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Solving polynomial systems? What does this mean?

The algebra text book says:

For F ⊂ k[x1, . . . , xn] this is simply

a primary decomposition of 〈F 〉 or

the irreducible decomposition of V (F ) (the zero set of F in k
n
).

The computer algebra system does well:

For F ⊂ k[x1, . . . , xn], with k = Z/pZ or k = Q,

computing a Gröbner basis of 〈F 〉 or

computing a triangular decomposition of V (F ).

But most scientists and engineers need:

For F ⊂ Q[x1, . . . , xn], a useful description of the points of V (F )
whose coordinates are real.

For F ⊂ Q[u1, . . . , ud ][x1, . . . , xn], the real (x1, . . . , xn)-solutions as a
function of the real parameter (u1, . . . , ud).
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computing a Gröbner basis of 〈F 〉 or

computing a triangular decomposition of V (F ).

But most scientists and engineers need:

For F ⊂ Q[x1, . . . , xn], a useful description of the points of V (F )
whose coordinates are real.

For F ⊂ Q[u1, . . . , ud ][x1, . . . , xn], the real (x1, . . . , xn)-solutions as a
function of the real parameter (u1, . . . , ud).

(CDMMXX) RealTriangularize ICIAM 2011 4 / 32



Solving for the real solutions: classical techniques

In dimension zero over Q:

For F ⊂ Q[x1, . . . , xn], if V (F ) is finite, many standard and efficient
techniques apply to identify the real solutions.

In (generic) dimension zero over Q[u1, . . . , ud ]:

For F ⊂ Q[u1, . . . , ud ][x1, . . . , xn] and an integer r one can determine
“generic” conditions on u1, . . . , ud for F to admit exactly r real
(x1, . . . , xn)-solutions

For arbitrary systems:

For F ⊂ Q[x1, . . . , xn], one can partition Rn into cylindrical cells where the
sign of each f ∈ F does not change.
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Real root isolation for zero-dimensional systems
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Real root classification: generically 0-dimensional systems
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Cylindrical algebraic decomposition of {ax2 + bx + c}
root
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p = 0 p <,> 0

The cylindrical algebraic decomposition of {ax2 + bx + c} is given by the
tree above, where t = bx + c , q = 2ax + b, and r = 4ac − b2. This is the
best possible output for that method, leading to 27 cells!
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Can a computer program be as good as a high-school
student?

For the equation ax2 + bx + c = 0, can a computer program produce?


ax2 + bx + c = 0

a 6= 0 ∧ b2 − 4ac > 0


2ax + b = 0

4ac − b2 = 0

a 6= 0
bx + c = 0

a = 0

b 6= 0


c = 0

b = 0

a = 0
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Yes, our new algorithm RealTriangularize can do that!
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RealTriangularize applied to the Eve surface (1/2)
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RealTriangularize applied to the Eve surface (2/2)
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Regular chain

Example

T :=


f3 = x4x5

2 + 2x5 + 1
f2 = (x1 + x2)x3

2 + x3 + 1
f1 = x1

2 − 1.

Under the order x5 > x4 > x3 > x2 > x1,

mvar(f2) = x3 and mvar(f1) = x1

init(f2) = x1 + x2 and init(f1) = 1

T is a regular chain. Indeed:
I init(f2) is regular (neither zero nor zero-divisor) modulo 〈f1〉.
I init(f3) is regular modulo 〈f1, f2〉 : init(f2)∞.

Proposition

Let T = {t1, . . . , ts} be a regular chain of k[x]. Then the saturated ideal
sat(T ) := 〈T 〉 : (

∏s
i=1 init(ti ))∞ is a proper equi-dimensional ideal of k[x].
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Regular semi-algebraic system

Notation

Let T ⊂ Q[x1 < . . . < xn] be a regular chain with
y := {mvar(t) | t ∈ T} and u := x \ y = u1, . . . , ud .

Let P be a finite set of polynomials, s.t. every f ∈ P is regular
modulo sat(T ).

Let Q be a quantifier-free formula of Q[u].

Definition

We say that R := [Q,T ,P>] is a regular semi-algebraic system if:

(i) Q defines a non-empty open semi-algebra ic set S in Rd ,

(ii) the regular system [T ,P] specializes well at every point u of S

(iii) at each point u of S , the specialized system [T (u),P(u)>] has at
least one real solution.

ZR(R) = {(u, y) | Q(u), t(u, y) = 0, p(u, y) > 0, ∀(t, p) ∈ T × P}.
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Example

The system [Q,T ,P>], where

Q := a > 0, T :=

{
y2 − a = 0
x = 0

, P> := {y > 0}

is a regular semi-algebraic system.
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RealTriangularize applied to sofa and cylinder (1/2)

x2 + y3 + z5 = x4 + z2 − 1 = 0
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RealTriangularize applied to sofa and cylinder (2/2)
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The RegularChains library in Maple (1/2)

Design goals

Solving polynomial systems over Q and Fp, including parametric
systems and semi-algebraic systems.

Offering tools to manipulate their solutions.

Organized around the concept of a regular chain, accommodating all
types of solving and providing space-and-time efficiency.

Features

Use of types for algebraic structures: polynomial ring,
regular chain, constructible set, quantifier free formula,
regular semi algebraic system.

Top level commands: PolynomialRing, Triangularize,
RealTriangularize SamplePoints, . . .

Tool kits: ConstructibleSetTools, ParametricSystemTools,
FastArithmeticTools, SemiAlgebraicSetTools, . . .
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The RegularChains library in Maple (2/2)

Classical tools

Isolating the real solutions of zero-dimensional polynomial systems:
SemiAlgebraicSetTools:-RealRootIsolate

Real root classification of parametric polynomial systems:
ParametricSystemTools:-RealRootClassification

Cylindrical algebraic decomposition of polynomial systems:
SemiAlgebraicSetTools:-CylindricalAlgebraicDecompose

New tools

Triangular decomposition of semi-algebraic systems:
RealTriangularize

Sampling all connected components of a semi-algebraic system:
SamplePoints

Set-theoretical operations on semi-algebraic sets:
SemiAlgebraicSetTools:-Difference
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A biochemical network: setting (1/3)

The generic kinetic scheme of prion diseases is illustrated as follows:

↓ 1

PrPC 3−→ PrPSC 4−→ Aggregates.

↓ 2

where[
PrPC

]
is the concentration of PrPC (harmless form)[

PrPSC
]

is the concentration of PrPSC (infectious form) which
catalyses the transformation from the normal form to itself,

Step 1: synthesis of native PrPC

Step 2, 4: normal degradation.
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A biochemical network: setting (2/3)

Let νi be the rate of Step i for i = 1, . . . , 4.

↓ 1

PrPC 3−→ PrPSC 4−→ Aggregates.

↓ 2

Step 1: zero-order kinetic process, that is ν1 = k1,

Step 2, 4: first-order rate equations: ν2 = k2

[
PrPC

]
,

ν4 = k4

[
PrPSC

]
.

Step 3: a nonlinear process

ν3 =
[
PrPC

] a (1 + b
[
PrPSC

]n)
1 + c [PrPSC ]

n .
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A biochemical network: setting (3/3)

↓ 1

PrPC 3−→ PrPSC 4−→ Aggregates.

↓ 2

We also have:

d
[
PrPC

]
dt

= ν1 − ν2 − ν3

d
[
PrPSC

]
dt

= ν3 − ν4

Letting x =
[
PrPC

]
and y =

[
PrPSC

]
. we obtain the dynamical system:

dx

dt
= k1 − k2x − ax

(1 + byn)

1 + cyn

dy

dt
= ax

(1 + byn)

1 + cyn
− k4y
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A biochemical network: semi-algebraic systems to solve

Dynamical system to study

M. Laurent (Biochem. J., 1996) suggests to set b = 2, c = 1/20, n = 4,
a = 1/10, k4 = 50 and k1 = 800, leading to:{ dx

dt = f1
dy
dt = f2

with

{
f1 = 16000+800y4−20k2x−k2xy4−2x−4xy4

20+y4

f2 = 2(x+2xy4−500y−25y5)
20+y4

.

Semi-algebraic systems to solve

By Routh-Hurwitz criterion, an equilibrium (x , y) is asymptotically stable if

∆1 := −(
∂f1
∂x

+
∂f2
∂y

) > 0 and a2 :=
∂f1
∂x
· ∂f2
∂y
− ∂f1
∂y
· ∂f2
∂x

> 0.

Letting p1, p2 the above polynomials, we obtain two semi-algebraic
systems:

S1 : {p1 = p2 = 0, k2 > 0} and S2 : {p1 = p2 = 0, k2 > 0,∆1 > 0, a2 > 0}
(CDMMXX) RealTriangularize ICIAM 2011 25 / 32



A biochemical network: solving S1

The real solutions of S1 are described by the following triangular
decomposition into regular semi-algebraic systems.

A1 :=


(2y4 + 1)x − 25y5 − 500y = 0

(k2 + 4)y5 − 64y4 + (2 + 20k2)y − 32 = 0
k2 > 0
r 6= 0

, A2 :=


tx = 0
ty = 0
r = 0
k2 > 0

.

where ty (k2, y) has degree 4 in y and r is given by

r := 100000k8
2 + 1250000k7

2 + 5410000k6
2 + 8921000k5

2 − 9161219950k4
2

− 5038824999k3
2 − 1665203348k2

2 − 882897744k2 + 1099528405056.

The polynomial r has four real roots, two are positive: α1 < α2.
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A biochemical network: solving S1

Regarding k2 as a parameter, one can compute a real comprehensive
triangular decomposition which gives:

{ } k2 ≤ 0
{A1} 0 < k2 < α1

{A2} k2 = α1

{A1} α1 < k2 < α2

{A2} k2 = α2

{A1} k2 > α2

.

From where we deduce the number of real solutions:
0 k2 ≤ 0
1 k2 > 0 and r > 0
2 k2 > 0 and r = 0
3 k2 > 0 and r < 0
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A biochemical network: conclusion

Theorem

Assume that k2 > 0. Then we have: if r > 0, then the dynamical system
has 1 equilibrium; if r = 0, then it has 2 equilibria; if r < 0, it has 3
equilibria.

Theorem

Assume that k2 > 0. Then we have: if r > 0, then the system has one
hyperbolic equilibrium, which is asymptotically stable; if r < 0 and r2 6= 0,
then the system has three hyperbolic equilibria, two of which are
asymptotically stable and the other one is unstable; if r = 0 or r2 = 0, the
system experiences a bifurcation where

r2 = 10004737927168k9
2 + 624166300700672k8

2 + 7000539052537600k7
2

+ 45135589467012800k6
2 − 840351411856453750k5

2 − 50098004352248446875k4
2

− 27388168989455000000k3
2 − 8675209266696000000k2

2

+ 102960917356800000000k2 + 5932546064102400000000.
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Figure: Vector field for k2 = 18
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Figure: Vector field for k2 = 8
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Figure: Vector field for k2 = 3
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Summary and notes

Solving for the real roots of (parametric or not) polynomial systems
is a fundamental problem with many applications.

Most of the time, this requires exact (thus symbolic) computation.

Computer algebra systems used to have limited capabilities for that,
especially for the parametric case.

Recent work (Changbo Chen, James H. Davenport, M3 , Bican Xia
& Rong Xiao, ISSAC 2010-2011) is changing that.

RealTriangularize is available Maple 15, as part of the Maple
RegularChains library.

(CDMMXX) RealTriangularize ICIAM 2011 32 / 32


	Computing the real solutions of polynomial systems symbolically
	Triangular decomposition of semi-algebraic systems
	Application to dynamical system analysis

