Changbo Chen1 Svyatoslav Covano2,3 Farnam Mansouri2
Marc Moreno Maza2 Ning Xie2 Yuzhen Xie2

1Chinese Academy of Sciences, China
2University of Western Ontario, Canada
3École Polytechnique, France

ICMS, August 8 2014
Plan

1. Overview
2. Code organization and user interface
3. Core subprograms
4. Applications
No symbolic computation software dedicated to \textit{sequential polynomial arithmetic} managed to play the unification role that the BLAS play in numerical linear algebra.

- Could this work in the case of \textit{hardware accelerators}?
- How to benefit from other successful projects related to polynomial arithmetic, like FFTW, SPIRAL and GMP?
Overview: the Basic Polynomial Algebra Subprograms

Driving observation

- Polynomial multiplication and matrix multiplication are at the core of many algorithms in symbolic computation.
- Algebraic complexity is often estimated in terms of multiplication time. At the software level, this reduction to multiplication is also common (Magma, NTL, FLINT, ...).
- BPAS design follows the principle *reducing everything to multiplication*.

Targeted functionalities

Level 1: core routines specific to a coefficient ring or a polynomial representation: multi-dimensional FFTs, SLP operations, ...

Level 2: basic arithmetic operations for dense or sparse polynomials with coefficients in \mathbb{Z}, \mathbb{Q} or $\mathbb{Z}/p\mathbb{Z}$: polynomial multiplication, Taylor shift, ...

Level 3: advanced arithmetic operations taking as input a zero-dimensional regular chains: normal form of a polynomial, multivariate real root isolation, ...

Programs on multi-core processors can be written in CilkPlus or OpenMP. Our Meta_Fork framework http://www.metafork.org performs automatic translation between the two as well as conversions to C/C++.

Graphics Processing Units (GPUs) with code written in CUDA, provided by the CUMODP library http://www.cumodp.org.

Unifying code for both multi-core processors and GPUs is conceivable (see the SPIRAL project) but highly complex (multi-core processors enforce memory consistency while GPUs do not, etc.).
Overview: implementation techniques

Level 1: core routines
- code is highly optimized in terms of work, data locality and parallelism,
- automatic code generation is used at library installation time.

Level 2: basic arithmetic operations
- functions provide a variety of algorithmic solutions for a given operation,
- the user can choose between algorithms minimizing work or algorithms maximizing parallelism.
- Example: Schönaghe-Strassen, divide-and-conquer, k-way Toom-Cook and the two-convolution method for integer polynomial multiplication.

Level 3: advanced arithmetic operations
- functions combine several Level 2 algorithms for achieving a given task,
- this leads to adaptive algorithms that select appropriate Level 2 functions depending on available resources (number of cores, input data size).
Plan

1. Overview

2. Code organization and user interface

3. Core subprograms

4. Applications
Code organization

Subprojects

- Polynomial types with specified coefficient ring: ModularPolynomial/, IntegerPolynomial/ and RationalNumberPolynomial/.
- Polynomial types with unspecified coefficient ring (template classes): Polynomial/.
- ModularPolynomial/ is based on the Modpn library and includes our FFT code generator, which is inspired by FFTW and SPIRAL.
- IntegerPolynomial/ relies on the GMP library.

User interface

- The UI currently exposes part of the polynomial types (the univariate ones and sparse multivariate polynomials)
- Exposing the other ones is work in progress.
- But the entire project is freely available in source at www.bpaslib.org.
The above is a snapshot of the BPAS ring classes. This shows two multivariate polynomial concrete classes, namely \texttt{DistributedDenseMultivariateModularPolynomial<Field> \text{ and } SMQP}, and three univariate polynomial ones, namely \texttt{DUZP, DUQP \text{ and } SparseUnivariatePolynomial<Ring>}. The BPAS classes \texttt{Integer} and \texttt{RationalNumber} are BPAS wrappers for GMP’s \texttt{mpz} and \texttt{mpq} classes. Many other classes are provided like \texttt{Intervals, RegularChains, ...}
```cpp
#include <bpas.h>

int main (int argc, char *argv[] ) {
    DUZP a (4096), b (4096); // Initializing space
    for (int i = 0; i < 4096; ++i) { a.setCoefficient(i, rand() % 1000 + 1); }
    for (int i = 0; i < 4096; ++i) { b.setCoefficient(i, rand() % 1000 + 1); }
    DUZP c = (a^2) - (b^2), d = (a^3) - (b^3);
    DUZP g = c.gcd(d); // Gcd computation, g = a - b
    c /= g; // Exact division, c = a + b
    std::cout << "g = " << g << std::endl;

    DUQP p; // Initializing as a zero polynomial
    p = (p + mpq_class(1) << 4095) + mpq_class(4095); // p = x^{4095} + 4095
    Intervals boxes = p.realRootIsolation(0.5);
    std::cout << "boxes = " << boxes << std::endl;

    SMQP f(3), g(2); // Initializing with number of variables
    SMQP h = (f^2) + f * g * mpq_class(2) + (g^2);
    SparseUnivariatePolynomial<SMQP> s = h.convertToSUP("x");
    SMQP z (s);
    if (z != h) { std::cout << z << " & " << h << " should not differ " << std::endl; }
    return 0;
}
```
Plan

1. Overview
2. Code organization and user interface
3. Core subprograms
4. Applications
Three core subprograms

- One-dimensional modular FFTs
- Parallel dense integer polynomial multiplication
- Parallel Taylor shift computation $f(x) \leftrightarrow f(x + 1)$
1-D FFTs: classical cache friendly algorithm

If the input vector does not fit in cache, a recursive algorithm is applied. Once the vector fits in cache, an iterative algorithm (not requiring shuffling) takes over.

On an ideal cache of Z words with L words per cache line this yields a cache complexity of $\Omega\left(\frac{n}{L}(\log_2(n) - \log_2(Z))\right)$ which is not optimal.

Cache friendly 1-D FFT

- If the input vector does not fit in cache, a recursive algorithm is applied.
- Once the vector fits in cache, an iterative algorithm (not requiring shuffling) takes over.
- On an ideal cache of Z words with L words per cache line this yields a cache complexity of $\Omega\left(\frac{n}{L}(\log_2(n) - \log_2(Z))\right)$ which is not optimal.
1-D FFTs: cache complexity optimal algorithm

Instead of processing row-by-row, one computes as deep as possible while staying in cache (resp. registers): this yields a blocking strategy.

On the left picture, assuming $Z = 4$, on the first (resp, last) two rows, we successively compute the red, green, blue, orange 4-point blocks.

On an ideal cache of Z words with L words per cache line the cache complexity drops to $O(n/L(\log_2(n)/\log_2(Z)))$ which is optimal.

```
procedure FFT((a_0,a_1,...,a_{N-1}), \omega, N = J \cdot K, \Omega = \omega^{N/K})
    for 0 \leq k < K - 1 do
        for 0 \leq k' < J - 1 do
            \gamma[k][k'] = a_{kJ + k'}
        end for
        c[k] = FFT(\gamma[k], \omega^K, J, \Omega)
    end for
    for 0 \leq j < J - 1 do
        for 0 \leq k < K - 1 do
            \delta[j][k] = c[k] \cdot \omega^{jk}
        end for
        d[j] = FFT(\delta[j], \omega^J, K, \Omega)
    end for
    \beta[0] = d[0]
    \beta[j+1] = d[j] \cdot \omega^j
end procedure
```
Cache-and-work optimal 1-D FFT

- Modifying the previous blocking strategy such that each block is an FFT on 2^K points, for a given K (small in practice), and
- choosing a sparse radix prime p (like $p = r^4 + 1$, for $r = 2^{16} - 2^8$) such that multiplying by the twiddle factors is cheap enough,
- the algebraic complexity drops from $O(n \log_2(n))$ to $O(n \log_K(n))$ which is optimal on today’s desktop computers.
In addition to the above optimal blocking strategy, instruction level parallelism (ILP) is carefully considered: vectorized instructions are explicitly used (SSE2, SSE4) and instruction pipeline usage is highly optimized.

- BPAS 1-D FFT code automatically generated by configurable Python scripts.

Figure: 1-D modular FFTs: Modpn (serial) vs BPAS (serial).
Reducing to Schönaghe-Strassen algorithm via Kronecker’s substitution (KS+SS)

0 **Input:** \(f = \sum_{i=0}^{n} f_i x^i \) and \(g = \sum_{i=0}^{m} g_i x^i \)

1 **Choose:** \(2^\ell \geq \|f\|_\infty + \|g\|_\infty + \max(n, m) + 1 \)

2 **Evaluation:** \(Z_f = \sum_{i=0}^{n} f_i 2^{i\ell} \) and \(Z_g = \sum_{i=0}^{m} g_i 2^{i\ell} \);

3 **Multiplying:** \(Z_h = Z_f \times Z_g \), using GMP library;

4 **Unpacking:** \(h_i \) from \(Z_h = \sum_{i=0}^{n+m} h_i 2^{i\ell} \).

5 **Return:** \(fg = \sum_{i=0}^{n+m} h_i x^i \)

- its work in terms of bit operations is \(O(s \log_2(s) \log_2(\log_2(s))) \), where \(s \) is the maximum bit-size of \(f \) or \(g \);
- purely serial due to the difficulties of parallelizing 1-D FFTs on multicore processors.
Divide-and-conquer algorithm with reduction to GMP’s integer multiplication

1 **Division:** $f(x) = f_0(x) + f_1(x) x^{n/2}$ and $g(x) = g_0(x) + g_1(x) x^{n/2}$;
2 **Execute recursively:**
 - Store $f_0 \times g_0 \& f_1 \times g_1$ in the result array;
 - Store $f_0 \times g_1 \& f_1 \times g_0$ in the auxiliary arrays;
3 **Addition:** add the auxiliary arrays to the result one.

- use (one or) two levels of recursion, then use the KS+SS algorithm;
- its work in terms of bit operations is $O(s \log_2(s) \log_2(\log_2(s)))$, where s is the maximum bit-size of f or g, but the constant has been multiplied approximately by 4;
- static parallelism (close to 16).
k-way Toom-Cook algorithm

1. **Division:** \(f(x) = f_0(x) + f_1(x) x^{n/k} + \cdots + f_{k-1}(x) x^{(k-1)n/k} \) and \(g(x) = g_0(x) + g_1(x) x^{n/k} + \cdots + g_{k-1}(x) x^{(k-1)n/k} \);

2. **Conversion:** Set \(X = x^{n/k} \) and obtain \(F(X) = z_{f_0} X^0 + z_{f_1} X^1 + \cdots + z_{f_{k-1}} X^{k-1} \) and \(G(X) = z_{g_0} X^0 + z_{g_1} X^1 + \cdots + z_{g_{k-1}} X^{k-1} \);

3. **Evaluation:** Evaluate \(f, g \) at \(2k-1 \) points: \((0, X_1, \ldots, X_{2k-3}, \infty) \);

4. **Multiplying:** \((w_0, \ldots, w_{2k-2}) = (F(0) \cdot G(0), \ldots, F(\infty) \cdot G(\infty)) \);

5. **Interpolation:** Recover \((z_{h_0}, z_{h_1}, \ldots, z_{h_{2k-2}}) \) where \(H(X) = f(X) g(X) = z_{h_0} + z_{h_1} X + \cdots + z_{h_{2k-2}} X^{2k-2} \);

6. **Conversion:** Recover polynomial coefficients from \(z_{h_0}, \ldots, z_{h_{2k-2}} \), obtaining

\[
h(x) = h_0(x) + h_1(x) x^{n/k} + \cdots + h_{2k-2}(x) x^{(2k-2)n/k}.
\]

- work in terms of bit operations is \(O(s \log_2(s) \log_2(\log_2(s))) \), where \(s \) is the maximum bit-size of \(f \) or \(g \), but the constant has been multiplied approximately by 2 for \(k = 8 \);
- 4-way & 8-way Toom-Cook are available;
- static parallelism (about 7 and 13 when \(k = 4 \) and \(k = 8 \), resp).
Parallel dense integer polynomial multiplication

A new algorithm: the two-convolution method

- work is $O(s \log_K(s))$, where s is the maximum bit-size of an input;
- parallelism is $O\left(\frac{\sqrt{s}}{\log_2(s)}\right)$.
1. Convert \(a(y) \), \(b(y) \) to bivariate \(A(x, y) \), \(B(x, y) \) s. t. \(a(y) = A(\beta, y) \) and \(b(y) = B(\beta, y) \) hold at \(\beta = 2^M \), \(K = \deg(A, x) = \deg(B, x) \), where \(K M \) is essentially the maximum bit size of a coefficient in \(a, b \).

2. Consider \(C^+(x, y) \equiv A(x, y) B(x, y) \mod x^K + 1 \) and \(C^-(x, y) \equiv A(x, y) B(x, y) \mod x^K - 1 \), then compute \(C^+(x, y) \) and \(C^-(x, y) \) modulo machine-word primes so as to use efficient 2-D FFTs.

3. Consider \(C(x, y) = \frac{C^+(x,y)}{2} (x^K - 1) + \frac{C^-(x,y)}{2} (x^K + 1) \), then evaluate \(C(x, y) \) at \(x = \beta \), which finally gives \(c(y) = a(y) b(y) \).
Our experimental results were obtained on an 48-core AMD Opteron 6168, running at 900Mhz with 256 GB of RAM and 512KB of L2 cache.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2048</td>
<td>795,549,545</td>
<td>1,364,160,088</td>
<td>41,143,119</td>
<td>33.16</td>
<td>1.715</td>
</tr>
<tr>
<td>4096</td>
<td>4,302,927,423</td>
<td>5,663,423,709</td>
<td>96,032,325</td>
<td>58.97</td>
<td>1.316</td>
</tr>
<tr>
<td>8192</td>
<td>16,782,031,611</td>
<td>23,827,123,688</td>
<td>292,735,521</td>
<td>81.39</td>
<td>1.420</td>
</tr>
<tr>
<td>16384</td>
<td>63,573,232,166</td>
<td>100,688,072,711</td>
<td>1,017,726,160</td>
<td>98.93</td>
<td>1.584</td>
</tr>
<tr>
<td>32768</td>
<td>269,887,534,779</td>
<td>425,149,529,176</td>
<td>3,804,178,563</td>
<td>111.76</td>
<td>1.575</td>
</tr>
</tbody>
</table>

Table: Cilkview analysis of CVL₂ and KS+SS. (* shows the number of instructions)
Figure: BPAS (parallel) vs FLINT (serial) vs Maple 18 (serial) with the logarithmic scale in radix 2 of the maximum bit-size of an input polynomial as the horizontal axis.
Parallel dense integer polynomial multiplication

Figure: BPAS (parallel) vs FLINT (serial) vs Maple18 (serial) with the logarithmic scale in radix 2 of the maximum bit-size of an input polynomial as the horizontal axis.

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)

The BPAS Library

ICMS, August 8 2014 24 / 36
Parallel dense integer polynomial multiplication

The adaptive algorithm based on the input size and available resources

- Very small: Plain multiplication
- Small or Single-core: KS+SS algorithm
- Big but a few cores: 4-way Toom-Cook
- Big: 8-way Toom-Cook
- Very big: Two-convolution method
Parallel Taylor shift $f(x) \rightarrow f(x + 1)$

Parallel Pascals triangle by blocking

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>...</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_d</td>
<td>$+$</td>
<td>$+$</td>
<td>...</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{d-1}</td>
<td>$+$</td>
<td>$+$</td>
<td>...</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_1</td>
<td>$+$</td>
<td>$+$</td>
<td></td>
<td>g_1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_0</td>
<td>$+$</td>
<td></td>
<td></td>
<td>g_0</td>
<td></td>
</tr>
</tbody>
</table>

- Let n be the degree and ℓ be the maximum bit-size of a coefficient, the complexity in terms of bit operations: $O(n^2(n + \ell))$;
- highly effective when both the input data size and the number of available cores are small due to optimal cache complexity.
Parallel Taylor shift \(f(x) \rightarrow f(x + 1) \)

Algorithm E in [2]: a divide-and-conquer procedure, relying on polynomial multiplication

\[
(f_0 + f_1(x + 1)) + (f_2 + f_3(x + 1)) \times (x + 1)^2
\]

- Let \(n \) be the degree and \(\ell \) be the maximum bit-size of a coefficient, the complexity in terms of bit operations: \(O(M(n^2 + n\ell) \log n) \), where \(M \) is a multiplication time.

- effective when the two-convolution multiplication dominates its counterparts.

The adaptive algorithm based on the input size

- **Small**: Parallel Pascals triangle
- **Big**: Algorithm E in [2], but for multiplication in small degree, using parallel Pascals triangle as the base case

A third alternative algorithm is work in progress.

Plan

1. Overview

2. Code organization and user interface

3. Core subprograms

4. Applications
Applications

- Parallel univariate real root isolation
- Parallel multivariate real root isolation
- Symbolic integration
Parallel univariate real root isolation

Input: A univariate squarefree polynomial \(f(x) = c_d x^d + \cdots + c_1 x + c_0 \) with rational number coefficients

Output: A list of pairwise disjoint intervals \([a_1, b_1], \ldots, [a_e, b_e]\) with rational endpoints such that

- each real root of \(f(x) \) is contained in one and only one \([a_i, b_i]\);
- if \(a_i = b_i \), the real root \(x_i = a_i(b_i) \); otherwise, the real root \(a_i < x_i < b_i \) (\(f(x) \) doesn’t vanish at either endpoint).

![Graph of a univariate polynomial with real roots between intervals](image)
The most costly operation is the Taylor Shift operation, that is, the map $f(x) \mapsto f(x + 1)$.

Figure: Parallel Vincent-Collins-Akritas (VCA, 1976)
We run two parallel real root algorithms, BPAS and CMY [3], which are both implemented in CilkPlus, against Maple 18 serial \textit{realroot} command (interface of the RUR-based code implemented in C by F. Rouillier) which implements a state-of-the-art algorithm.

<table>
<thead>
<tr>
<th>Size</th>
<th>BPAS (Parallel)</th>
<th>CMY [3] (Parallel)</th>
<th>\textit{realroot} (Serial)</th>
<th>$\frac{T_{\text{CMY}}}{T_{\text{BPAS}}}$</th>
<th>$\frac{T_{\text{realroot}}}{T_{\text{BPAS}}}$</th>
<th>#Roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cnd</td>
<td>32768</td>
<td>18.141</td>
<td>125.902</td>
<td>816.134</td>
<td>6.94</td>
<td>44.99</td>
</tr>
<tr>
<td></td>
<td>65536</td>
<td>66.436</td>
<td>664.438</td>
<td>7,526.428</td>
<td>10.0</td>
<td>113.29</td>
</tr>
<tr>
<td>Chebycheff</td>
<td>2048</td>
<td>608.738</td>
<td>594.82</td>
<td>1,378.444</td>
<td>0.98</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td>4096</td>
<td>8,194.06</td>
<td>10,014</td>
<td>35,880.069</td>
<td>1.22</td>
<td>4.38</td>
</tr>
<tr>
<td>Laguerre</td>
<td>2048</td>
<td>1,336.14</td>
<td>1,324.33</td>
<td>3,706.749</td>
<td>0.99</td>
<td>2.77</td>
</tr>
<tr>
<td></td>
<td>4096</td>
<td>20,727.9</td>
<td>23,605.7</td>
<td>91,668.577</td>
<td>1.14</td>
<td>4.42</td>
</tr>
<tr>
<td>Wilkinson</td>
<td>2048</td>
<td>630.481</td>
<td>614.94</td>
<td>1,031.36</td>
<td>0.98</td>
<td>1.64</td>
</tr>
<tr>
<td></td>
<td>4096</td>
<td>9,359.25</td>
<td>10,733.3</td>
<td>26,496.979</td>
<td>1.15</td>
<td>2.83</td>
</tr>
</tbody>
</table>

Table: Running time (in sec.) on a 48-core AMD Opteron 6168 node for four examples.

Parallel multivariate real root isolation

<table>
<thead>
<tr>
<th>Example</th>
<th>BPAS (parallel)</th>
<th>RealRootIsolate (serial)</th>
<th>Isolate (serial)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Body-Homog</td>
<td>0.402</td>
<td>0.608</td>
<td>0.382</td>
<td></td>
</tr>
<tr>
<td>Arnborg-Lazard</td>
<td>0.146</td>
<td>0.299</td>
<td>0.066</td>
<td></td>
</tr>
<tr>
<td>Caprasse</td>
<td>0.018</td>
<td>0.14</td>
<td>0.154</td>
<td>7.778</td>
</tr>
<tr>
<td>Circles</td>
<td>0.051</td>
<td>0.894</td>
<td>0.814</td>
<td>15.961</td>
</tr>
<tr>
<td>Cyclic-5</td>
<td>0.021</td>
<td>0.147</td>
<td>0.206</td>
<td>9.810</td>
</tr>
<tr>
<td>Czapor-Geddes-Wang</td>
<td>0.2</td>
<td>0.135</td>
<td>0.184</td>
<td></td>
</tr>
<tr>
<td>D2v10</td>
<td>0.029</td>
<td>0.075</td>
<td>177.999</td>
<td>2.586</td>
</tr>
<tr>
<td>D4v5</td>
<td>0.037</td>
<td>0.044</td>
<td>49.09</td>
<td>1.189</td>
</tr>
<tr>
<td>Fabfaux</td>
<td>0.192</td>
<td>0.231</td>
<td>0.071</td>
<td></td>
</tr>
<tr>
<td>Katsura-4</td>
<td>0.171</td>
<td>0.416</td>
<td>0.044</td>
<td></td>
</tr>
<tr>
<td>L-3</td>
<td>0.02</td>
<td>0.252</td>
<td>0.12</td>
<td>6.0</td>
</tr>
<tr>
<td>Neural-Network</td>
<td>0.029</td>
<td>0.332</td>
<td>0.131</td>
<td>4.517</td>
</tr>
<tr>
<td>R-6</td>
<td>0.014</td>
<td>0.048</td>
<td>20.612</td>
<td>3.429</td>
</tr>
<tr>
<td>Rose</td>
<td>0.026</td>
<td>0.336</td>
<td>0.599</td>
<td>12.923</td>
</tr>
<tr>
<td>Takeuchi-Lu</td>
<td>0.027</td>
<td>0.16</td>
<td>0.031</td>
<td>1.148</td>
</tr>
<tr>
<td>Wilkinsonxy</td>
<td>0.023</td>
<td>0.165</td>
<td>0.046</td>
<td>2.0</td>
</tr>
<tr>
<td>Nld-10-3</td>
<td>1.249</td>
<td>8.993</td>
<td>707.334</td>
<td>7.20</td>
</tr>
</tbody>
</table>

Table: Running time (in sec.) on a 12-core Intel Xeon 5650 node for BPAS vs. Maple 17 RealRootIsolate vs. C (with Maple 17 interface) Isolate.
Symbolic integration

R. H. C. Moir, R. M. Corless, and D. J. Jeffrey (2014, July) present an implementation based on the BPAS library, computing

\[F(x) = \int f(x) \, dx. \]

For instance, it evaluates

\[\int \frac{x^4 - 3x^2 + 6}{x^6 - 5x^4 + 5x^2 + 4} \, dx = \text{invtan}(x^3 - 3x, x^2 - 2). \]

```
/ 6-3*x^2+1*x^4
| ----------------- dx =
/ 4+5*x^2-5*x^4+1*x^6

----
\ a*log((-2) + (6*a)*x + (1)*x^2 + (-2*a)*x^3)

/ ----
\ a|1/4+1*a^2=0
```
The BPAS library is the first polynomial algebra library which emphasizes performance aspects (cache complexity, parallelism) on multi-core architectures.

- Its core operations (dense integer polynomial multiplication, real root isolation) outperform their counterparts in recognized computer algebra software (FLINT, Maple).

- Its companion library CUDA Modular Polynomial (CUMODP) has similar goals on GPGPUs www.cumodp.org.

- Together, they are designed to support the implementation of polynomial system solvers on hardware accelerators.

- The BPAS library is available in source at www.bpaslib.org.