Lemma 5, we also have:

H f̄ ⊂ H f · H∞

B + (B).

Since f ∈ C, and due to invariants (I9) and (I10), we thus obtain H f̄ ⊂ H∞

C + [C]. This
means that (I10) is also preserved. By definition of the algebraic remainder,

f ∈
(
B ∪

{
f̄
})

: H∞

B .

Note that line 6 results in adding f to the set C \ D, and this set is not changed elsewhere
throughout the iteration. Thus, at the end of the iteration (I11) will hold. Finally, as yet another
consequence of Lemma 5,

H f ⊂

(
H f̄ + (B)

)
: H∞

B .

Taking into account that C \ D does not change other than in line 6, we thus obtain (I12) at
the end of the iteration.

• f ∈ δB∗

{mi }
. As was shown in Lemma 8, Case 2, B0 remains unchanged during the iteration in

this case. By (I9), f ∈ [B0
], whence by definition of the algebraic remainder applied to line 8

we have

f̄ ∈

(
B0

∪ δB0
∪ f

)
⊂

[
B0
]
.

Thus, (I9) is preserved. Next, according to (I2) and (I3), all elements of B, and, hence, all
elements of δB, have distinct leaders. In particular, if ld f ∈ ld δB0, then f ∈ δB0, whence
ld f 6∈ ld

(
δB0

\ { f }
)
. In addition, since f ∈ δB, and due to (I2) and (I3), we have ld f 6∈ ld B.

Altogether,

ld f 6∈ ld
(
B0

∪

(
δB0

\ { f }

))
.

Thus, Lemma 5 (see also Remark 6) applies to the algebraic remainder computed in line
8, yielding (10). We will use this statement later to justify line 10, assuming for now that
rk f̄ = rk f . From Lemma 5, we also have:

H f̄ ⊂ H f · H∞

B0∪δB0 + (B0
∪ δB0) ⊂ H f · H∞

B + [B].

Since f ∈ δB, and due to invariants (I9) and (I10) and the fact that H f ⊂ HB, we thus obtain
that (I10) is preserved at the end of the iteration. Since the set C\D remains unchanged during
the iteration and set B is increased, invariants (I11) and (I12) are automatically preserved. This
concludes the study of Case 2.

Suppose now that rk f̄ < rk f and apply statement (10), which has been proved above in both
cases. According to (I9), B ⊂ [C], hence

[B] : H∞

B ⊂ [C] : H∞

B ⊂ [C] : (HB ∪ HC)∞.

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
16 O. Golubitsky et al. / Journal of Symbolic Computation () –

According to (I10), HB ⊂ H∞

C + [C]. Thus, Lemma 7 with H = HC, K = HB, and I = [C]

yields [C] : (HB ∪ HC)∞ = [C] : H∞

C , whence [B] : H∞

B ⊂ [C] : H∞

C . In particular, keeping
(10) in mind, this implies that

i f ∈ [C] : H∞

C . (11)

Due to (I5) for Case 1, or due to (I10) for Case 2, we also have that

i f ∈ H f ⊂ H∞

C + [C]. (12)

Together (11) and (12) imply [C] : H∞

C = (1). �

We now summarize what we have just done.

Proposition 11. Algorithm Differentiate&Autoreduce is correct and terminates.

Proof. The algorithm satisfies its specifications according to Lemmas 8–10. Also, by Lemma 8,
it terminates. �

4.2. Comments about our modifications of Rosenfeld–Gröbner

We are ready to present a modified version of the Rosenfeld–Gröbner algorithm that satisfies
the bound. The only place where the orders of derivatives may grow is the pseudo-reduction w.r.t.
an autoreduced set C. Of course, only the orders of non-leading differential indeterminates may
grow, while the orders of the leading ones decrease as a result of reduction (or stay the same if
the reduction turns out to be algebraic, but then the orders of non-leading indeterminates do not
grow either).

By associating different weights with leading and non-leading indeterminates, we will
achieve that the weighted sum of their orders does not increase as a result of reduction. These
weights come from the bound in the algorithm Differentiate&Autoreduce. If the set of leading
indeterminates changes, so do the weights. However, if we estimate in advance the number of
times the set of leading indeterminates can change throughout the algorithm, we can still obtain
an overall bound on the orders.

For the original Rosenfeld–Gröbner algorithm, it is not that easy to carry out such an
estimate, because some indeterminates may disappear and reappear again among the leading
indeterminates of the characteristic set C. For example,

Example 12. Let F = {y + z, x, x2
+ z}, with the elimination ranking x > y > z.

• We choose its characteristic set as C := {y + z, x}.

• The leading variables of C are {y, x}.

• We put F̄ := d–rem(F \ C, C) = {z}.
• Fnew := F̄ ∪ C = {z, y + z, x}.

• As radical differential ideals:{
y + z, x, x2

+ z
}

= [z, y + z, x] : 1∞
∩

{
y + z, x, x2

+ z, 1
}

.

• The new C = {z, x} is computed from Fnew and the leading variables have changed!
• . . .

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
O. Golubitsky et al. / Journal of Symbolic Computation () – 17

• Finally,{
y + z, x, x2

+ z
}

= [z, y, x] : 1∞
= [z, y, x]

and we see that the leaders y and x have come back.

Here we see that the leading variables change for a moment. But we need to prevent this from
happening in the proof of correctness of the algorithm (see Proposition 14) in formulae (19) and
(20).

Example 13. Let F = {zy, x, x2
+ z}, with the elimination ranking x > y > z.

• We choose its characteristic set as C := {zy, x}.

• The leading variables of C are {y, x}.

• We put F̄ := d–rem(F \ C, C) = {z}.
• Fnew := F̄ ∪ C = {z, zy, x}.

• As radical differential ideals:{
zy, x, x2

+ z
}

= [z, zy, x] : z∞
∩

{
zy, x, x2

+ z, z
}

.

• The new C = {z, x} is computed from Fnew and the leading variables have also changed!
• But the first component is trivial: 1 ∈ [z, zy, x] : z∞.

The first situation can be remedied by properly relaxing the requirement that C is autoreduced,
while the second one can be detected, after which further computations in this branch of the
Rosenfeld–Gröbner algorithm are not necessary. As a result, we obtain an algorithm, in which,
as long as an indeterminate appears among the leading indeterminates of the set C, w.r.t. which
we reduce, it will stay there until the end.

As mentioned above, we are going to replace the computation of the characteristic set by that
of a weak d-triangular subset. It is tempting to simply compute a weak d-triangular subset of
the least rank, since this computation is inexpensive and it would give us the desired property
that the leading indeterminates do not disappear. However, the termination of the algorithm is
not guaranteed then. For example, take the system F = {x, xy} in k{x, y}, and let x < y.
The weak d-triangular subset of F of the least rank is F itself. Thus, we obtain a component
{x, xy} : x∞

= (1) and another component {x, xy, ixy}. However, ixy = x , hence we arrive at
the same set F that was given in the input, and the algorithm runs forever.

The reason for the above behaviour is that the initials of a weak d-triangular set C, as opposed
to an autoreduced set, need not be reduced w.r.t. C. Thus by adding these initials we do not
necessarily decrease the rank. The solution comes from the idea of (Boulier et al., 1997, Section
5), (Hubert, 2003, Algorithm 6.11), and (Hubert, 2004, Algorithm 4.1) to construct the weak
d-triangular set C gradually, so that each next polynomial f to be added to C is reduced w.r.t. C
(thus, we can also safely add the initial and separant of f and guarantee that the rank decreases).
In order to be able to construct the set C gradually, similarly to (Hubert, 2003), we store it as a
separate component of the triples (F, C, H) ∈ U .

The last modification that we are going to do is the replacement of the differential pseudo-
reduction w.r.t. C by the algebraic pseudo-reduction w.r.t. B, which is computed from C by
Algorithm Differentiate&Autoreduce. As a result, we obtain Algorithm RGBound.

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
18 O. Golubitsky et al. / Journal of Symbolic Computation () –

4.3. Final algorithm and proof of the bound

Algorithm 3. RGBound(F0, H0)

INPUT: finite sets of differential polynomials F0 6= ∅ and H0,
and a differential ranking

OUTPUT: a finite set T of regular systems such that
{F0} : H∞

0 =
⋂

(A,H)∈T
[A] : H∞ and

M(A ∪ H) 6 (n − 1)!M(F0 ∪ H0) for (A, H) ∈ T .

T := ∅, U := {(F0, ∅, H0)}

while U 6= ∅ do
Take and remove any (F, C, H) ∈ U
f := an element of F of the least rank
D := {C ∈ C | lv C = lv f }

G := (F ∪ D) \ { f }

C̄ := C \ D ∪ { f }

B :=Differentiate&Autoreduce
(
C̄,
{
m y(G ∪ C̄ ∪ H) | y ∈ lv C̄

})
if B 6= {1} then

F̄ := algrem(G, B) \ {0}

H̄ := algrem(H, B) ∪ HB
if F̄ ∩ k = ∅ and 0 6∈ H̄ then

if F̄ = ∅ then T := T ∪
{(

B0, H̄
)}

else U := U ∪
{(

F̄, B0, H̄
)}

end if
end if

end if
if s f 6∈ k then

U := U ∪ {(F ∪ {s f }, C, H)}

if i f 6∈ k and degu f
f > 1 then U := U ∪ {(F ∪ {i f }, C, H)} end if

end if
end while
return T

In the proof of the bound, a key role is played by the quantity MZ (F), which is defined for a
finite set F of differential polynomials and a proper subset Z (Y . Assume that |Z | = k < n. As
before, for a differential indeterminate y ∈ Y , m y(F) denotes the highest order of a derivative of
y occurring in F , or zero, if y does not occur in F . Then

MZ (F) := (n − k)
∑
y∈Z

m y(F) +

∑
y∈Y\Z

m y(F).

We also recall the notation

M(F) =

∑
y∈Y

m y(F).

Proposition 14. Algorithm 3 is correct and terminates.

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
O. Golubitsky et al. / Journal of Symbolic Computation () – 19

Proof. We prove the following invariants of the while-loop:

• (I1) {F0} : H∞

0 =
⋂

(F,C,H)∈U {F ∪ C} : H∞
∩
⋂

(A,H)∈T [A] : H∞

• For all (F, C, H) ∈ U ,
– (I2) C is d-triangular,
– (I3) F 6= ∅ is reduced w.r.t. C
– (I4) HC ⊂ H ,
– (I5) Let l = | lv C|. Then, if 0 < l < n,

MlvC(F ∪ C ∪ H) 6 (n − 1) . . . (n − l) · M(F0 ∪ H0),

if l = 0 then
MlvC(F ∪ C ∪ H) = M(F0 ∪ H0),

otherwise
M(F ∪ C ∪ H) 6 (n − 1)! · M(F0 ∪ H0).

The proof is divided into three parts: correctness (invariants (I1)–(I4)), termination, and proof
of the bound (invariant (I5)). The first two parts follow the standard arguments used in the proof
of correctness and termination of the Rosenfeld–Gröbner algorithm.

The invariants hold for the initial triple (F0, ∅, H0). Assuming that they hold at the beginning
of an iteration of the while-loop, we will show that the invariants also hold at the end of the
iteration.

Correctness. Let (F, C, H) be the triple taken and removed from U . Since F 6= ∅, we can
compute an element f ∈ F of the least rank. Then f , as an element of F , is reduced w.r.t. C.
Applying (Hubert, 2003, Proposition 6.6), we have

{F ∪ C} : H∞
= {F ∪ C} : (H ∪ H f)

∞
∩ {F ∪ {i f } ∪ C} : H∞

∩ {F ∪ {s f } ∪ C} : H∞.

We note that, since rk i f < rk f and rk s f < rk f , polynomials i f and s f are, respectively, the
elements of F ∪ {i f } and F ∪ {s f } of the least rank (and, to repeat, their ranks are less than the
rank of the least element of F). Moreover, since in the last two triples (F ∪ {i f }, C, H), (F ∪

{s f }, C, H) only the first component has changed, invariants (I2)–(I5) are preserved for them.
For the proof of invariant (I1), it remains to show that

{F ∪ C} : (H ∪ H f)
∞

=

{[
B0
]

: H̄∞, F̄ = ∅{
F̄ ∪ B0

}
: H̄∞, otherwise.

(13)

Given that C is d-triangular, the three assignments following the computation of f ensure that C̄
is a weak d-triangular set of rank strictly less than C, because the polynomial f is reduced w.r.t.
C and we throw away (from C) all its elements with leading variables “in conflict” with the one
of f . We note that

G ∪ C̄ = (F ∪ D \ { f }) ∪ (C \ D) ∪ { f } = F ∪ C.

Since HC ⊂ H , we also have H ∪ H f = H ∪ HC̄. Therefore,

{F ∪ C} : (H ∪ H f)
∞

=
{
G ∪ C̄

}
:
(
H ∪ HC̄

)∞
. (14)

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
20 O. Golubitsky et al. / Journal of Symbolic Computation () –

Next, we use the properties of the set B ensured by Algorithm Differentiate&Autoreduce. Since
HB ⊂ H∞

C̄ +
[
C̄
]
, applying Lemma 7 with K = HB, we obtain

{
G ∪ C̄

}
:
(
H ∪ HC̄

)∞
=
{
G ∪ C̄

}
:
(
H ∪ HC̄ ∪ HB

)∞
. (15)

The inclusions B ⊂
[
C̄
]

and C̄ ⊂ [B] : H∞

B imply that

{
G ∪ C̄

}
:
(
H ∪ HC̄ ∪ HB

)∞
= {G ∪ B} :

(
H ∪ HC̄ ∪ HB

)∞
. (16)

Using the fact that HC̄ ⊂
(
H∞

B + [B]
)

: H∞

B (see Algorithm 2) and applying Lemma 7 with
K = HC̄, we get

{G ∪ B} :
(
H ∪ HC̄ ∪ HB

)∞
= {G ∪ B} : (H ∪ HB)

∞. (17)

It follows from the definition of the algebraic pseudo-remainder (algrem) that

{G ∪ B} : (H ∪ HB)
∞

= {F̄ ∪ B} : H̄∞. (18)

Indeed, {G∪B} : (H ∪HB)∞ = {F̄∪B} : (H ∪HB)∞. Take now any f ∈
{

F̄ ∪ B
}

: (H ∪HB)∞.
There exists h ∈ (H ∪ HB)∞ such that h · f ∈

{
F̄ ∪ B

}
. If h̄ is a remainder of h w.r.t. B then

there exists h′
∈ H∞

B with h′h − h̄ ∈ (B). Hence,

h̄ f ∈
{

F̄ ∪ B
}

and

f ∈
{

F̄ ∪ B
}

: H̄∞.

The reverse inclusion is done in a similar way. Since B ⊂
[
B0
]
, we obtain that

{
F̄ ∪ B

}
: H̄∞

={
F̄ ∪ B0

}
: H̄∞.

The set B0 is d-triangular, its rank is equal to that of C̄, set H̄ is partially reduced w.r.t. B0

and contains H0
B, and F̄ is reduced w.r.t. B0. Moreover, if F̄ = ∅, we obtain the regular system(

B0, H̄
)
, which corresponds to the radical differential ideal

[
B0
]

: H̄∞
=
{

F̄ ∪ B0
}

: H∞

B .

Thus, we have proved (13) and also have demonstrated that invariants (I2)–(I4) hold for the
triple

(
F̄, B0, H̄

)
.

Termination. At each iteration of the while-loop, the triple (F, C, H) ∈ U is replaced by at
most three triples

(
F̄, B0, H̄

)
, (F ∪ {i f }, C, H), and (F ∪ {s f }, C, H).

Define a relation ≺ on the set of all triples (F, C, H) satisfying (I2)–(I4): let (F ′, C′, H ′) ≺

(F, C, H) if and only if either rk C′ < rk C, or C′
= C and the element of the least rank in F ′

is strictly less than that in F . Then ≺ is a lexicographic product of two well-orders, which is a
well-order. We have shown that in the first triple we have rk B0 < rk C; in the last two triples
the second component C remains the same, but the elements of the least rank of F ∪ {i f } and
F ∪ {s f } are strictly less than the element of F of the least rank. That is, each of the three triples
is less than (F, C, H) w.r.t. the well-order ≺.

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
O. Golubitsky et al. / Journal of Symbolic Computation () – 21

Therefore, all triples computed by the algorithm can be arranged in a ternary tree, in which
(F0, ∅, H0) is the root, and every path starting from the root is finite. Let λ be the maximal length
of such a path. Then the number of vertices in the tree does not exceed

∑λ
i=0 3i . Thus, the tree

is finite, whence the algorithm terminates.
Proof of the bound. Finally, we have assumed that invariant (I5) holds for the triple

(F, C, H). We need to show that it holds for the new triples formed by the algorithm at the
end of the loop. These new triples are(

F̄, B0, H̄
)

, (F ∪ {s f }, C, H), (F ∪ {i f }, C, H).

Consider the first triple
(
F̄, B0, H̄

)
. Let l = | lv C|. We will make a general observation,

showing how MlvC(K) changes for any finite set K , when we replace C by C̄. Two cases are
possible:

(1) lv f ∈ lv C. Then lv C̄ = lv C and, if l < n, we have

Mlv C̄(K) = MlvC(K). (19)

The marginal situation of l = n will be further treated in (25).

(2) lv f 6∈ lv C. Then lv C̄ = lv C ∪ {lv f } and | lv C̄| = l + 1. If l + 1 < n, we observe that

Mlv C̄(K) = (n − l − 1)
∑

y∈lv C̄
m y(K) +

∑
y 6∈lv C̄

m y(K)

= (n − l − 1)
∑

y∈lvC
m y(K) + (n − l − 1) · mlv f (K) +

∑
y 6∈lv C̄

m y(K)

= (n − l − 1)
∑

y∈lvC
m y(K) + (n − l − 2) · mlv f (K)

+

(
mlv f (K) +

∑
y 6∈lv C̄

m y(K)

)
= (n − l − 1)

∑
y∈lvC

m y(K) +
∑

y 6∈lvC
m y(K) + (n − l − 2) · mlv f (K)

6 (n − l)
∑

y∈lvC
m y(K) +

∑
y 6∈lvC

m y(K) + (n − l − 2) · MlvC(K)

= (n − l − 1) · MlvC(K)

(20)

(here we have used the fact that mlv f (K) 6 MlvC(K)).

If lv C < n and | lv C̄| = n, we simply note that

M(K) 6 MlvC(K). (21)

We are now going to replace K by our sets. Assume for simplicity that

ld C̄ =

{
y(d1)

1 , . . . , y(dk)
k

}
,

where k = l or k = l + 1. Since all derivatives of yi , 1 6 i 6 k, presented in F ∪ B ∪ H of order
greater than di can be found among rk B, and since the elements of F̄ and H̄ \ HB are algebraic
pseudo-remainders of G and H w.r.t. B, we have

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
22 O. Golubitsky et al. / Journal of Symbolic Computation () –

mi

(
F̄ ∪ B0

∪ H̄
)

6

{
di , 1 6 i 6 k
mi (G ∪ B ∪ H), k < i 6 n.

(22)

Also, recall that B satisfies the inequality (see (4))

mi (B) 6 mi
(
G ∪ C̄ ∪ H

)
+

k∑
j=1

(m j
(
G ∪ C̄ ∪ H

)
− d j), k < i 6 n. (23)

Combining (22) and (23), we obtain that

Mlv C̄

(
F̄ ∪ B0

∪ H̄
)

= (n − k)

k∑
i=1

di +

n∑
i=k+1

mi

(
F̄ ∪ B0

∪ H̄
)

6 (n − k)

k∑
i=1

di +

n∑
i=k+1

mi (G ∪ B ∪ H)

6 (n − k)

k∑
i=1

di +

n∑
i=k+1

mi
(
G ∪ C̄ ∪ H

)
+ (n − k)

k∑
j=1

(m j
(
G ∪ C̄ ∪ H

)
− d j)

= (n − k)

k∑
i=1

mi
(
G ∪ C̄ ∪ H

)
+

n∑
i=k+1

mi
(
G ∪ C̄ ∪ H

)
= Mlv C̄

(
G ∪ C̄ ∪ H

)
and if k = n then

M
(

F̄ ∪ B0
∪ H̄

)
=

n∑
i=1

di + 0 = M
(
G ∪ C̄ ∪ H

)
because rk C̄ = rk B0. Thus,

Mlv C̄
(
F̄ ∪ B0

∪ H̄
)

6 Mlv C̄
(
G ∪ C̄ ∪ H

)
, k < n

M
(
F̄ ∪ B0

∪ H̄
)

6 M
(
G ∪ C̄ ∪ H

)
, k = n.

(24)

Now, applying (19) , (20), or (21) with K = G ∪ C̄ ∪ H = F ∪ C ∪ H , we get

Mlv C̄
(
F̄ ∪ B0

∪ H̄
)

6 MlvC(F ∪ C ∪ H), l = k < n
Mlv C̄

(
F̄ ∪ B0

∪ H̄
)

6 (n − l − 1)MlvC
(
F̄ ∪ B0

∪ H̄
)

6 (n − l − 1) · MlvC(F ∪ C ∪ H), l < k < n
M
(
F̄ ∪ B0

∪ H̄
)

6 M
(
G ∪ C̄ ∪ H

)
= M(F ∪ C ∪ H)

6 MlvC(F ∪ C ∪ H), l < k = n
M
(
F̄ ∪ B0

∪ H̄
)

6 M
(
G ∪ C̄ ∪ H

)
= M(F ∪ C ∪ H), l = k = n.

(25)

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
O. Golubitsky et al. / Journal of Symbolic Computation () – 23

By taking into account the fact that invariant (I5) holds for the triple (F, C, H), we thus obtain
this invariant for the triple

(
F̄, B0, H̄

)
.

For the last two triples, (F ∪ {s f }, C, H) and (F ∪ {i f }, C, H), invariant (I5) is preserved
simply because C and H remain the same and f ∈ F . More precisely,

MlvC
(
F ∪ {s f } ∪ C ∪ H

)
= MlvC

(
F ∪ {i f } ∪ C ∪ H

)
= MlvC(F ∪ C ∪ H), l < n

M
(
F ∪ {s f } ∪ C ∪ H

)
= M

(
F ∪ {i f } ∪ C ∪ H

)
= M(F ∪ C ∪ H), l = n.

(26)

To conclude the proof of the bound for the output regular systems
(
B0, H̄

)
, we note that

it is already given by invariant (I5) when k = n, while in case k < n we use inequality
(21):

M
(
B0

∪ H̄
)

6 MlvB0

(
B0

∪ H̄
)

6 (n − 1)! · M(F0 ∪ H0). �

4.4. Reduction-independent algorithm

The goal of this section is to give an algorithm, whose input is a set F of ordinary
differential polynomials and the output is a characteristic decomposition of {F} satisfying
the bound, which would not employ the Differentiate&Autoreduce procedure. We will now
allow any differential reduction algorithm (and define precisely what we mean by this).
After each differential reduction, we check whether the orders of the remainder exceed the
bound and, if so, apply a truncation procedure that simply removes from the remainder all
differential monomials whose orders exceed the bound. Below we show the truncation procedure
in detail (see Algorithms 4 and 5); Theorem 17 and Proposition 18 justify the truncation.
We note that the justification of truncation is essentially based on the fact that the bound
holds for at least one way of computing the differential remainders, namely the one used in
Algorithm 3.

In Algorithm 3 we had to be very careful in the reduction process. The idea was to emulate
differential reductions by doing enough differentiations first and then applying purely algebraic
reduction. We take care of the orders of derivatives in the first process and do not need to
worry about them during the second purely algebraic step. Let us find out why such a two-step
procedure was necessary. If we reduce w.r.t. an arbitrary d-triangular set, the result of reduction
depends on the choice of the reduction path.

Example 15. Consider the following differential chain

C = x(x − 1), (x − 1)y, z + y + t x

with the elimination ranking t < x < y < z and the differential polynomial

f = z′
+ y′.

We can reduce f w.r.t. C in many different ways and the remainders are very different:

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
24 O. Golubitsky et al. / Journal of Symbolic Computation () –

(1)

z′
+ y′

z′
+y′

+t ′x+t x ′

−−−−−−−−→ t ′x + t x ′
(2x−1)x ′

−−−−−→ t ′(2x − 1)x = 2t ′x2
− t ′x −−−−→

x2
−x

−−−−→ t ′x =: f1

(2)

z′
+ y′

(x−1)y′
+x ′ y

−−−−−−−→ (x − 1)z′
− x ′y

(x−1)y
−−−−→ (x − 1)2z′

−−−−→

z′
+y′

+t ′x+t x ′

−−−−−−−−→ (x − 1)2(y′
+ t ′x + t x ′) −−−−→ 0 =: f2.

We see that the remainder f1 depends on the variable t ′ that is not in both f2 and C. So, the
reason for these two different answers is that the set C has a non-invertible initial modulo the ideal
defined by the lower equations. Speaking informally, if C is partially autoreduced and its initials
and separants are invertible, then the result of reduction is more or less uniquely determined.
More precisely, one can show that all results of reduction of a polynomial w.r.t. a d-triangular
set with invertible initials and separants lie in a fixed Nötherian ring of algebraic polynomials. In
particular, if one of the results of reduction satisfies a certain bound on the order of its derivatives,
then any other result of reduction will satisfy this bound as well.

Since we are not in position of reducing w.r.t. a set with invertible initials and separants, we are
going to state precisely and prove a slightly weaker statement. Within the scope of this section,
let us call polynomial g a differential remainder of polynomial f w.r.t. C, if g is reduced w.r.t. C
and there exists h ∈ H∞

C such that

h f − g ∈ [C] : H∞

C .

Proposition 16. Let C be a coherent5 d-triangular set of differential polynomials, f , a
differential polynomial, and g, a differential remainder of f w.r.t. C. Let X be the set of
derivatives present in C and g. Let ḡ be another differential remainder of f w.r.t. C. Assume
that ḡ is not in k[X], i.e., it admits a representation ḡ = akuk

+ · · · + a0, where u 6∈ X and
a0, . . . , ak are free of u. Then

ḡ − a0 ∈ (C) : H∞

C .

In particular, a0 is also a differential remainder of f w.r.t. C.

Proof. Since g and ḡ are differential remainders of f w.r.t. g, they are both reduced w.r.t. C, and
there exist h, h̄ ∈ H∞

C such that

h f − g ∈ [C] : H∞

C , h̄ f − ḡ ∈ [C] : H∞

C .

Consider the differential polynomial

f̄ := h̄(h f − g) − h(h̄ f − ḡ) = hḡ − h̄g ∈ [C] : H∞

C .

Since C is a coherent d-triangular set, the ideal [C] : H∞

C is regular. The polynomial f̄ is partially
reduced w.r.t. C. Therefore, by the Rosenfeld Lemma f̄ ∈ (C) : H∞

C . We have

f̄ = (h · ak)u
k
+ · · · + (h · a0 − h̄ · g)

5 The adjective “coherent” makes the statement valid in presence of partial derivatives; in the ordinary case, it can be
ignored.

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
O. Golubitsky et al. / Journal of Symbolic Computation () – 25

with h̄ · g contributing only to a0, because it does not depend on u. Since u does not appear in C,

the fact that f̄ ∈ (C) : H∞

C implies that every coefficient of f̄ belongs to this ideal. In particular,
h · ak belongs to (C) : H∞

C , whence ai ∈ (C) : H∞

C , 1 6 i 6 k. Thus,

ḡ − a0 = akuk
+ · · · + a1u ∈ (C) : H∞

C . �

We are going to apply the above proposition as follows. Let C and f be as in its statement.
Suppose we know that there exists a differential remainder g of f w.r.t. C that satisfies a certain
bound b on the order of derivatives occurring in it. We emphasize that we do not need to know g,
the fact of its existence is sufficient. Compute any differential remainder ḡ of f w.r.t. C. Then, if
ḡ does not satisfy the bound b, it must contain a derivative u that does not satisfy this bound. By
Proposition 16, the constant term of ḡ, when viewed as a polynomial in u, is also a differential
remainder of f w.r.t. C. Replace ḡ by its constant term; continue such replacements until ḡ
satisfies the bound b. This yields an efficient procedure that computes a differential remainder
satisfying the bound (see Algorithm 4).

We have proved the following

Theorem 17. Let C be a coherent d-triangular set of differential polynomials, and let f be a
differential polynomial. Let pi > mi (C), i = 1, . . . , n. Assume that there exists a differential
remainder of f w.r.t. C, which contains no derivatives of differential indeterminate yi of
order greater than pi , i = 1, . . . , n. Let g be any differential remainder of f w.r.t. C. Then
Truncate(g, {pi }) is a differential remainder of f w.r.t. C, in which the order of every differential
indeterminate yi does not exceed pi .

Algorithm 4. Truncate (f, {pi })

INPUT: a differential polynomial f and numbers pi > 0
OUTPUT: truncation of f , i.e., the sum of those terms of f that

belong to the polynomial ring R = k
[

y(k)
i | 1 6 i 6 n, 0 6 k 6 pi

]
Let f = α1 + · · · + αq , where αi are differential monomials
g := 0
for i := 1 to q do

if αi ∈ R then g := g + αi
end for
return g

We are going to modify Algorithm 3, so that there is no necessity to perform differential
pseudo-reduction in two steps, via prolongation and purely algebraic reduction. In the new
Algorithm 5, it is assumed that procedure d–rem computes any differential remainder in the
above sense. The key idea is the following: whenever we find a differential remainder w.r.t.
D that does not satisfy the expected bound b (computed by Algorithm 5), by Theorem 17 we
can simply truncate this remainder. In order to be able to apply Theorem 17, we are going to
prove the existence of a differential remainder satisfying b. In fact, we know that sets B, F̄ , and
H̄ computed in Algorithm 3 satisfy b; it remains to be shown that one can obtain differential
remainders w.r.t. D, given the elements of B, F̄ , and H̄ . Note that we may assume rk D = rk C̄
(at the end of the for-loop), since otherwise all results of truncations will be discarded by
Algorithm 5.

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
26 O. Golubitsky et al. / Journal of Symbolic Computation () –

Algorithm 5. RGBound-Reduction-Independent(F0, H0)

INPUT: finite sets of differential polynomials F0 6= ∅ and H0,
and a differential ranking

OUTPUT: a finite set T of regular systems such that
{F0} : H∞

0 =
⋂

(A,H)∈T
[A] : H∞ and

M(A ∪ H) 6 (n − 1)!M(F0 ∪ H0) for (A, H) ∈ T .

T := ∅, U := {(F0, ∅, H0)}

while U 6= ∅ do
Take and remove any (F, C, H) ∈ U
f an element of F of the least rank
D := {C ∈ C | lv C = lv f }

G := F ∪ D \ { f }

C̄ := C \ D ∪ { f }

Ḡ := G ∪ C̄ ∪ H

b :=
{
m y

(
Ḡ
) ∣∣ y ∈ lv C̄

}
∪

{
mz
(
Ḡ
)
+

∑
y∈lv C̄

(
m y

(
Ḡ
)
− m y

(
ld C̄

)) ∣∣ z /∈ lv C̄

}
D := ∅
for C ∈ C̄ increasingly do

D := D ∪ {Truncate (d–rem (C, D) , b)}

end for
if rk D = rk C̄ then

F̄ := Truncate (d–rem(G, D) \ {0}, b)

H̄ := Truncate
(
d–rem(H ∪ H f , D) ∪ HD, b

)
if F̄ ∩ k = ∅ and 0 6∈ H̄

then U := U ∪
{

F̄, D, H̄
}

else T := T ∪ {(D, H̄)}

end if
end if
if s f 6∈ k then

U := U ∪ {(F ∪ {s f }, C, H)}

if i f 6∈ k and degu f
f > 1 then U := U ∪ {(F ∪ {i f }, C, H)} end if

end if
end while
return T

Proposition 18. Algorithm 5 is correct and satisfies the bound.

Proof. The proof of correctness, termination, and bound for Algorithm 5 is based on the same
invariants of the while-loop that were used for Algorithm 3. The only new step we make is the
Truncate algorithm whose application we justify now. In order to do this we consider

B = Differentiate&Autoreduce
(
C̄,
{
m y

(
Ḡ
)

| y ∈ lv C̄
})

.

and show that, at the beginning of each iteration, there exist B ∈ B and h ∈ H∞

D such that h B is
a differential remainder of C w.r.t. D. This statement is a consequence of the following expanded

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
O. Golubitsky et al. / Journal of Symbolic Computation () – 27

invariant of the for-loop, which we are going to prove by induction on the number of iterations.
Let

B<C = { f ∈ B | ld f < ld C},

B = algrem(C, B<C), E = d–rem(C, D), and D = Truncate (E, b). Then

h′
· C − h B ∈ [D] : H∞

D ,

B ∈ [D ∪ {D}] : H∞

D ,

HB ⊂ (H∞

D + [D]) : H∞

D ,

for some h, h′
∈ H∞

D . The inductive base holds, since at the end of the first iteration we have
B = E = D = C and D = {C}. For the inductive step, we have:

h1 · C − B ∈ (B<C)

for some h1 ∈ H∞

B<C
. By the inductive assumption

[B<C] ⊂ [D] : H∞

D .

Hence,

h1 · C − B ∈ [D] : H∞

D .

Also, by the inductive assumption,

h1 ∈ (H∞

D + [D]) : H∞

D .

This means that there exist h ∈ H∞

D , h′
∈ H∞

D such that

h · h1 − h′
∈ [D].

Thus,

h′
· C − h · B ∈ [D] : H∞

D .

By the definition of (algebraic) pseudo-remainder, we have

B ∈ (B<C ∪ {C}) , C ∈ (E + [D]) : H∞

D .

By Lemma 5, taking into account the assumption rk D = rk C̄, we have:

HB ⊂ HC · H∞

B<C
+ (B<C) , HC ⊂ (HE + [D]) : H∞

D .

By Proposition 16, E ∈ D + (D) : H∞

D . By modifying slightly the proof of Lemma 5, we will
show that this implies HE ⊂ HD + (D) : H∞

D . Indeed, using the assumption rk D = rk C̄ (which
holds at the end of the for-loop), we obtain rk D = rk C = rk E , since all leading differential
indeterminates in C̄ are distinct. This, in particular, implies that

v = ld D = ld E 6∈ ld D.

Now let f1, . . . , fk be any generators of the ideal (D) : H∞

D , so that we have

E − D =

k∑
i=1

αi fi .

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

ARTICLE IN PRESS
28 O. Golubitsky et al. / Journal of Symbolic Computation () –

By viewing the above equality as one between two polynomials in v and noting that fi do not
involve v, we immediately obtain that iE − iD ∈ (D) : H∞

D and sE − sD ∈ (D) : H∞

D .
Combining the above statements, we obtain the required invariants at the end of the iteration:

B ∈ (B<C ∪ {C}) ⊂ ([D] : H∞

D ∪ (E + [D]) : H∞

D) ⊂ [D ∪ {D}] : H∞

D

and

HB ⊂ HC · H∞

B<C
+ (B<C) ⊂ (HE + [D]) : H∞

D + [D] : H∞

D ⊂ (HD + [D]) : H∞

D .

The truncations applied in Algorithm 5 to compute sets F̄ and H̄ are justified by showing that
differential remainders of G and H ∪ H f w.r.t. D that satisfy the bound b exist and can be
similarly obtained from the elements of sets F̄ and H̄ computed by Algorithm 3. We omit these
details. �

5. Conclusions

By estimating the orders of derivatives, we have shown that, given a set of ordinary
differential polynomials specifying a radical differential ideal I , one can construct a Nötherian
ring of algebraic polynomials, in which the computation of a characteristic decomposition of
I is actually performed. This does not mean that the computation is completely algebraic:
differentiations are allowed, but they never lead out of the constructed algebraic ring.

We conjecture that, if one can solve the first problem of computing a characteristic
decomposition of a radical differential ideal from generators completely algebraically, i.e., by
an algorithm that first differentiates the input polynomials sufficiently many times, and then
computes the decomposition without using differentiations, then one can also solve the Ritt
problem of computing an irredundant prime (or characteristic) decomposition of a radical
differential ideal.

Acknowledgements

We thank Michael F. Singer, François Boulier, William Sit, Évelyne Hubert, Evgeniy
Pankratiev, and the referees for their important suggestions.

References

Boulier, F., 1999. Efficient computation of regular differential systems by change of rankings using Kähler differentials.
Tech. Rep., Université Lille I, 59655, Villeneuve d’Ascq, France, ref. LIFL 1999–14, presented at the MEGA 2000
conference. http://hal.archives-ouvertes.fr/hal-00139738.

Boulier, F., 2000. Triangularisation de systèmes de polynômes différentiels. Série IC2 (Information, Commande,
Communication). Hermès, never published (In French) http://hal.archives-ouvertes.fr/hal-00140006.

Boulier, F., 2006. Réécriture algébrique dans les systèmes d’équations différentielles polynomiales en vue d’applications
dans les Sciences du Vivant. Mémoire d’habilitation à diriger des recherches. Université Lille I, LIFL, 59655
Villeneuve d’Ascq, France. http://tel.archives-ouvertes.fr/tel-00137153.

Boulier, F., Lazard, D., Ollivier, F., Petitot, M., 1995. Representation for the radical of a finitely generated differential
ideal. In: ISSAC’95: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation.
ACM Press, New York, NY, USA, pp. 158–166. http://hal.archives-ouvertes.fr/hal-00138020.

Boulier, F., Lazard, D., Ollivier, F., Petitot, M., 1997. Computing representations for radicals of finitely generated
differential ideals. Tech. Rep., Université Lille I, LIFL, 59655, Villeneuve d’Ascq, France, ref. IT306. December
1998 version published in the HDR memoir of Michel Petitot. http://hal.archives-ouvertes.fr/hal-00139061.

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

http://hal.archives-ouvertes.fr/hal-00139738
http://hal.archives-ouvertes.fr/hal-00139738
http://hal.archives-ouvertes.fr/hal-00139738
http://hal.archives-ouvertes.fr/hal-00139738
http://hal.archives-ouvertes.fr/hal-00139738
http://hal.archives-ouvertes.fr/hal-00140006
http://hal.archives-ouvertes.fr/hal-00140006
http://hal.archives-ouvertes.fr/hal-00140006
http://hal.archives-ouvertes.fr/hal-00140006
http://hal.archives-ouvertes.fr/hal-00140006
http://tel.archives-ouvertes.fr/tel-00137153
http://tel.archives-ouvertes.fr/tel-00137153
http://tel.archives-ouvertes.fr/tel-00137153
http://tel.archives-ouvertes.fr/tel-00137153
http://tel.archives-ouvertes.fr/tel-00137153
http://hal.archives-ouvertes.fr/hal-00138020
http://hal.archives-ouvertes.fr/hal-00138020
http://hal.archives-ouvertes.fr/hal-00138020
http://hal.archives-ouvertes.fr/hal-00138020
http://hal.archives-ouvertes.fr/hal-00138020
http://hal.archives-ouvertes.fr/hal-00139061
http://hal.archives-ouvertes.fr/hal-00139061
http://hal.archives-ouvertes.fr/hal-00139061
http://hal.archives-ouvertes.fr/hal-00139061
http://hal.archives-ouvertes.fr/hal-00139061

ARTICLE IN PRESS
O. Golubitsky et al. / Journal of Symbolic Computation () – 29

Boulier, F., Lemaire, F., 2000. Computing canonical representatives of regular differential ideals. In: ISSAC’00:
Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation. ACM Press, New York,
NY, USA, pp. 38–47. http://hal.archives-ouvertes.fr/hal-00139177.

Boulier, F., Lemaire, F., Moreno Maza, M., 2001. PARDI!. In: ISSAC’01: Proceedings of the 2001 International
Symposium on Symbolic and Algebraic Computation. ACM Press, New York, NY, USA, pp. 38–47. http://hal.
archives-ouvertes.fr/hal-00139354.

Boulier, F., Lemaire, F., Moreno Maza, M., 2006. Well known theorems on triangular systems and the D5 principle.
In: Proceedings of Transgressive Computing 2006. Granada, Spain, pp. 79–91. http://hal.archives-ouvertes.fr/
hal-00137158.

Bouziane, D., Kandri Rodi, A., Maârouf, H., 2001. Unmixed-dimensional decomposition of a finitely generated perfect
differential ideal. Journal of Symbolic Computation 31, 631–649.

Hubert, E., 2000. Factorization-free decomposition algorithms in differential algebra. Journal of Symbolic Computation
29 (4–5), 641–662.

Hubert, E., 2003. Notes on triangular sets and triangulation-decomposition algorithms II: Differential systems.
In: Symbolic and Numerical Scientific Computing 2001. pp. 40–87.

Hubert, E., 2004. Improvements to a triangulation-decomposition algorithm for ordinary differential systems in higher
degree cases. In: Proceedings of ISSAC 2004. ACM Press, pp. 191–198.

Kolchin, E., 1973. Differential Algebra and Algebraic Groups. Academic Press, New York.
Kondratieva, M., Levin, A., Mikhalev, A., Pankratiev, E., 1999. Differential and Difference Dimension Polynomials.

Kluwer Academic Publisher.
Moreno Maza, M., 1999. On triangular decompositions of algebraic varieties. Tech. Rep. TR 4/99, NAG Ltd, Oxford,

UK, presented at the MEGA-2000 Conference, Bath, England.
Morrison, S., 1999. The differential ideal [P] : M∞. Journal of Symbolic Computation 28, 631–656.
Ritt, J., 1950. Differential Algebra. American Mathematical Society, New York.
Sit, W., 2002. The Ritt–Kolchin theory for differential polynomials. In: Differential Algebra and Related Topics,

Proceedings of the International Workshop (NJSU, 2–3 November 2000).
Szántó, Á, 1999. Computation with polynomial systems. Ph.D. Thesis, Cornell University.
Wang, D.M., 1993. An elimination method for polynomial systems. Journal of Symbolic Computation 16, 83–114.

Please cite this article in press as: Golubitsky, O., et al., A bound for the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2007.12.002

http://hal.archives-ouvertes.fr/hal-00139177
http://hal.archives-ouvertes.fr/hal-00139177
http://hal.archives-ouvertes.fr/hal-00139177
http://hal.archives-ouvertes.fr/hal-00139177
http://hal.archives-ouvertes.fr/hal-00139177
http://hal.archives-ouvertes.fr/hal-00139354
http://hal.archives-ouvertes.fr/hal-00139354
http://hal.archives-ouvertes.fr/hal-00139354
http://hal.archives-ouvertes.fr/hal-00139354
http://hal.archives-ouvertes.fr/hal-00139354
http://hal.archives-ouvertes.fr/hal-00137158
http://hal.archives-ouvertes.fr/hal-00137158
http://hal.archives-ouvertes.fr/hal-00137158
http://hal.archives-ouvertes.fr/hal-00137158
http://hal.archives-ouvertes.fr/hal-00137158

	A bound for the Rosenfeld--Gröbner algorithm
	Introduction
	Definitions and notation
	Rosenfeld--Gröbner algorithm for the ordinary case
	Modified Rosenfeld--Gröbner algorithm
	Algebraic computation of differential remainders
	Comments about our modifications of Rosenfeld--Gröbner
	Final algorithm and proof of the bound
	Reduction-independent algorithm

	Conclusions
	Acknowledgements
	References

