Triangular Decompositions of Polynomial Systems: From Theory to Practice

Marc Moreno Maza

Univ. of Western Ontario, Canada

IPM workshop on differential algebra and related topics
21-25 June 2014
Why a tutorial on triangular decompositions?

• The theory is mature:
 - the objects are well understood,
 - the interactions with other theories also,
 - notions and terminologies are unifying.

• The algorithms are evolving very quickly:
 - modular algorithms are available now,
 - complexity estimates also,
 - fast polynomial and matrix arithmetic start to be used.

• The implementation effort is growing
 - triangular decompositions are available in major computer algebra systems,
 - implementation techniques are a priority.
Where are triangular decompositions used?

• Books and Papers, for instance:

 - difference polynomial systems (Gao & Luo, 2004)
 - polynomial systems (Chen & M3, 2011)
 - automatic theorem proving (Wu, 1984), (Chou, 1988)
 - geometric computation (Chen & Wang, 2004)
 - primary decomposition (Shimoyama & Yokoyama, 1994)
 - isolating real roots (Rioboo, 1992), (Aubry, Rouillier & Safey El Din, 2001), (Boulier, Chen, Lemaire & M3, 2009)
 - structured polynomial systems (Boulier, Lemaire & M3, 2001), (Dahan, Jin, M3 & Schost, 2006)
- cryptology (Schost & Gaudry, 2003)

- algebraic geometry (Alvandi, Chen, Marcus, M^3, Schost & Vrbik, 2012-2014)

- real algebraic geometry (Chen, Davenport, M^3, Xia & Xiao, 2010)

- symbolic-numeric computations (M^3, Reid, Scott & Wu, 2005)

- theoretical physics (Foursov & M^3, 2001)

- classification problems in geometry (Kogan & M^3, 2002).

- ...

- Software, for instance:

 - Diffalg by Boulier and Hubert in MAPLE

 - Dynamic Evaluation by Duval and Gómez Díaz in AXIOM

 - RealClosure by Rioboo in AXIOM

 - RAG’lib by Safey El Din in MAPLE
- *Epsilon* by Wang in MAPLE
- *Discoverer* by Xia in MAPLE
- for primary decomposition in MAGMA and SINGULAR
- *RegularChains* by Alvandi, Chen, Lemaire, M³ and Xie in MAPLE see also www.regularchains.org
- *RegularChains* in AXIOM and ALDOR by M³
- *Elimino* parallel implementation by Wu, Liao, Lin, and Wang in C
- *Basic Polynomial Algebra Subprograms* by Chen, Covanov, M³ Xie & Xie in CilkPlus.

- Related concepts
 - resultants
 - Gröbner bases
 - geometric resolutions
 - comprehensive Gröbner bases.
Acknowledgments

• The IPM and Prof. Amir Hashemi

• My former and current PhD students: Parisa Alvandi, Changbo Chen, Xiaohui Chen, Sardar Anisul Haque, Liyun Li, Xin Li, Wei Pan, Paul Vrbik, Ning Xie, Yuzhen Xie.

• My current collaborators on the subject of triangular decompositions:
 - François Boulier & François Lemaire (Univ. Lille 1, France)
 - Xavier Dahan (Kyushu Univ., Japan)
 - James Davenport (Univ. of Bath, UK)
 - Jürgen Gerhard and John May (Maplesoft)
 - Wenyuan Wu (CIGIT, Chinese Academy of Science, China)
 - Bican Xia (Peking Univ., China)
An overview of this tutorial

• **Main objective:** an introduction for non-experts.

• **Prerequisites:** some familiarity with Gröbner bases would be useful, but not necessary.

• **Outline:**

 Day 1: the case of polynomial systems with finitely many solutions

 Day 2: the general case: triangular sets, characteristic sets, Wu’s method, regular chains, reduction to dimension zero

 Day 3: the RegularChains library in MAPLE and an overview of its solvers

 Day 4: Applications to real algebraic geometry

 Day 5: Applications to the study of dynamical systems
How triangular decompositions look like?

For the following input polynomial system:

\[
F: \begin{cases}
 x^2 + y + z = 1 \\
 x + y^2 + z = 1 \\
 x + y + z^2 = 1
\end{cases}
\]

One possible triangular decompositions of the solution set of \(F \) is:

\[
\begin{cases}
 z = 0 \\
 y = 1 \\
 x = 0
\end{cases} \cup \begin{cases}
 z = 0 \\
 y = 0 \\
 x = 1
\end{cases} \cup \begin{cases}
 z = 1 \\
 y = 0 \\
 x = 0
\end{cases} \cup \begin{cases}
 z^2 + 2z - 1 = 0 \\
 y = z \\
 x = z
\end{cases}
\]

Another one is:

\[
\begin{cases}
 z = 0 \\
 y^2 - y = 0 \\
 x + y = 1
\end{cases} \cup \begin{cases}
 z^3 + z^2 - 3z = -1 \\
 2y + z^2 = 1 \\
 2x + z^2 = 1
\end{cases}
\]

9
An example in positive dimension

- Every prime ideal \(\mathcal{P} = \langle F \rangle \) in a polynomial ring \(\mathbb{K}[x_1, \ldots, x_n] \) may be represented by a **triangular set** \(T \) encoding the **generic zeros** of \(\mathcal{P} \).

\[
F = \begin{cases}
ax + by - c \\
dx + ey - f \\
gx + hy - i
\end{cases} \cong T = \begin{cases}
gx + hy - i \\
(hd - eg)y - id + fg \\
(ie - fh)a + (ch - ib)d + (fb - ce)g
\end{cases}
\]

- **All the common zeros** of every polynomial system can be decomposed into **finitely many** triangular sets.

\[
\mathbf{V}(\mathcal{P}) = \mathbf{W}(T) \cup \mathbf{W} \left\{ \begin{array}{c}
dx + ey - f \\
hy - i \\
(ie - fh)a + (-ib + ch)d \\
g
\end{array} \right\} \cup \mathbf{W} \left\{ \begin{array}{c}
gx + hy - i \\
(ha - bg)y - ia + cg \\
hd - eg \\
ie - fh
\end{array} \right\}
\]

\[
\cup \mathbf{W} \left\{ \begin{array}{c}
x \\
(hd - eg)y - id + fg \\
fb - ce \\
ie - fh
\end{array} \right\} \cup \mathbf{W} \left\{ \begin{array}{c}
ax + by - c \\
hy - i \\
d \\
g
\end{array} \right\} \cup \ldots
\]

where \(\mathbf{W}(T) \) denotes the generic zeros of \(T \). We have : \(\mathbf{W}(T) \subseteq \mathbf{V}(T) \). 10
Structured examples: implicitization, ranking conversions

• For $R = x > y > z > s > t$ and $\overline{R} = t > s > z > y > x$ we have:

$$\text{convert}\left(\begin{cases} x - t^3 \\ y - s^2 - 1 \\ z - s t \end{cases}, R, \overline{R}\right) = \begin{cases} s t - z \\ (x y + x)s - z^3 \\ z^6 - x^2 y^3 - 3x^2 y^2 - 3x^2 y - x^2 \end{cases}$$

• For $R = \cdots > v_{xx} > v_{xy} > \cdots > u_{xy} > u_{yy} > v_x > v_y > u_x > u_y > v > u$ and $\overline{R} = \cdots u_x > u_y > u > \cdots > v_{xx} > v_{xy} > v_{yy} > v_x > v_y > v$ we have:

$$\text{convert}\left(\begin{cases} v_{xx} - u_x \\ 4u v_y - (u_x u_y + u_x u_y u) \\ u_x^2 - 4u \\ u_y^2 - 2u \end{cases}, R, \overline{R}\right) = \begin{cases} u - u_{yy}^2 \\ v_{xx} - 2v_{yy} \\ v_y v_{xy} - v_{yy}^3 + v_{yy} \\ v_{yy}^4 - 2v_{yy}^2 - 2v_y^2 + 1 \end{cases}$$
How to compute triangular decompositions?

- Consider again solving the system F for $x > y > z$:

$$F : \begin{cases} x^2 + y + z = 1 \\ x + y^2 + z = 1 \\ x + y + z^2 = 1 \end{cases}$$

- Eliminating x leads to

$$\begin{cases} y^2 + (-1 + 2z^2)y - 2z^2 + z + z^4 = 0 \\ y^2 + z - y - z^2 = 0 \end{cases}$$

- Eliminating y^2 and then y we can arrive to $r(z) = 0$ with $r(z) = z^8 - 4z^6 + 4z^5 - z^4$.

- Factorizing $r(z)$ leads to $z^4(z^2 + 2z - 1)(z - 1)^2 = 0$ and thus to $z = 0$, $z = 1$ or $z^2 + 2z = 1$. In each case, it is easy to conclude either by substitution, or by GCD computation in $(\mathbb{Q}[z]/\langle z^2 + 2z - 1 \rangle)[y]$.

- Alternatively, one can directly perform GCD computation in $(\mathbb{Q}[z]/\langle r(z) \rangle)[y]$. But this is unusual since $\mathbb{Q}[z]/\langle r(z) \rangle$ is not a field! Let us see this now.
Computing a polynomial GCD over a ring with zero-divisors (I)

• Let us consider again the polynomials

\[
\begin{align*}
 f_1 &= y^2 + (2z^2 - 1)y - 2z^2 + z + z^4 \\
 f_2 &= y^2 + z - y - z^2
\end{align*}
\]

• Let us compute their GCD in \(\mathbb{L}[y] \) with \(\mathbb{L} = \mathbb{Q}[z]/\langle s(z) \rangle \) where \(s(z) = z(z^2 + 2z - 1)(z - 1) \) is the squarefree part of \(r(z) \). (Replacing \(r(z) \) with \(s(z) \) makes the story simpler.)

• We proceed as if \(\mathbb{L} \) were a field and run the Euclidean Algorithm in \(\mathbb{L}[y] \). Of course, before dividing by an element of \(\mathbb{L} \) we check whether it is a zero-divisor. We pretend we are not aware of the factorization of \(s(z) \).

• Dividing \(f_1 \) by \(f_2 \) is no problem since \(f_2 \) is monic. We obtain:

\[
\begin{array}{c|c}
 f_1 & f_2 \\
 f_3 & 1
\end{array}
\]

\(f_3 = 2z^2y - z^2 + 2z^2 - z \).
Computing a polynomial GCD over a ring with zero-divisors (II)

• In order to divide f_2 by f_3, we need to check whether $2z^2$ divides zero in \mathbb{L}. This is done by computing $\gcd(s(z), 2z^2)$ in $\mathbb{Q}[z]$, which is z.

• Hence $s(z)$ writes $z(z^3 + z^2 - 3z + 1)$ and we split the computations into two cases: $z = 0$ and $z^3 + z^2 - 3z = 1$.

 • **Case $z = 0$.** Then $f_3 = 0$ and $f_2 = y^2 - y$ is the GCD.

 • **Case $z^3 + z^2 - 3z = -1$.** Since $S(z)$ is square-free, $2z^2$ has an inverse in this case, namely $i(z) = -(3/2)z^2 - 2z + 4$.

• Thus, the polynomial $\tilde{f}_3 = i(z)f_3 = y + (1/2)z^2 - (1/2)$ is monic. So, we can compute

\[
\begin{array}{c|cc}
 & f_2 & \tilde{f}_3 \\
 \hline
 0 & y - (1/2)z^2 - (1/2) \\
\end{array}
\]

• Finally $\gcd(f_1, f_2, \mathbb{L}[y]) = \begin{cases}
y^2 - y & \text{if } z = 0 \\
2y + z^2 - 1 & \text{if } z^3 + z^2 - 3z = -1
\end{cases}$
How those triangular sets look like? (I)

• Let us consider again the system

\[
\begin{align*}
 y^2 + (-1 + 2z^2)y - 2z^2 + z + z^4 &= 0 \\
 y^2 + z - y - z^2 &= 0
\end{align*}
\]

• Let \(\alpha_1 \) and \(\alpha_2 \) be the roots of \(z^2 + 2z - 1 = 0 \). After dropping multiplicities, we obtain \((z, y) \in \{(0, 0), (0, 1), (\alpha_1, \alpha_1), (\alpha_2, \alpha_2), (1, 0)\} \).
How to pass from one triangular decomposition to another?

\[
\begin{align*}
\begin{cases}
z = 0 \\
y = 1 \\
x = 0
\end{cases} & \cup \\
\begin{cases}
z = 0 \\
y = 0 \\
x = 1
\end{cases} & \cup \\
\begin{cases}
z = 1 \\
y = 0 \\
x = 0
\end{cases} & \cup \\
\begin{cases}
z^2 + 2z - 1 = 0 \\
y = z \\
x = z
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\downarrow \quad \text{CRT} \quad \downarrow
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
z = 0 \\
y^2 - y = 0 \\
x + y = 1
\end{cases} & \cup \\
\begin{cases}
z = 1 \\
y = 0 \\
x = 0
\end{cases} & \cup \\
\begin{cases}
z^2 + 2z - 1 = 0 \\
y = z \\
x = z
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\downarrow \quad \text{CRT} \quad \downarrow
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
z = 0 \\
y^2 - y = 0 \\
x + y = 1
\end{cases} & \cup \\
\begin{cases}
z^3 + z^2 - 3z = -1 \\
2y + z^2 = 1 \\
2x + z^2 = 1
\end{cases}
\end{align*}
\]
From a lexicographical Gröbner basis to a triangular
decomposition (I)

• Let us consider again (last time) the polynomials
\[
\begin{align*}
 f_1 &= y^2 + (2z^2 - 1)y - 2z^2 + z + z^4 \\
 f_2 &= y^2 + z - y - z^2
\end{align*}
\]

• It is natural to ask how we could obtain a triangular decomposition from the
 reduced lexicographical Gröbner basis of \{f_1, f_2\} for \(y > z\). This basis is:
\[
\begin{align*}
 g_1 &= z^6 - 4z^4 + 4z^3 - z^2 \\
 g_2 &= 2z^2 y + z^4 - z^2 \\
 g_3 &= y^2 - y - z^2 + z
\end{align*}
\]

• We initialize \(T := \{g_1\}\). We would add \(g_2\) into \(T\) provided that \(\text{lcm}(g_2, y)\) is a
 unit.
So, we compute $\gcd(2z^2, g_1, \mathbb{Q}[z]) = z^2$. This shows $g_1 = z^2(z^4 - 4z^2 + 4z - 1)$ and splits the computations into two cases.

- **Case $z^2 = 0$**. In this case g_2 vanishes and $g_3 = y^2 - y + z$, leading to $T^1 := \{z^2, y^2 - y + z\}$

- **Case $z^4 - 4z^2 + 4z - 1$**. In this case $\text{lc}(g_2, y)$ has $2z^3 + (1/2)z^2 - 8z + 6$ for inverse. Multiplying g_2 by this inverse leads to $\tilde{g}_2 = y + (1/2)z^2 - (1/2)$. Then, we observe that

\[
\begin{array}{c|c}
\text{g3} & \tilde{g}_2 \\
0 & y - (1/2)z^2 - (1/2) \\
\end{array}
\]

leading to a second component $T^2 := \{z^4 - 4z^2 + 4z - 1, 2y + 1z^2 - 1\}$.

- For more details: (Gianni, 1987), (Kalkbrener, 1987), (Lazard, 1992).
Some notations before we start the theory (I)

Notation. Throughout the talk, we consider a field \mathbb{K} and an ordered set $X = x_1 < \cdots < x_n$ of n variables. Typically \mathbb{K} will be

- a **finite field**, such as $\mathbb{Z}/p\mathbb{Z}$ for a prime p, or
- the field \mathbb{Q} of **rational numbers**, or
- a field of **rational functions** over $\mathbb{Z}/p\mathbb{Z}$ or \mathbb{Q}.

We will denote by $\overline{\mathbb{K}}$ the **algebraic closure** of \mathbb{K}.

Notation. We denote by $\mathbb{K}[x_1, \ldots, x_n]$ the ring of the polynomials with coefficients in \mathbb{K} and variables in X. For $F \subset \mathbb{K}[x_1, \ldots, x_n]$, we write $\langle F \rangle$ and $\sqrt{\langle F \rangle}$ for the ideal generated by F in $\mathbb{K}[x_1, \ldots, x_n]$ and its radical, respectively.

Notation. For $F \subset \mathbb{K}[x_1, \ldots, x_n]$, we are interested in

$$V(F) = \{ \zeta \in \overline{\mathbb{K}}^n \mid (\forall f \in F) \; f(\zeta) = 0 \},$$

the **zero-set** of F or **algebraic variety** of F in $\overline{\mathbb{K}}^n$.

Remark. In some circumstances $\overline{\mathbb{K}}^n$ will be denoted $A^n(\overline{\mathbb{K}})$, especially when we consider several n at the same time.
Some notations before we start the theory (II)

Notation. Let i and j be integers such that $1 \leq i \leq j \leq n$ and let $V \subseteq A^n(\overline{\mathbb{K}})$ be a variety over \mathbb{K}. We denote by π_i^j the natural projection map from $A^j(\overline{\mathbb{K}})$ to $A^i(\overline{\mathbb{K}})$, which sends (x_1, \ldots, x_j) to (x_1, \ldots, x_i). Moreover, we define $V_i = \pi_i^n(V)$. Often, we will restrict π_i^j from V_i to V_j.

Notation. The algebraic varieties in $\overline{\mathbb{K}}^n$ defined by polynomial sets of $\mathbb{K}[x_1, \ldots, x_n]$ form the **closed sets** of a topology, called **Zariski Topology**. For a subset $W \subset \overline{\mathbb{K}}^n$, we denote by \overline{W} the closure of W for this topology, that is, the intersection of the $V(F)$ containing W, for all $F \subset \mathbb{K}[x_1, \ldots, x_n]$.

Notation. For $W \subset \overline{\mathbb{K}}^n$, we denote by $I(W)$ the ideal of $\mathbb{K}[x_1, \ldots, x_n]$ generated by the polynomials vanishing at every point of W.

Remark. When $\mathbb{K} = \overline{\mathbb{K}}$ and $W = V(F)$, for some $F \subset \mathbb{K}[x_1, \ldots, x_n]$, recall the Hilbert Theorem of Zeros:

$$\sqrt{\langle F \rangle} = I(V(F)).$$
Lazard triangular sets

Definition. (Lazard, 1992) A subset

\[T = \{ T_1, \ldots, T_n \} \subset \mathbb{K}[x_1 < \cdots < x_n] \]

is a Lazard triangular set if for \(i = 1 \cdots n \)

\[T_i = x_i^{d_i} + a_{d_i-1} x_i^{d_i-1} + \cdots + a_1 x_i + a_0 \]

with

\[a_{d_i-1}, \ldots, a_1, a_0 \in k[x_1, \ldots, x_{i-1}] \]

reduced w.r.t \(\langle T_1, \ldots, T_{i-1} \rangle \) in the sense of Gröbner bases.

Theorem. A family \(T \) of \(n \) polynomials in \(\mathbb{K}[x_1 < \cdots < x_n] \) is a Lazard triangular set if and only it is the reduced lexicographical Gröbner basis of a zero-dimensional ideal.
How those triangular sets look like? (II)

Notation. Let \(T = \{T_1, \ldots, T_n\} \subset \mathbb{K}[x_1, \ldots, x_n] \) be a Lazard triangular set. Let \(V \) be its variety in \(\mathbb{A}^n(\overline{\mathbb{K}}) \). Let \(d_1 = \deg(T_1, x_1), \ldots, d_n = \deg(T_n, x_n) \).

Notation. For \(1 \leq i < j \leq n \), recall that

\[
\pi^j_i : V_j \twoheadrightarrow V_i \quad (x_1, \ldots, x_j) \rightarrow (x_1, \ldots, x_i)
\]

where \(V_i = \pi^n_i(V) \) and \(V_j = \pi^n_j(V) \).

Proposition. For a point \(M \in V_i \) the fiber (i.e. the pre-image) \((\pi^j_i)^{-1}(M)\) has cardinality \(d_{i+1} \cdots d_j \), that is

\[
|\pi^{-1}_i(M)| = d_{i+1} \cdots d_j.
\]
Equiprojectable varieties

Definition. Let i and j be integers such that $1 \leq i < j \leq n$ and let $V \subseteq A^j(\overline{\mathbb{K}})$ be a variety over \mathbb{K}. The set V is said

1. **equiprojectable on** V_i, its projection on $A^i(\overline{\mathbb{K}})$, if there exists an integer c such that for every $M \in V_i$ the cardinality of $(\pi^j_i)^{-1}(V_i)$ is c.

2. **equiprojectable** if V is equiprojectable on V_1, \ldots, V_{j-1}.

Theorem. (Aubry & Valibouze, 2000) Assume \mathbb{K} is **perfect** and let $V \subset A^n(\overline{\mathbb{K}})$ be finite. Assume that there exists $F \subset \mathbb{K}[x_1, \ldots, x_n]$ such that $V = V(F)$. Then, the following conditions are equivalent:

1. V is equiprojectable,

2. There exists a Lazard Triangular set $T \subset \mathbb{K}[x_1, \ldots, x_n]$ whose zero-set in $A^n(\overline{\mathbb{K}})$ is exactly V.

Proof. For proving (1) \implies (2) one can use the **interpolation formulas** of (Dahan & Schost, 2004) to construct a Lazard triangular set in $\overline{\mathbb{K}}[x_1, \ldots, x_n]$. To conclude, one uses the hypothesis \mathbb{K} perfect, $V = V(F)$ together with the Hilbert Theorem of Zeros. ⊲
The interpolation formulas: sketch (I)

• Let $V \subset A^n(\overline{K})$ be (finite and) equiprojectable. Let K be a field, with $K \subseteq K \subseteq \overline{K}$ such that every point of V has its coordinates in K.

• We have $T_1 = \prod_{\alpha \in V_1} (x_1 - \alpha)$. Let $1 \leq \ell < n$. We give interpolation formulas for $T_{\ell+1}$ from the coordinates (in K) of the points of $V_{\ell+1}$, for $1 \leq \ell < n$.

• Let $\alpha = (\alpha_1, \ldots, \alpha_{\ell}) \in V_\ell$. We define the varieties

$$V_{\alpha}^1 = \{ \beta = (\beta_1, \ldots, \beta_\ell, \beta_{\ell+1}) \in V_{\ell+1} \mid \beta_1 \neq \alpha_1 \}$$

$$V_{\alpha}^2 = \{ \beta = (\alpha_1, \beta_2, \ldots, \beta_\ell, \beta_{\ell+1}) \in V_{\ell+1} \mid \beta_2 \neq \alpha_2 \}$$

$$\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$$

$$V_{\alpha}^\ell = \{ \beta = (\alpha_1, \ldots, \alpha_\ell-1, \beta_\ell, \beta_{\ell+1}) \in V_{\ell+1} \mid \beta_\ell \neq \alpha_\ell \}$$

$$V_{\alpha}^{\ell+1} = \{ \beta = (\alpha_1, \ldots, \alpha_\ell, \beta_{\ell+1}) \in V_{\ell+1} \}$$

The sets $V_{\alpha}^1, V_{\alpha}^2, V_{\alpha}^3, \ldots, V_{\alpha}^\ell, V_{\alpha}^{\ell+1}$ form a partition of $V_{\ell+1}$.

• The intermediate goal is to build $T_{\alpha,\ell+1} = T_i(\alpha_1, \ldots, \alpha_\ell, x_{\ell+1}) \in K[x_{\ell+1}]$.

24
We consider also the projections

\[v_1^\alpha = \pi_1^{\ell+1}(V_1^\alpha) = \{(\beta_1) \in V_1 \mid \beta_1 \neq \alpha_1\} \]

\[v_2^\alpha = \pi_2^{\ell+1}(V_2^\alpha) = \{(\alpha_1, \beta_2) \in V_2 \mid \beta_2 \neq \alpha_2\} \]

\[\ldots \]

\[v_\ell^\alpha = \pi_\ell^{\ell+1}(V_\ell^\alpha) = \{(\alpha_1, \ldots, \alpha_{\ell-1}, \beta_\ell) \in V_\ell \mid \beta_\ell \neq \alpha_\ell\} \]

For \(1 \leq i \leq \ell\), define \(e_{\alpha,i} := \prod_{\beta \in v_i^\alpha} (x_i - \beta_i) \in K[x_i]\) and

\[E_\alpha := \prod_{1 \leq i \leq \ell} e_{\alpha,i} \in K[x_1, \ldots, x_\ell]. \]

Then, we have:

\[T_{\alpha,\ell+1} = \prod_{\beta \in V_\alpha^{\ell+1}} (x_{\ell+1} - \beta_{\ell+1}) \]

\[T_{\ell+1} = \sum_{\alpha \in V_\ell} \frac{E_\alpha T_{\alpha,\ell+1}}{E_\alpha(\alpha)} \]

Related work: (Abbot, Bigatti, Kreuzer & Robbiano, 1999), …
Direct product of fields, the D5 Principle (I)

Proposition. Let \(f \in \mathbb{K}[x] \) be a non-constant and square-free univariate polynomial. Then \(\mathbb{L} = \mathbb{K}[x]/\langle f \rangle \) is a direct product of fields (DPF).

Proof. The factors of \(f \) are pairwise coprime. Then, apply the Chinese Remaindering Theorem. (If \(f = f_1 f_2 \) then \(\mathbb{L} \simeq \mathbb{K}[x]/\langle f_1 \rangle \times \mathbb{K}[x]/\langle f_2 \rangle \).)

Principle. (Della Dora, Dicrescenzo & Duval, 1985) If \(\mathbb{L} \) is a DPF, then one can compute with \(\mathbb{L} \) as if it were a field: it suffices to split the computations into cases whenever a zero-divisor is met.

Proposition. Let \(\mathbb{L} \) be a DPF and \(f \in \mathbb{L}[x] \) be a non-constant monic polynomial such that \(f \) and its derivative generate \(\mathbb{L}[x] \), that is, \(\langle f, f' \rangle = \mathbb{L}[x] \). Then \(\mathbb{L}[x]/\langle f \rangle \) is another DPF.

Proof. It is convenient to establish the following more general theorem: A Noetherian ring is isomorphic with a direct product of fields if and only if every non-zero element is either a unit or a non-nilpotent zero-divisor.
Direct product of fields, the D5 Principle (II)

Proposition. Let $T \subset \mathbb{K}[x_1, \ldots, x_n]$ be a Lazard triangular set such that $\langle T \rangle$ is **radical**. Then, we have

- $\mathbb{K}[x_1, \ldots, x_n]/\langle T \rangle$ is a DPF,
- if \mathbb{K} is **perfect** then $\overline{\mathbb{K}}[x_1, \ldots, x_n]/\langle T \rangle$ is a DPF.

Remark. Recall the trap! Consider $\mathbb{F} = \mathbb{Z}/p\mathbb{Z}(t)$, for a prime p. Consider the polynomial $f = x^p - t \in \mathbb{F}[x]$ and $\overline{\mathbb{F}}$ an algebraic closure of \mathbb{F}.

Since f is not constant, it has a root $\alpha \in \overline{\mathbb{F}}$ and we have

$$f = x^p - t = x^p - \alpha^p = (x - \alpha)^p \quad (1)$$

in $\overline{\mathbb{F}}[x]$, which is clearly not square-free. However f is irreducible, and thus squarefree, in $\mathbb{F}[x]$.

27
Polynomial GCDs over DPF, quasi-inverses (I)

Definition. (M³ & Rioboo, 1995) Let \(\mathbb{L} \) be a DPF. The polynomial \(h \in \mathbb{L}[y] \) is a GCD of the polynomials \(f, g \in \mathbb{L}[y] \) if the ideals \(\langle f, g \rangle \) and \(\langle h \rangle \) are equal.

Remark. Another trap! Even if \(f, g \) are both monic, there may not exist a monic polynomial \(h \) in \(\mathbb{L}[y] \) such that \(\langle f, g \rangle = \langle h \rangle \) holds. Consider for instance \(f = y + \frac{a+1}{2} \) (assuming that 2 is invertible in \(\mathbb{L} \)) and \(g = y + 1 \) where \(a \in \mathbb{L} \) satisfies \(a^2 = a \), \(a \neq 0 \) and \(a \neq 1 \).

Remark. In practice, polynomial GCDs over DPF are computed via the D5 Principle. Moreover, only monic GCDs are useful. So, we generalize:

Definition. Let \(\mathbb{L} \) be a DPF and \(f, g \in \mathbb{L}[y] \). A GCD of \(f, g \) in \(\mathbb{L}[y] \) is a sequence of pairs \(((h_i, \mathbb{L}_i), 1 \leq i \leq s) \) such that

- \(\mathbb{L}_i \) is a DPF, for all \(1 \leq i \leq s \) and the direct product of \(\mathbb{L}_1, \ldots, \mathbb{L}_s \) is isomorphic to \(\mathbb{L} \),
- \(h_i \) is a null or monic polynomial in \(\mathbb{L}_i[y] \), for all \(1 \leq i \leq s \),
- \(h_i \) is a GCD (in the above sense) of the projections of \(f, g \) to \(\mathbb{L}_i[y] \), for all \(1 \leq i \leq s \).
Polynomial GCDs over DPF, quasi-inverses (II)

Definition. Let \(\mathbb{L} \) be a DPF and let \(f \in \mathbb{L} \). A **quasi-inverse** of \(f \) is a sequence of pairs \(((g_i, \mathbb{L}_i), 1 \leq i \leq s) \) such that

- \(\mathbb{L}_i \) is a DPF, for all \(1 \leq i \leq s \) and the direct product of \(\mathbb{L}_1, \ldots, \mathbb{L}_s \) is isomorphic to \(\mathbb{L} \)
- \(g_i \in \mathbb{L}_i \), for all \(1 \leq i \leq s \),
- let \(f_i \) be the projection of \(f \) to \(\mathbb{L}_i \); either \(f_i = g_i = 0 \) or \(f_i g_i = 1 \) hold, for all \(1 \leq i \leq s \).

Proposition. Let \(T \subset \mathbb{K}[x_1, \ldots, x_n] \) be a Lazard triangular set such that \(\langle T \rangle \) is **radical**. We define \(\mathbb{L} = \mathbb{K}[x_1, \ldots, x_n]/\langle T \rangle \).

1. For all \(f \in \mathbb{K}[x_1, \ldots, x_n] \) (reduced w.r.t. \(T \)) one can compute a **quasi-inverse** in \(\mathbb{L} \) of \(f \) (regarded as an element of \(\mathbb{L} \)).

1. For all \(f, g \in \mathbb{L}[y] \) one can compute a **GCD** of \(f \) and \(g \) in \(\mathbb{L}[y] \).
Equiprojectable decomposition

Remark. Not every variety is equiprojectable, for instance $V = \{(0, 1), (0, 0), (1, 0)\}$.

Definition. Let $V \subset A^n(\overline{K})$ be finite. Consider the projection $\pi : V \hookrightarrow \overline{K}^{n-1}$ which forgets x_n. To every $x \in V$ we associate

$$N(x) = \#\pi^{-1}(\pi(x)).$$

We write $V = C_1 \cup \cdots \cup C_d$ where $C_i = \{x \in V \mid N(x) = i\}$. This splitting process is applied recursively to all varieties C_1, \ldots, C_d.

In the end, we obtain a family of pairwise disjoint, equiprojectable varieties, whose reunion equals V. This is the **equiprojectable decomposition** of V.

Proposition. Let $V(F) \subset A^n(\overline{K})$ be finite with $F \subset K[x_1, \ldots, x_n]$. There exist Lazard triangular sets $T^1, \ldots, T^s \subset K[x_1, \ldots, x_n]$ such that

$$V(F) = V(T^1) \cup \cdots \cup V(T^s) \text{ and } i \neq j \Rightarrow V(T^i) \cap V(T^j) = \emptyset.$$

They form a **triangular decomposition** of $V(F)$.
Equiprojectable variety definition (1/3)
Equiprojectable variety definition (2/3)
Equiprojectable variety definition (3/3)
Equiprojectable decomposition definition (1/3)
Equiprojectable decomposition definition (2/3)
Equiprojectable decomposition definition (3/3)
From triangular to equiprojectable decomposition

Notation. Let \(V(F) \subset A^n(\overline{K}) \) be finite with \(F \subset K[x_1, \ldots, x_n] \). Let \(\Delta \) be a triangular decomposition of \(V(F) \).

Proposition. We compute from \(\Delta \) another triangular decomposition \(\{T^1, \ldots, T^d\} \) of \(V \) such that \(V(T^1), \ldots, V(T^d) \) is the equiprojectable decomposition of \(V \).

Proof. We proceed into two steps:

- **split:** reducing what we call critical pairs by means of GCD computations modulo Lazard triangular sets,

- **merge:** reducing what we call solvable pairs by means of CRT computations modulo Lazard triangular sets.

Remark. Among all possible triangular decompositions of \(V(F) \), the equiprojectable decomposition is a canonical choice: it depends only on the variable order and \(V(F) \).
Example: *split + merge* modulo 7

\[
\begin{align*}
\text{C} & \quad C_2 = y^2 + 6yx^2 + 2y + x, & \quad D & \quad D_2 = y + 6 \\
& \quad C_1 = x^3 + 6x^2 + 5x + 2, & \quad & \quad D_1 = x + 6
\end{align*}
\]
Example: split+merge modulo 7

\[
\begin{array}{c|c|c}
C & C_2 = y^2 + 6yx^2 + 2y + x, & D_2 = y + 6 \\
 & C_1 = x^3 + 6x^2 + 5x + 2 & D_1 = x + 6 \\
\end{array}
\]

\[
\downarrow \text{Split } C : \text{GCD} \downarrow
\]

\[
\begin{array}{c|c|c}
E & C_2' = y^2 + x, & D_2 = y + 6 \\
 & C_1' = x^2 + 5 & D_1 = x + 6 \\
\end{array}
\]

\[
F | C_2'' = y^2 + y + 1, \quad C_1'' = x + 6 \\
\]

\[
D | D_2 = y + 6, \quad D_1 = x + 6
\]

![Diagram](image-url)
Example: split+merge modulo 7

<table>
<thead>
<tr>
<th></th>
<th>(C)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(C_2 = y^2 + 6yx^2 + 2y + x), (C_1 = x^3 + 6x^2 + 5x + 2)</td>
<td>(D_2 = y + 6), (D_1 = x + 6)</td>
</tr>
</tbody>
</table>

\[\downarrow \text{Split } C : \text{GCD} \ \downarrow \]

<table>
<thead>
<tr>
<th></th>
<th>(E)</th>
<th>(F)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(C_2' = y^2 + x)</td>
<td>(C_2'' = y^2 + y + 1)</td>
<td>(D_2 = y + 6)</td>
</tr>
<tr>
<td></td>
<td>(C_1' = x^2 + 5)</td>
<td>(C_1'' = x + 6)</td>
<td>(D_1 = x + 6)</td>
</tr>
</tbody>
</table>

\[\downarrow \text{Merge } F \text{ and } D : \text{CRT} \ \downarrow \]

<table>
<thead>
<tr>
<th></th>
<th>(E)</th>
<th>(G)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(C_2' = y^2 + x)</td>
<td>(G_2 = y^3 + 6)</td>
</tr>
<tr>
<td></td>
<td>(C_1' = x^2 + 5)</td>
<td>(G_1 = x + 6)</td>
</tr>
</tbody>
</table>

\[\text{Diagram: Split } C \rightarrow \text{Split } C' \rightarrow \text{Merge } F \text{ and } D \rightarrow \text{Merge } C' \]
Specialization properties: sketch

Oversimplified case: Assume all points $V(F)$ are in \mathbb{Q}^n. Let $p \in \mathbb{Z}$ prime. if
1. p divides no denominator of the coordinates; (V mod p is well defined)
2. the cardinality of none of the projections of V decreases mod p;
then the equiprojectable decomposition specializes mod p. Below, is a bad case.

General case: Under similar assumptions, every coordinate of every point of V lies in a direct sum $\mathbb{Z}_p \oplus \cdots \oplus \mathbb{Z}_p$ where \mathbb{Z}_p is the ring of p-adic integers.

THEOREM. (Dahan, M3, Schost, Wu & Xie, 2005) Let h the maximum length of a coefficient in F, and d the maximum degree in F. There exists $A \in \mathbb{N}$ s. t.:
(1) $h(A) \leq 2n^2 d^{2n+1}(3h + 7 \log(n + 1) + 5n \log d + 10)$.
(1) If $p \not| A$, then the equiprojectable decomposition specializes well mod p.
A probabilistic algorithm

Random choice of two primes: \(p_1 \) and \(p_2 \)

Triangular decomposition mod \(p_1 \)

Equiprojectable decomposition mod \(p_1 \)

Hensel lifting
Triangular sets \(\mod p_1^2 \), \(p_1^4 \), \(p_1^8 \), . . .

Rational reconstruction

FAILS

Triangular sets over \(\mathbb{Q} \) (good ones?)

SUCCEEDS

Triangular decomposition mod \(p_2 \)

Equiprojectable decomposition mod \(p_2 \)

Not lifted enough?

\begin{align*}
\text{NO} \quad \text{?} \quad \text{?} \quad \text{?} \quad \text{?} \\
\text{YES} \quad \text{Is each triangular set in green equals to one of the red ones?}
\end{align*}

Algorithm succeeds

Reduction modulo \(p_2 \)

\begin{align*}
\text{SUCCEEDS} \quad \text{\begin{align*}
\text{SUCCEEDS} \quad \text{\begin{align*}
\text{SUCCEEDS} \quad \text{\begin{align*}
\text{SUCCEEDS}
\end{align*}}
\end{align*}}
\end{align*}}
\end{align*}
Generalizing Lazard triangular sets

Remark. Let $T = \{T_1, \ldots, T_n\} \subset \mathbb{K}[x_1, \ldots, x_n]$ be a Lazard triangular set. Let $\mathcal{I} := \langle T \rangle$. We have shown that given $p \in \mathbb{K}[x_1, \ldots, x_n]$,

- one can decide whether $p \in \mathcal{I}$. Indeed T is a Gröbner basis of \mathcal{I}.
- assuming \mathcal{I} radical, one can decide whether $p^{-1} \mod \mathcal{I}$ exists. Indeed $\mathbb{K}[x_1, \ldots, x_n]/\mathcal{I}$ is a DPF.

We aim at:

- first, relaxing the hypothesis $\text{lc}(T_i, x_i) = 1$, for all $1 \leq i \leq n$,
- second, relaxing the **as many polynomials as variables** constraint.

while preserving a **triangular shape** together with the above **algorithmic properties**.
Zero-dimensional regular chains

Definition. A subset $C = \{C_1, \ldots, C_n\} \subset \mathbb{K}[x_1 < \cdots < x_n]$ is a **zero-dimensional regular chain** if for all $i = 1 \cdots n$ we have

1. $C_i \in \mathbb{K}[x_1, \ldots, x_i]$,
2. $\deg(C_i, x_i) > 0$,
3. $h_i := \text{lc}(C_i, x_i)$ is invertible modulo the ideal $\langle C_1, \ldots, C_{i-1} \rangle$.

Proposition. Let $C \subset \mathbb{K}[x_1, \ldots, x_i]$ be a **zero-dimensional regular chain**. There exists a Lazard triangular set $T \subset \mathbb{K}[x_1, \ldots, x_i]$ such that $\langle C \rangle = \langle T \rangle$.

Proof. By induction on n.

- For $n = 1$ we have $T_1 = \text{lc}(C_1)^{-1} C_1$ and the claim follows clearly.
- For $n > 1$ we compute \tilde{h}_n the inverse of h_n modulo $\langle T_1, \ldots, T_{n-1} \rangle$ and observe
 $$\langle T_1, \ldots, T_{n-1}, \tilde{h}_n C_n \rangle = \langle T_1, \ldots, T_{n-1}, C_n \rangle.$$
The Dahan-Schost Transform (I)

Proposition. Consider \(T = \{T_1, \ldots, T_n\} \) a Lazard triangular set. Assume \(T \) generates a radical ideal. Let \(D_1 = 1 \) and \(N_1 = T_1 \). For \(2 \leq \ell \leq n \), define

\[
D_\ell = \prod_{1 \leq i \leq \ell - 1} \frac{\partial T_i}{\partial x_i} \mod \langle T_1, \ldots, T_{\ell - 1} \rangle
\]

\[
N_\ell = D_\ell T_\ell \mod \langle T_1, \ldots, T_{\ell - 1} \rangle
\]

Then \(N = \{N_1, \ldots, N_n\} \) is a zero-dimensional regular chain with \(\langle T \rangle = \langle N \rangle \).

Remark. The results of **(Dahan & Schost, 2004)** “essentially” show that the height (or “size”) of each coefficient in \(N \) is upper bounded by

- the height of \(V(T) \) if \(K = \mathbb{Q} \), that is the minimum size of a data set encoding \(V(T) \),
- the degree of \(V(T^\downarrow) \) if \(K \) is a field \(k(t_1, \ldots, t_m) \) of rational functions and \(T^\downarrow \) is \(T \) regarded in \(k[t_1, \ldots, t_m, x_1, \ldots, x_n] \).

See the authors’ article for precise statements.
The Dahan-Schost Transform (II)

• Consider the system F (Barry Trager).

\[-x^5 + y^5 - 3y - 1 = 5y^4 - 3 = -20x + y - z = 0\]

We solve it for $z < y < x$.

• $V(F)$ is equiprojectable and its Lazard triangular set is

\[
\begin{align*}
11474127946569256007468619671388225994546322534047768700511994762261926900489014476185343948464697342622310665345135093195323564185839650189693651393545601231022260010343965391013603161618331054181976135382209910495948519012063920629615932045724589651442741444943587304777556223820376199033996054351301919398450811043401539767435245829758618270875989463831973885970439654459159240773157947028995544307815442694326841805687077911765761917873238393662798997120827671296735352087075871215616119541262433845931685369080754130154719452119621523713394865899778769339534459634212652321688102858941028295140149607477959605181480664573334972485639134741063277706156095111089627563494088702934461198572429832808992812870412765974147039531182770901475269211462030823759341810040325817543392095814567632394138225663551675769080400536438309191296130950729973668595636802112563524969324865875138127923901717040324245316310945016304034566836868396416454909450908686183665824904206376739708532798694710183488870918177495466758475933774815682380070072559306520563109135581811542014656070637988617107330377650533573060376765291256264154608045527569292338754337973797843824713701855230758768236174292732015095209063005663023451206412469538581957864228527528797540201566899450200204776059460451559860111513017617067305346652396615265985718824532042488802422296773818429373789169917697659429318767468848486488142387103357657535971492012495647461071880315070337681297841719718775576117319500000077875129232958889104193239787108649287987286424755607482454864690786827841184696976286133386057538173722098997859322480
\]
• 5737063973284628003734098356941129977273162670238843502559973811130963450244507283092671974233
 17126050058202862102854051702189834445407041921409912212858453794696093319533564185839650189693
 699349416725564387706041955516121939729771831066168137301361047433161675729521509773976564819862
 469803305737200436962857230940384594351690145609608094579328266981168648539093657866617523596721
 3624577949998087226523064237197118238681455387434685379217170814307753153223785029557758914206492
 182558840983141129257028601685384373297644771129092120128266359787322504095639220690574114647888
 151384178466066258299897889869742667512277813383969304602672093549761989645144274
 44394335873903477558622382037619903399605543513019193984508110344015397674352445829758618270875
 239889463831973885970439654459159240773157947028995584430781544269432684180568707791767576191787
 273833966279899712882771296735352080757871215616119541262423348593168536908075413015471945211962
 152371339486589977786393534459634212652323168810285894102895140146907477956051840866457334972
 485639134741063277706156095111089627563494088702934461198572429832808992812870412765974147039531
 1827709014752692114620308283759341810040325817543392095814567632394138225663533167569680400536438
 309191296130957029973668595368021125635249669324865875138127923901717040322453163109041630403456
 6838688396641645449094509086868136658249042063767397085327989647101834888709181774954667584758393
 7481568238007075259306520563109135581811542014656070637888617107330377650533573063765291526264
 1546080455275692923217437018552037863236174292780519209063056630234512064
 12469538581957864228527528797540201566899450200477065094640515598601115130175167063705343665239
 661526598571882453202424888024222967381848293737891699176976594293187676488484684814238710335767
 107682408338385308982455918634325305664726893856491630963372387378085153378287004125
 23978710864928798728642475560748245864690786827841184696976286133386057573817722098997859322480
• 3125z^{20} - 9375z^{16} - 40000000000z^{15} - 2015999988750z^{12} - 156000000000z^{11} + 192000000000000z^{10} - 12165125356800000000z^{8} - 652800000000z^{6} - 40960000000000000z^{5} - 169869086392334783997975^{4} - 14155767152640302400000000z^{3} - 589823873280000000000z^{2} - 12288000000000000z - 6195303619231982878732441600243

• Applying the transformation of Dahan and Schost leads to 1787 characters.

• (20z^{19} + (-48z^{15}) + (-192000000z^{14}) + (-38707199784/5)z^{11}) + (-549120000z^{10}) + 61440000000000z^{9} + (-778568022835200432/25)z^{7}) + (-33030148999680000z^{6}) + (-1253376000000000z^{5}) + (-655360000000000000000z^{4}) + (-2717905382277335654399676/125)z^{3}) + (-1358953646653469030400z^{2}) + (-3774872788992000000000z) - 393216000000000000
\[
3200000z^{15} + 161280000z^{12} + 124800000z^{11} + (-30720000000000z^{10}) + 1946419628544000z^{8} + 235929617856000z^{7} + 104448000000000z^{6} + 9830400000000000z^{5} + 407685987827227827200z^{4} + 33973848244224192000z^{3} + 141557739724800000000z^{2} + 294912000000000000000z + 198249699507965678059615328
\]

- \((20z^{19} + (-48z^{15}) + (-192000000z^{14}) + (-38707199784/5)z^{11}) + (-549120000z^{10}) + 61440000000000z^{9} + (-778568022835200432/25)z^{7}) + (-33030148996800000z^{6}) + (-125337600000000000z^{5}) + (-655360000000000000000z^{4}) + (-271790538227735654399676/125)z^{3}) + (-13589536466534690304000z^{2}) + (-377487278899200000000z) - 393216000000000000000000z) + (-12z^{16}) + (-9676799856/5)z^{12}) + (-1996800000z^{11}) + (-194642219980800648/25)z^{9}) + (-141557781713920000z^{7}) + (-835584000000000000z^{6}) + (-679471833416273049598704/125)z^{4}) + (-9059676821914761216000z^{3}) + (-566230715596800000000000z^{2}) + (-1572864000000000000000z) + (-2038432221757477324800972/625)

- \(z^{20} + (-3z^{16}) + (-128000000z^{15}) + (-3225599982/5)z^{12}) + (-499200000z^{11}) + 614400000000000z^{10} + (-973210028544000054/25)z^{8}) + (-4718592714240000z^{7}) + (-20889600000000000z^{6}) + (-131072000000000000000z^{5}) + (-6794763455833913599919/125)z^{4}) + (-452984548844896768000z^{3}) + (-188743639449600000000000z^{2}) + (-393216000000000000000z) + (-6195303619231982878732441600243/3125)

- One can do better! Here’s the regular chain produced by the Triangularize algorithm of the RegularChains library, counting 963 characters.

- \(20x - 1y + z\)

- \((4375z^{12} + 52800011625z^{8} + 320000000000z^{7} + 110591902080000295z^{4} + 614399808000000000z^{3} + 1280000000000000z^{2} + 1875z^{13} - 9600010125z^{9} + 2000000000000z^{8} - 73727147520045z^{5} + 30720024000000000z^{4} + 128000000000000000000z^{3} - 22118403456000135z + 2359296368640014400000000

- \(3125z^{20} - 9375z^{16} - 400000000000z^{15} - 201599998750z^{12} - 1560000000000z^{11} + 192000000000000000z^{10} - 1216512535680006750z^{8} - 14745602232000000000z^{7} - 65280000000000000000z^{6} - 409600000000000000000z^{5} - 169869086393347839997975z^{4} - 141557671526403024000000000z^{3} - 589823873280000000000000z^{2} - 122880000000000000000000z - 6195303619231982878732441600243\)
Gröbner bases (I)

Notation. Fix \(\leq \) a term order on \(M = \{ x_1^{i_1} \ldots x_n^{i_n} \mid i_j \geq 0 \} \), i.e., a total order on \(M \) satisfying \(1 \leq u \) and \(u \leq v \) \(\Rightarrow uw \leq vw \) for all \(u, v, w \in M \).

For \(f \in \mathbb{K}[x_1, \ldots, x_n] \), \(f \neq 0 \), the **leading (\textit{= greatest}) monomial** w.r.t. \(\leq \) in \(f \) is denoted \(\text{lm}\ f \) and its coefficient in \(f \) is the **leading coefficient** of \(f \), denoted \(\text{lc}\ f \).

For \(F \subset \mathbb{K}[X] \setminus \{0\} \), we write \(\text{lm}\ F = \{ \text{lm}\ f \mid f \in F \} \).

Definition. \(f \in \mathbb{K}[X] \) is **reduced** w.r.t. \(g \in \mathbb{K}[X] \), \(g \neq 0 \) if \(\text{lm}\ g \) does not divide any monomial in \(f \).

Notation. If \(f \) is not reduced w.r.t. one of the polynomials \(b_1, \ldots, b_k \in \mathbb{K}[X] \), then the operation \(\text{Reduce}(f, \{b_1, \ldots, b_k\}) \)

(1) computes polynomials \(r, q_1, \ldots, q_k \in \mathbb{K}[X] \) such that
\[
 f = q_1 b_1 + \cdots + q_k b_k + r
\]
holds and \(r \) is reduced w.r.t. all \(b_1, \ldots, b_k \in \mathbb{K}[X] \),

(2) if \(r \) is not zero, then replaces \(r \) by \(r/(\text{lc}\ f) \),

(3) and returns \(r \).
Gröbner bases (II)

Notation. For A, B finite subsets of $\mathbb{K}[X] \setminus \{0\}$ the collection of the $\text{Reduce}(a, B)$, for $a \in A$, is denoted by $\text{Reduce}(A, B)$.

Definition. A subset $B \subset \mathbb{K}[X] \setminus \{0\}$ is **auto-reduced** if for all $b \in B$ the polynomial b is reduced w.r.t. $B \setminus \{b\}$ and $\text{lcb} = 1$.

Proposition. *(Dickson’s Lemma)* Every auto-reduced set is finite.

Definition. For $A, B \subseteq F$ auto-reduced sets, we write $A \leq B$ whenever
\[
[\text{lm}B \subseteq \text{lm}A] \text{ or } [\min(\text{lm}A \setminus \text{lm}B) < \min(\text{lm}B \setminus \text{lm}A)].
\]

Definition. For an ideal $\mathcal{I} \subset \mathbb{K}[x_1, \ldots, x_n]$, a minimal auto-reduced subset $B \subset I$ is called a **reduced Gröbner basis** of \mathcal{I}.

Proposition. Every ideal $\mathcal{I} \subset \mathbb{K}[x_1, \ldots, x_n]$ admits a reduced Gröbner basis; moreover an auto-reduced subset $B \subset \mathcal{I}$ is a reduced Gröbner basis of \mathcal{I} iff we have for all $f \in \mathbb{K}[x_1, \ldots, x_n]$\[
f \in \mathcal{I} \iff \text{Reduce}(f, B) = 0.
\]
Buchberger’s Algorithm for computing Gröbner bases

Input: $F \subset \mathbb{K}[X]$ and a term order \leq.

Output: G a reduced Gröbner basis w.r.t. \leq of the ideal $\langle F \rangle$ generated by F.

repeat

(S) $B := \text{MinimalAutoreducedSubset}(F, \leq)$

(R) $A := S_\text{Polynomials}(B) \cup F$;

$R := \text{Reduce}(A, B, \leq)$

(U) $R := R \setminus \{0\}; F := F \cup R$

until $R = \emptyset$

return B

Notation. For $f, g \in \mathbb{K}[X]\{0\}$, let $L = \text{lcm}(\text{lm} f, \text{lm} g)$; then

$$S(f, g) := \frac{L}{\text{lm}_\leq f} f - \frac{L}{\text{lm}_\leq g} g$$

and $S_\text{Polynomials}(F)$ returns the $S(f, g)$ for all pairs $\{f, g\} \subseteq F$.
A recursive vision of polynomials

Definition. Let \(f, g \in \mathbb{K}[X] \) with \(g \not\in \mathbb{K} \).

- \(\text{mvar}(g) \): the greatest variable in \(g \) is the **leader** or **main variable** of \(g \),
- \(\text{init}(g) \): the leading coefficient of \(g \) w.r.t. \(\text{mvar}(g) \) is the **initial** of \(g \),
- \(\text{mdeg}(g) \): the degree of \(g \) w.r.t. \(\text{mvar}(g) \),
- \(\text{rank}(g) = v^d \) where \(v = \text{mvar}(g) \) and \(d = \text{mdeg}(g) \),
- \(\text{pdivide}(f, g) = (q, r) \) with \(q, r \in \mathbb{K}[X] \), \(\deg(r, v_g) < d_g \) and \(h_g^e f = q g + r \) where \(h_g = \text{init}(g) \), \(e = \max(\deg(f, v) - d_g + 1, 0) \), \(v_g = \text{mvar}(g) \) and \(d_g = \text{mdeg}(g) \),
- \(\text{prem}(f, g) = r \) if \(\text{pdivide}(f, g) = (q, r) \). \(f \in \mathbb{K}[X] \) is said **(pseudo-)reduced** w.r.t. \(g \in \mathbb{K}[X] \not\in \mathbb{K} \) if \(\deg(f, \text{mvar}(g)) < \text{mdeg}(g) \).

Example.

Assume \(n \geq 3 \). If \(p = x_1 x_3^2 - 2x_2 x_3 + 1 \), then we have \(\text{mvar}(p) = x_3 \), \(\text{mdeg}(p) = 2 \), \(\text{init}(p) = x_1 \) and \(\text{rank}(p) = x_3^2 \).
Triangular sets and auto-reduced sets

Definition. A finite subset $B \subset \mathbb{K}[X] \setminus \mathbb{K}$ is

- a **triangular set** if for all $f, g \in B$ we have $f \neq g \Rightarrow \text{mvar}(f) \neq \text{mvar}(g)$,

- **auto-(pseudo-)reduced** if all $b \in B$ is pseudo-reduced w.r.t. $B \setminus \{b\}$.

Proposition. Every auto-reduced set is finite and is a triangular set.

Notation. Let $f \in \mathbb{K}[X]$ and $B \subset \mathbb{K}[X] \setminus \mathbb{K}$ an auto-reduced set. If $B = \emptyset$ we write $\text{prem}(f, B) = f$. Otherwise let $b \in B$ with largest main variable; we write $\text{prem}(f, B) = \text{prem}(\text{prem}(f, b), B \setminus \{b\})$. For $A \subset \mathbb{K}[X]$ write $\text{prem}(A, B) = \{\text{prem}(a, B) \mid a \in A\}$.

Example. For instance, with $T_4 = \{x_1(x_1 - 1), x_1 x_2 - 1\}$ and $p = x_2^2 + x_1 x_2 + x_1^2$, we have

$$\text{prem}(p, T) = \text{prem}(\text{prem}(p, T_{x_2}), T_{x_1}) = \text{prem}(x_1^4 + x_1^2 + 1, T_{x_1}) = 2x_1 + 1.$$

where $T_{x_1} = x_1(x_1 - 1)$ and $T_{x_2} = x_1 x_2 - 1$.

53
The saturated ideal of a triangular set (I)

Definition. Let $T \subset \mathbb{K}[X]$ be a triangular set. The set
\[
\text{Sat}(T) = \{ f \in \mathbb{K}[X] \mid (\exists e \in \mathbb{N}) \ h_T^e \ f \in \langle T \rangle \}
\]
is the **saturated ideal** of T. (Clearly Sat(T) is an ideal.)

Proposition. Let $T \subset \mathbb{K}[X]$ be a triangular set and $f \in \mathbb{K}[X]$. We have

\[
\text{prem}(f, T) = 0 \Rightarrow f \in \text{Sat}(T).
\]

Remark. The converse is false. Consider $n \geq 2$ and

\[
T = \{ x_1(x_1 - 1), x_1 x_2 - 1 \}.
\]

Consider $p = (x_1 - 1)(x_1 x_2 - 1)$ and $q = -(x_1 - 1)x_1 x_2$. We have:

\[
\text{prem}(p, T) = \text{prem}(q, T) = 0.
\]

However, we have $p + q = 1 - x_1$, $\text{prem}(p + q, T) \neq 0$ but $p + q \in \text{Sat}(T)$, since $\text{Sat}(T)$ is an ideal. Note that $\text{Sat}(T) = \langle x_1 - 1, x_2 - 1 \rangle$.

54
The saturated ideal of a triangular set (II)

- Consider again for $x > y > a > b > c > d > e > f > g > h > i$

\[
F = \begin{cases}
ax + by - c \\
dx + ey - f \\
gx + hy - i
\end{cases}
\quad \text{and} \quad
T = \begin{cases}
gx + hy - i \\
(hd - eg)y - id + fg \\
(ie - fh)a + (ch - ib)d + (fb - ce)g
\end{cases}
\]

- Using Gröbner basis computations, one can check the following assertions for this example:
 - $\text{Sat}(T) = \langle F \rangle$.
 - $\text{Sat}(T)$ is an ideal strictly larger than $\langle T \rangle$.
 - In fact $\langle T \rangle \subset \text{Sat}(T) \cap \langle g, h, i \rangle$,
 - and none of Sat(T) or $\langle g, h, i \rangle$ contains the other.
Relations between Gröbner bases and regular chains

\[(\mathcal{P}) = \begin{cases}
 ax + by - c \\
 dx + ey - f \\
 gx + hy - i
\end{cases} \quad \text{and} \quad
T = \begin{cases}
 gx + hy - i \\
 (hd - eg) y - id + fg \\
 (ie - fh) a + (ch - ib) d + (fb - ce) g
\end{cases} \]

\[\mathcal{V}(\mathcal{P}) = \mathcal{W}(T) \cup \mathcal{W} \]

\[\cup \mathcal{W} \]

\[\cup \mathcal{W} \]

Lex base (P):

\[\begin{cases}
 xa + yb - c \\
 yae - ydb - af + dc \\
 ae\textbf{i} - ahf - dbi + dhc + gb\textbf{f} - gec
\end{cases} \]

\[\begin{cases}
 xd + ye - f \\
 yah - ygb - ai + gc \\
 ydh - yge - di + gf
\end{cases} \]

- For more details see (Aubry, Lazard & M3, 1997).
The quasi-component of a triangular set

Definition. Let $T \subset \mathbb{K}[X]$ be a **triangular set**. Let h_T be the product of the initials of T. The set

\[W(T) = V(T) \setminus V\{h_T\} \]

is the **quasi-component** of T.

Remark. Clearly $W(T)$ may not be variety. Consider $n = 2$ and $T = \{x_1 x_2\}$. We have $h_T = x_1$ and $W(T)$ is the line $x_2 = 0$ minus the point $(0, 0)$.

Observe that $\text{Sat}(T) = \langle x_2 \rangle$.

Proposition. For any **triangular set** $T \subset \mathbb{K}[X]$ we have

\[\overline{W(T)} = V(\text{Sat}(T)). \]

Remark. Consider

\[T = \{x_2^2 - x_1, x_1 x_3^2 - 2x_2 x_3 + 1, (x_2 x_3 - 1)x_4 + x_2^2\}. \]

We have $W(T) = \emptyset = V(T)$.

57
Characteristic sets (I)

Notation. If \(f, g \not\in \mathbb{K} \), we write \(\text{rank}(f) < \text{rank}(g) \) if \(\text{mvar}(f) < \text{mvar}(g) \) or, \(\text{mvar}(f) = \text{mvar}(g) \) and \(\text{mdeg}(f) < \text{mdeg}(g) \). For \(F \subset \mathbb{K}[X] \setminus \mathbb{K} \), we write \[\text{rank}(F) = \{ \text{rank}(f) \mid f \in F \} \].

Definition. For auto-reduced sets, we write \(A \leq B \) whenever

\[[\text{rank}(B) \subseteq \text{rank}(A)] \text{ or } [\min(\text{rank}(A) \setminus \text{rank}(B)) < \min(\text{rank}(B) \setminus \text{rank}(A))] \].

Definition. For an ideal \(\mathcal{I} \subset \mathbb{K}[X] \), a minimal auto-pseudo-reduced subset \(B \subset I \) is called a **Ritt (or Kolchin) characteristic set** of \(\mathcal{I} \).

Proposition. Every ideal \(\mathcal{I} \subset \mathbb{K}[X] \) admits a **Ritt characteristic set**; an auto-reduced \(B \subset \mathcal{I} \) is a Ritt characteristic set of \(\mathcal{I} \) iff \(\text{prem}(f, B) = 0 \) for all \(f \in \mathcal{I} \).
Characteristic sets (II)

Definition. For a set $F \subset \mathbb{K}[X]$, an auto-pseudo-reduced subset $B \subseteq F$ such that $\text{prem}(F, B) \subset \mathbb{K}$ is called a **Wu characteristic set** of F.

Proposition. If $B \subseteq F$ is a **Wu characteristic set** of $F \subset \mathbb{K}[X]$, then

- If $\text{prem}(F, B)$ contains a non-zero constant then $V(F) = \emptyset$,
- If $\text{prem}(F, B) = \{0\}$ then

$$V(F) = W(B) \cup \bigcup_{b \in B} V(F \cup \{\text{init}(b)\}).$$

Proof. Indeed, $\text{prem}(f, B) = 0$ implies that there exists a product h of the initials of B such that $hf \in \langle B \rangle$. Hence $W(B) \subseteq V(F)$. Thus any $\zeta \in V(F)$ either belongs to $W(B)$ or cancels one of the initials of B. ⊳

Theorem. (Wu, 1987) For any $F \subset \mathbb{K}[X]$, one can compute finitely many triangular sets T^1, \ldots, T^s such that

$$V(F) = W(T^1) \cup \cdots \cup W(T^s).$$
Wu’s Method

Input: \(F \subset \mathbb{K}[X] \) and a variable ordering \(\leq \).

Output: \(C \) a Wu characteristic set of \(F \).

\[
\text{repeat} \\
\text{(S)} \quad B := \text{MinimalAutoreducedSubset}(F, \leq) \\
\text{(R)} \quad A := F \setminus B; \\
\quad R := \text{prem}(A, B) \\
\text{(U)} \quad R := R \setminus \{0\}; F := F \cup R \\
\text{until } R = \emptyset \\
\text{return } B
\]

• Repeated calls to this procedure computes a decomposition of \(V(F) \).

• Cannot detect whether a quasi-component is empty.

\(\Rightarrow \) This leads to the theory of regular chains. (Kalkbrener, 1991) and (Yang & Zhang, 1991).
Regular chains

Definition. Let \mathcal{I} be a proper ideal of $\mathbb{K}[X]$. We say that a polynomial $p \in \mathbb{K}[X]$ is **regular** modulo \mathcal{I} if for every prime ideal \mathcal{P} associated with \mathcal{I} we have $p \not\in \mathcal{P}$, equivalently, this means that p is neither null modulo \mathcal{I}, nor a zero-divisor modulo \mathcal{I}.

Definition. Let $T = \{T_1, \ldots, T_s\}$ be a triangular set where polynomials are sorted by increasing main variables.

The triangular set T is a **regular chain** if for all $i = 2 \cdot \cdots \cdot s$ the initial of T_i is regular modulo the saturated ideal of $T_1, \ldots T_{i-1}$.

Proposition. If T is a regular chain then $\text{Sat}(T)$ is a proper ideal of $\mathbb{K}[X]$ and, thus, $W(T) \neq \emptyset$.
Reduction to dimension zero (I)

Theorem. (Chou & Gao, 1991), (Kalkbrener, 1991), (Aubry, 1999), (Boulier, Lemaire & M3, 2006) Let $T = \{T_{d+1}, \ldots, T_n\}$ be a triangular set. Assume that \(\text{mvar}(T_i) = x_i \) for all \(d + 1 \leq i \leq n \) and assume \(\text{Sat}(T) \) is a proper ideal of \(\mathbb{K}[X] \). Then, every prime ideal \(\mathcal{P} \) associated with \(\text{Sat}(T) \) has dimension \(d \) and satisfies

\[
\mathcal{P} \cap \mathbb{K}[x_1, \ldots, x_d] = \langle 0 \rangle.
\]

Corollary. With \(T \) as above. Consider the localization by
\[
\mathbb{K}[x_1, \ldots, x_d] \setminus \{0\}; \text{ in other words, we map our polynomials from } \mathbb{K}[x_1, \ldots, x_n]\]
to \(\mathbb{K}(x_1, \ldots, x_d)[x_{d+1}, \ldots, x_n] \).

Let \(T_0 \) be the image of \(T \). Let \(p \in \mathbb{K}[x_1, \ldots, x_n] \) and \(p_0 \) its image in \(\mathbb{K}(x_1, \ldots, x_d)[x_{d+1}, \ldots, x_n] \). Assume \(p \) non-zero modulo \(\text{Sat}(T) \). Then, the following conditions are equivalent:

1. \(p \) is regular w.r.t. \(\text{Sat}(T) \),
2. \(p_0 \) is invertible w.r.t. \(\text{Sat}(T_0) \).

In particular \(T \) is a regular chain iff \(T_0 \) is a (zero-dimensional) regular chain.

62
Reduction to dimension zero (II)

Remark. Consequently, we can generalize to positive dimension our computations of polynomial GCDs defined previously over zero-dimensional regular chains. (Indeed, it is also possible to relax the condition $\text{Sat}(T_0)$ radical.)

Notation. Let T be a regular chain and $F \subset \mathbb{K}[X]$ be a polynomial set. We denote by $Z(F, T)$ the intersection $V(F) \cap W(T)$, that is the set of the zeros of F that are contained in the quasi-component $W(T)$. If $F = \{p\}$, we write $Z(p, T)$ for $Z(F, T)$.

Proposition. Let T be a regular chain. If p is regular modulo $\text{Sat}(T)$, then $Z(p, T)$ is either empty or it is contained in a variety of dimension strictly less than the dimension of $\overline{W(T)}$.
Regular chains and characteristic sets

Theorem. (Aubry, Lazard & \(M^3\), 1997) Let \(C \subset \mathbb{K}[X]\) be an auto-(pseudo-)reduced set. Then, we have

\[
\text{Sat}(C) = \{ p \mid \text{prem}(p, C) = 0 \}
\]

\(\Uparrow\)

\(C\) regular chain

\(\Uparrow\)

\(C\) characteristic set of \(\text{Sat}(C)\)
Incremental triangular decompositions: a geometrical approach

\[
\begin{align*}
&\begin{cases}
x^2 + y + z = 1
\end{cases} \\
&\begin{cases}
x^2 + y + z = 1 \\
x + y^2 + z = 1
\end{cases} \\
&\begin{cases}
x^2 + y + z = 1 \\
x + y^2 + z = 1 \\
x + y + z^2 = 1
\end{cases}
\end{align*}
\]
\[
\begin{align*}
\begin{cases}
 x^2 + y + z &= 1 \\
y^4 + (2z - 2)y^2 + y - z + z^2 &= 0
\end{cases}
\end{align*}
\begin{align*}
\begin{cases}
 x + y^2 + z &= 1 \\
y^2 - y &= z = 0
\end{cases}
\end{align*}
\begin{align*}
\begin{cases}
 x + y &= 1 \\
2x + z^2 &= 2y + z^2 = 1 \\
2x + z^2 &= 2y + z^2 = 1 \\
z^3 + z^2 - 3z &= -1
\end{cases}
\end{align*}
\]
Incremental Solving

Let $F \subset \mathbb{K}[x_1, \ldots, x_n]$, $f \in \mathbb{K}[x_1, \ldots, x_n]$, $T, T^m \ldots, T^e \subset \mathbb{K}[x_1, \ldots, x_n]$ reg. chains. Assume we have solved F as $V(F) = W(T^i) \cup \cdots \cup W(T^e)$.

Assume that we have an operation
$$(f, T) \mapsto \text{Intersect}(f, T) = (C_1, \ldots, C_d)$$ such that
$$V(f) \cap W(T) \subseteq \cup_i W(C_i) \subseteq V(f) \cap \overline{W(T)}.$$

Then solving $F \cup f$ reduces to $\text{Intersect}(f, T^i)$ for all i.

\implies the core routine operates on well behaved objects.

\implies the decomposition can be reduced to regular GCD computation, allowing modular methods and fast arithmetic.
Incremental Solving

- Let $F \subset \mathbb{K}[x_1, \ldots, x_n]$, $f \in \mathbb{K}[x_1, \ldots, x_n]$, $T, T^m \ldots, T^e \subset \mathbb{K}[x_1, \ldots, x_n]$ reg. chains. Assume we have solved F as $V(F) = W(T^i) \cup \cdots \cup W(T^e)$.

- Assume that we have an operation

 $$(f, T) \mapsto \text{Intersect}(f, T) = (C_1, \ldots, C_d)$$

 such that

 $$V(f) \cap W(T) \subseteq \bigcup_i W(C_i) \subseteq V(f) \cap \overline{W(T)}.$$

 Then solving $F \cup f$ reduces to Intersect(f, T^i) for all i.

 \implies the core routine operates on well behaved objects.

 \implies the decomposition can be reduced to regular GCD computation, allowing modular methods and fast arithmetic.

Remark. (D. Lazard 91) proposes the principle. (M^3 . 00) gives a complete incremental algorithm which, in addition, generates components by decreasing order of dimension.
The notion of a Regular GCD

• Let \(P, Q, G \in \mathbb{K}[x_1 < \cdots < x_n][y] \) and \(T \subset \mathbb{K}[x_1 < \cdots < x_n] \) reg. chain. \(G \) is a *regular GCD* of \(P, Q \) modulo \(\text{sat}(T) \) if

 (i) \(\text{lc}(G, y) \) is a regular modulo \(\text{sat}(T) \),

 (ii) \(G \in \langle P, Q \rangle \) modulo \(\text{sat}(T) \),

 (iii) \(\deg_y(G) > 0 \Rightarrow \text{prem}_y(P, G), \text{prem}_y(Q, G) \in \text{sat}(T) \).

• If both \(T \cup P \) and \(T \cup Q \) are regular chains and if \(G \) is a GCD of \(P, Q \) modulo \(\text{sat}(T) \) with \(\deg_y(G) > 0 \) then we have

\[
W(T \cup P) \cap V(Q) \subseteq W(T \cup G) \cup \\
W(T \cup P) \cap V(Q, h_G) \subseteq \sqrt{\text{sat}(T \cup P)} \cap V(Q).
\]

One can compute \(T^1, \ldots, T^e \) and \(G_1, \ldots, G_e \) such that \(G_i \) is a reg. GCD of \(P, Q \) mod \(\text{sat}(T_i) \) and \(\sqrt{\text{sat}(T)} = \bigcap_{i=0}^{e} \sqrt{\text{sat}(T_i)} \).
Regularity test

- **Regularity test** is a fundamental operation:

 \[\text{Regularize}(p, \mathcal{I}) \mapsto (\mathcal{I}_1, \ldots, \mathcal{I}_e) \]

 such that:

 \[\sqrt{\mathcal{I}} = \bigcap_{i=0}^{e} \sqrt{\mathcal{I}_i} \text{ and } p \in \mathcal{I}_i \text{ or } p \text{ regular modulo } \mathcal{I}_i \]

- Regularity test reduces to regular GCD computation.
Related work

• This notion of a regular GCD was proposed in (M^3 2000)

• In previous work (Kalkbrener 1993) and (Rioboo & M^3 1995), other regular GCDs modulo regular chains were introduced, but with limitations.

• In other work (Wang 2000), (Yang etc. 1995) and (Jean Della Dora, Claire Dicrescenzo, Dominique Duval 85), related techniques are used to construct triangular decompositions.

• Regular GCDs modulo regular chains generalize GCDs over towers of field extensions for which specialized algorithms are available, (van Hoeij and Monagan 2002 & 2004).

• Asymptotically fast algorithms (when sat(T) is zero-dimensional and radical) appear in (Xavier Dahan, M^3, Éric Schost, Yuzhen Xie, 2006) and (Xin Li, M^3, Wei Pan, 2009).