
–— From Multicore to Manycore Architectures: The
Reduction of Parallelization Overheads and its Impact on

Implementing Polynomial Arithmetic —
Anisul Sardar Haque and Marc Moreno Maza

Parallelization Overheads

On multicore architectures, several phenomena (memory wall, true/false

sharing, scheduling costs, etc.) limit the performances of applications

which, theoretically, have a lot of opportunities for concurrent execution.

One infamous example is Fast Fourier Transforms (FFT). For this type

of calculation, not only the memory access pattern, but also the for-loop

parallelization overheads restrict linear speedup to input vectors of very

large sizes, say 220. As a consequence, on multicores, applications that

depend on FFT, generally rely on serial code for these calculations.

Graphics processing units (GPUs) offer a much higher level of concurrent

memory accesses. Moreover, thread scheduling is done by the hardware,

which reduces for-loop parallelization overheads significantly.

In this work, we show that these hardware considerations change the

view on what is fast and what is not-so-fast in polynomial arithmetic.

Polynomial Arithmetic

Asymptotically fast algorithms for polynomial arithmetic rely on FFT

techniques. For univariate polynomials of degree n, these algo-

rithms perform multiplication, division and GCD computation in

O(nlog(n)log(log(n))) arithmetic operations, while classical (or plain)

algorithms, such as the Euclidean Algorithms, usually require O(n2).

Nevertheless, plain algorithms remain of interest as they are much easier

to implement efficiently and as they are often faster for polynomials of

small degree, say less than 26 to 29, for serial CPU code.

In this work, we show that GPU implementation (with CUDA) of plain al-

gorithms can outperform their CPU implementation counterparts based

on FFT techniques, for fairly large degrees.

The Plain Division on the GPU

Consider two univariate polynomials over a finite field

a = amx
m+· · ·+a1x+a0 and b = bnx

n+· · ·+b1x+b0, with m ≥ n.

The only opportunity for concurrent execution is within each division

step. With the above notations, the first division step computes

a′ ← a−
am

bn
xm−nb,

which can be viewed as a Gaussian elimination step. Assuming that

this is done by several thread blocks, the next division step requires to

broadcast the leading coefficient of the intermediate remainder a′ to all

thread blocks, which is a severe performance bottleneck.

Our solution consists of letting each thread block computes the leading

coefficients of s consecutive intermediate remainder, for a well chosen

integer s. In this way, each thread block computes a coefficient segment

(of size 2 s) of s consecutive intermediate remainders without synchro-

nization. Though this increases the total work by (at most) a 1
3 factor,

this improves performances significantly.

When sufficiently many streaming multiprocessors are available, the ex-

pected running time is 0(m− n), which is confirmed experimentally.

The Euclidean Algorithm on the GPU

The best parallel version of the Euclidean Algorithm which is work-

efficient, is that for systolic arrays, (a model proposed by H. T. Kung

and Charles E. Leiserson in 1974) for which the span is linear. However,

multiprocessors based on systolic arrays are not so common.

As for the plain division, we let each thread block works on s consecutive

division steps by computing the leading coefficient of the intermediate

dividends. However, divisor and dividend may exchange their roles after

each division step, so the algorithm is slightly more complex.

When sufficiently many streaming multiprocessors are available, the ex-

pected running time is 0(m), which is confirmed experimentally.

degree GPU Euclidean FFT-based CPU multiplication

1000 0.0104428 0.004

2000 0.0247671 0.024001

4000 0.0474535 0.056003

6000 0.0565259 0.128008

10000 0.0796034 0.200013
In the above table, GPU-implemented Euclidean Algorithm and FFT-

based serial GCD computation re run on the same desktop for univariate

polynomials modulo a 30-bit prime.

Plain Polynomial Multiplication on the GPU

We parallelize the computation of the product a× b based on the plain

algorithm that we have all learned it in primary school for integers.

•Multiplication phase: The set of terms aibjx
i+j forms a trapezoid

that we decompose into smaller trapezoids such that each of them

can be computed by a thread block. Within a thread block, a thread

computes all the terms of a given degree and adds them up into a

vector coefficient, where this vector is associated to the thread block.

•Addition phase: All the thread block vectors are added together by

means of a parallel reduction.

When sufficiently many streaming multiprocessors are available, the ex-

pected running time is 0(log(m)), which is confirmed experimentally.

degree GPU Plain multiplication GPU FFT-based multiplication

210 0.00049 0.0044136

211 0.0009 0.004642912

212 0.0032 0.00543696

213 0.01 0.00543696

214 0.045 0.00709072
In the above table, plain and FFT-based multiplication (both highly op-
timized CUDA codes) are run on a Tesla 2050 for univariate polynomials
modulo a 30-bit prime.

Acknowledgments


