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Background

Reducing everything to multiplication

Polynomial multiplication and matrix multiplication are at the core of
many algorithms in symbolic computation.
Algebraic complexity is often estimated in terms of multiplication time
At the software level, this reduction is also common (Magma, NTL)
Can we do the same for fork-join-multithreaded algorithms?

Building blocks in scientific software

The Basic Linear Algebra Subprograms (BLAS) is an inspiring and
successful project providing low-level kernels in linear algebra, used by
LINPACK, LAPACK, MATLAB, Mathematica, Julia (among others).
Other BB’s successful projects: FFTW, SPIRAL (among others).
The GNU Multiple Precision Arithmetic Library project plays a similar
role for rational numbers and floating-point numbers.
No symbolic computation software dedicated to sequential polynomial
arithmetic managed to play the unification role of the BLAS.
Could this work in the case of hardware accelerators?
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BPAS Mandate (1/2)

Functionalities

Level 1: basic arithmetic operations that are specific to a polynomial
representation or a coefficient ring: multi-dimensional FFTs/TFTs,
univariate real root isolation
Level 2: basic arithmetic operations for dense or sparse polynomials
with coefficients in Z, Q or Z/pZ.
Level 3: advanced arithmetic operations taking as input a
zero-dimensional regular chains: normal form of a polynomial,
multivariate real root isolation.
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BPAS Mandate (2/2)

Targeted architectures

Multi-core processors with code written in CilkPlus or OpenMP. Our
Meta Fork framework performs automatic translation between the
two as well as conversions to C/C++.
Graphics Processing Units (GPUs) with code written in CUDA,
provided by CUMODP.
Unifying code for both multi-core processors and GPUs is conceivable
(see the SPIRAL project) but highly complex (multi-core processors
enforce memory consistency while GPUs do not, etc.)
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Design

Algorithm choice

Level 1 functions (n-D FFTs/TFTs) are highly optimized in terms of
locality and parallelism.
Level 2 functions provide a variety of algorithmic solutions for a given
operation (polynomial multiplication, Taylor shift, etc.)
Level 3 functions combine several Level 2 algorithms for achieving a
given task.

Implementation techniques

At Level 1, code generation at installation time (auto-tuning) is used.
At Level 2, the user can choose between algorithms minimizing work
and algorithms maximizing parallelism.
At Level 3, this leads to adaptive algorithms that select appropriate
Level 2 functions depending on available resources (number of cores,
input data size).
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Organization

Developer view point

Source tree has two branches: 32bit and 64bit arithmetic with large
bodies of common code
Four sub-projects: ModularPolynomial, IntegerPolynomial,
RationalNumberPolynomial and Polynomial.
For the former three, the base ring is known at compile time while the
latter provides polynomial arithmetic over an arbitrary BPAS ring.
Python scripts generate 1-D FFT code at installation time.
Dense representations, SLPs and sparse representations are available.

User view point today

Only the 64bit arithmetic branch, but full access to each sub-project.
Regression tests and benchmark scripts are also distributed.
Documentation is generated by doxygen.
A manually written documentation is work in progress.
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User interface (1/2)

Figure: A snapshot of BPAS algebraic data structures.
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User interface (2/2)

Figure: A snapshot of BPAS code.
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BPAS 1-D FFT

BPAS 1-D FFTs code is optimized in terms of cache complexity and
register usage, following principles introduced by FFTW and SPIRAL.

The FFT of a vector of size n is computed in a divide-and-conquer
manner until the vector size is smaller than a threshold, at which
point FFTs are computed using a tiling strategy.

At compile time, this threshold is used to generate and optimize the
code. For instance, the code of all FFTs of size less or equal to
HTHRESHOLD are decomposed into blocks (typically performing FFTs
on 8 or 16 points) for which straight-line program (SLP) machine
code is generated by python scripts.

Instruction level parallelism (ILP) is carefully considered: vectorized
instructions are explicitly used (SSE2, SSE4) and instruction pipeline
usage is highly optimized.

Other environment variables are available for the user to control
different parameters in the code generation.

11 / 39



1-D FFT Benchmarks

Figure: One-dimensional modular FFTs: Modpn vs BPAS.
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2-D TFT versus 2-D FFT
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Figure: Timing of bivariate multiplication for input degree range of [1024, 2048)
on 8 cores.
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Balanced Dense Multiplication over Z/pZ
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Integer polynomial multiplication

Five different integer polynomial multiplication algorithms are
available:

Schönhage-Strassen, 8-way Toom-Cook, 4-way Toom-Cook,
divide-and-conquer plain multiplication and the two-convolution
method.

The first one has optimal work (among the five) but is purely serial
due to the difficulties of parallelizing 1D FFTs on multicore processors.

The next three algorithms are parallelized but their parallelism is
static, that is, independent of the input data size; these algorithms are
practically efficient when both the input data size and the number of
available cores are small, for details.

The fifth algorithm relies on modular 2D FFTs which are computed by
means of the row-column scheme; this algorithm delivers a high
scalability and can fully utilize fat computer nodes.
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KS+GMP: Reduction to GMP via Kronecker substitution

f (x) :=
n∑

i=0
fix

i , g(x) :=
m∑
i=0

gix
i , h(x) = f (x)× g(x) =

n+m−1∑
i=0

hix
i

Assume 0 ≤ fi < Hf and 0 ≤ j < m for all fi ’s and gj ’s.

Then we have: 0 ≤ hk < min(n,m)HfHg + 1, for 0 ≤ k < n + m − 1.
Thus B := dlog2 min(n,m)HfHg + 1e is the maximum number of bits
required for representing a coefficient of the result.

If f or g has a negative coefficient we use a “two-complement”-trick.

Steps

1 Evaluation: Zf =
n∑

i=0
fi2

iB , Zg =
m∑
i=0

fi2
iB

2 Multiplying: Zh = Zf × Zg using GMP library.

3 Unpacking: hi s from Zh =
n+m−1∑
i=0

hi2
iB

Analysis

Work is in O(s log(s)log(log(s))). s is the maximum bit size of f or g
(Schönhage & Strassen). But no parallelism and modest data locality.
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DnC+KS+GMP: GMP Reduction via KS and distributivity

Steps

1 Divide: f (x) = f0(x) + xn/2f1(x), g(x) = g0(x) + xn/2g1(x)
2 Execute 4 sub-problems recursively.

I Store f0 × g0 and f1 × g1 in the result array.
I Store f0 × g1 and f1 × g0 in auxiliary arrays.

3 Add the auxiliary arrays to the result.
4 Use (one or) two DnC levels, then use the KS+GMP algorithm.

Analysis

Work is in O(s log(s)log(log(s))). But, w.r.t. pure KS+GMP, the constant
has increased by approximately by 4. However, parallelism is close to 16.
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k-way Toom-Cook and reduction to GMP (1/4)

1 Division: Write f (x) = f0(x) + xn/k f1(x) + . . .+ x (k−1)n/k fk−1(x)
and g(x) = g0(x) + xn/kg1(x) + . . .+ x (k−1)n/kgk−1(x)

2 Conversion: Set X = xn/k and apply KS to the fi ’s and gj ’s.
Obtaining F (X ) = Zf0 + Zf1X + . . .+ Zfk−1

X k−1 and
G (X ) = Zg0 + Zg1X + . . .+ Zgk−1

X k−1.

3 Evaluation: Evaluate f , g at 2k − 1 points: (0,X1, . . . ,X2k−3,∞)

4 Multiplying: (w0, . . . ,w2k−2) = (F (0) · G (0), . . . ,F (∞) · G (∞))

5 Interpolation: recover (Zh0 ,Zh1 , . . . ,Zh2k−2
) where:

H(X ) = f (X )g(X ) = Zh0 + Zh1X + . . .+ Zh2k−2
X 2k−2.

6 Conversion: recover polynomial coefficients from Zh0 , . . . , . . . ,Zh2k−2
.

Obtaining h(x) = h0(x) + xn/kh1(x) + . . .+ x (2k−2)n/kh2k−2(x).

7 Merge: Add intermediate results to the final result.
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k-way Toom-Cook and reduction to GMP (2/4)

Parallelization

All steps must be parallelized. For the evaluation and interpolation, we use
the fact that these steps can be done via linear algebra.
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Calculations are distributed among workers.
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k-way Toom-Cook and reduction to GMP (3/4)

Analysis

Work in O(s log(s)log(log(s))). W.r.t. pure KS+GMP, for k = 8, the
constant has increased approximately by 2 for s = 224.
However, parallelism is about 7 and 13 when k = 4 and k = 8, resp.
In the 3 tables below, a 12-core (Intel Xeon) is used.
In the last one, we have

√
s = 8192.

Toom-8 Profiled results√
s Div. & Conv. Eval. Mul. Inter. Con. & Merge

16384 10% 8% 44% 25% 9%
32768 9% 9% 43% 27% 10%
65536 8% 8% 45% 28% 9%

Toom-4 Profiled results√
s Div. & Conv. Eval. Mul. Inter. Con. & Merge

16384 13% 3% 57% 11% 13%
32768 12% 3% 61% 11% 12%
65536 8% 2% 66% 10% 11%
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k-way Toom-Cook and reduction to GMP (4/4)

Algorithm Timing Work Span Work/serial Span/serial
KS (Ser.) 1 16781990263 16781990263 1 1

DnC 15.86 67222430575 4237755216 4 0.25
Toom-4 6.42 28289430113 4382572841 1.68 0.26
Toom-8 11.26 24449014227 2023790230 1.45 0.12

Notes

Span of Toom-8 is the best, 12 % of the KS
→ It should be much better on better machines.
Work of the Toom-8 & Toom-4 are more than KS, but much better
than DnC.
But for Toom-8 and Toom-4, GMP-multiplication is not the dominant
part.
Hence, we need an algorithm which can scale on fatter nodes.
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Two-convolution method (1/7)

Specifications

Input: a(y), b(y) ∈ Z[y ] with max(deg(a),deg(b) < d and N0 the
maximum bit size of a coefficient among a(y) and b(y).
Intention: a(y), b(y) are dense in the sense that most coefficients
have a size in the order of N0.
Output: c(y) = a(y)b(y).

Theorem

Let w be the number of bits of a machine word. There exist positive
integers N,K ,M, with N = K M and M ≤ w , such that the integer N is
w -smooth (and so is K ), we have N0 < N ≤ N0 +

√
N0 and the following

algorithm for multiplying a(y), b(y) has
a work of O(d K log2(d K )(log2(d K ) + 2M)) word operations,
a span of O(K log2(d) log2(d K )) word operations and,
incurs O(ddN/wLe+ d(log2(d K ) + 2M)e dK/L) cache misses,
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Two-convolution method (2/7)

Principle

1 Convert-in: convert the integer coefficients of a(y), b(y) to Z[x ],
thus converting a(y), b(y) to A(x , y),B(x , y) s.t. for some β ∈ Z:

1 a(y) = A(β, y) and b(y) = B(β, y),
2 deg(A, y) = deg(a) and deg(B, y) = deg(b),
3 max(bitsize(a),bitsize(b)) ∈ Θ(max(bitsize(a),bitsize(b)))

Let m > 4H be an integer, where H is the maximum absolute value
of a coefficient of the integer polynomial C (x , y) := A(x , y)B(x , y).

2 Compute: m and A(x , y),B(x , y) are constructed such that
1 the polynomials C+(x , y) := A(x , y)B(x , y) mod 〈xK + 1〉 and

C−(x , y) := A(x , y)B(x , y) mod 〈xK − 1〉 are computed over Z/mZ
via FFT techniques

2 meanwhile the following equation holds over Z:

C (x , y) =
C+(x , y)

2
(xK − 1) +

C−(x , y)

2
(xK + 1).

3 Convert-out: Compute u(y) := C+(β, y) and v(y) := C−(β, y)

over Z. Then, deduce c(y) := u(y)+v(y)
2 + −u(y)+v(y)

2 2N over Z.
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Two-convolution method (3/7)

Figure: Multiplication scheme for dense univariate integer polynomials.
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Two-convolution method (4/7)

Principle (recall)

1 Convert-in: convert a(y), b(y) to A(x , y),B(x , y) s.t. for some
β ∈ Z we have a(y) = A(β, y) and b(y) = B(β, y).

2 Let m > 4H where H := || C (x , y) ||∞ with
C (x , y) := A(x , y)B(x , y).

3 Compute:C+(x , y) := A(x , y)B(x , y) mod 〈xK + 1〉 and
C−(x , y) := A(x , y)B(x , y) mod 〈xK − 1〉 over Z/mZ.

4 Convert-out: Compute u(y) := C+(β, y) and v(y) := C−(β, y)

over Z. Then, deduce c(y) := u(y)+v(y)
2 + −u(y)+v(y)

2 2N over Z.

Remarks

For polynomials with size in the Giga-bytes, we can choose m < 2w .
Thus each of C+(x , y) and C−(x , y) requires at most two 2-D
FFT/TFT over a prime field with characteristic of machine word size.
Convert-in and Convert-out are done only with addition and shift
operations on byte vectors: GMP is not used.
The cache complexity of this process is proved to be optimal. 27 / 39



Two-convolution method (5/7)
√
s ConvertIn TwoConvolution ConvertOut Total

2048 0.038 0.106 0.042 0.195
4096 0.039 0.23 0.107 0.39
8192 0.119 0.895 0.267 1.298

16384 0.248 3.705 0.665 4.643
32768 0.943 16.272 4.217 21.496

Table: Using 2 primes on a 48-core AMD Opteron node.

√
s ConvertIn TwoConvolution ConvertOut Total

2048 0.037 0.113 0.052 0.227
4096 0.028 0.206 0.103 0.364
8192 0.07 0.652 0.307 1.059

16384 0.224 2.71 0.73 3.698
32768 0.943 11.796 4.174 16.978

Table: Using 3 primes on a 48-core AMD Opteron node.

This about four faster than Toom-8 at
√
s = 8192.
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Two-convolution method (6/7)

Figure: Dense integer polynomial multiplication: BPAS vs FLINT vs Maple 18.
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Two-convolution method (7/7)

Figure: Dense integer polynomial multiplication: BPAS vs FLINT vs Maple 18.
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Univariate Real Root Isolation Algorithm: Find Roots

Input: A univariate squarefree polynomial f (x) = cd x
d + · · ·+ c1 x + c0

with rational number coefficients

Output: A list of pairwise disjoint intervals [a1, b1], . . . , [ae , be ] with
rational endpoints such that

each [ai , bi ] contains one and only one real root of f (x);

if ai = bi , the real root xi = ai (bi ); otherwise, the real root
ai < xi < bi (f (x) doesn’t vanish at either endpoint).

Figure: An example of input / output
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Real Root Isolation (Collins-Vincent-Akritas Algorithm)

Algorithm 1: NumberInZeroOne(p)

Input: a squarefree univariate polynomial p
Output: number of real roots of p in (0, 1)
begin

p1 := xnp(1/x); p2 := p1(x + 1)
let d be the number of sign variations of the coefficients of p2
if d ≤ 1 then return d
p1 := 2np(x/2); p2 := p1(x + 1)
if x | p2 then m := 1 else m := 0
m′ := NumberInZeroOne(p1)
m := m + NumberInZeroOne(p2)
return m + m′

end

The Taylor shift f (x) 7−→ f (x + 1) operation is at the core of the above
algorithm for real root isolation (counting).
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Univariate Taylor Shift: Parallel Horner’s Method

Horner’s method

We compute g(x) = f0 + (x + 1) (f1 + · · ·+ (x + 1) fd) in n steps

g (0) = fd , g
(i) = (x + 1) g (i−1) + fd−i for 1 ≤ i ≤ d ,

and obtain g = g (d).
One can represent this computation in a Pascal’s Triangle.

Given an example f (x) = a3 x
3 + a2 x

2 + a1 x + a0, we have, in Horner’s rule as follows.

0 0 0 0
↓ ↓ ↓ ↓

a3 → + → + → + → + → c3
↓ ↓ ↓

a2 → + → + → + → c2
↓ ↓

a1 → + → + → c1
↓

a0 → + → c0

Thus, g(x) = f (x + 1) = c3 x
3 + c2 x

2 + c1 x1 + c0. For instance, we can parallelize the
addition a1 + a2, a2 + a3 and a3 + 0, and so on.
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Univariate Taylor Shift: Parallel Divide & Conquer Method

Divide & conquer method

We assume that d + 1 = 2` is a power of two. In a precomputation stage, we compute
(1 + x)2

i
for 0 ≤ i < `. In main stage, with polynomials f (0), f (1) ∈ Q[x ] of degree less

than d+1
2 , we compute

g(x) = f (0)(x + 1) + (x + 1)(d+1)/2 f (1)(x + 1),

where we compute f (0)(x + 1) and f (1)(x + 1) recursively.

We parallelize each univariate polynomial multiplication by a DnC method. For example,
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Benchmarks (1/2)

Degree BPAS CMX-2010 realroot #Roots
4095 3.31 2.622 7.137 1
8191 13.036 17.11 40.554 1

16383 61.425 124.798 274.706 1
32767 286.46 970.165 2059.147 1
65535 1311.07 7960.57 *Err. 1

Table: Running time of Bn, d(x) = 2d xd + ..+ 2d on Intel 12-core

Degree BPAS CMX-2010 realroot #Roots
4095 1.93 1.917 3.941 1
8191 6.467 7.611 29.448 1

16383 25.291 34.198 239.771 1
32767 96.507 172.432 1863.125 1
65535 375.678 995.358 *Err. 1

Table: Running time of Cn, d(x) = xd + d on Intel 12-core
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Benchmarks (2/2)

Size BPAS CMX-2010 realroot #Roots
Bnd 4096 4.003 5.125 4.955 1

8192 11.025 25.228 23.754 1
16384 43.498 127.412 159.245 1
32768 176.351 609.513 1,011.872 1
65536 701.682 4,695.31 9,741.249 1

Cnd 4096 0.704 1.209 1.699 1
8192 1.533 5.228 10.899 1

16384 5.086 25.296 109.420 1
32768 18.141 125.902 816.134 1
65536 66.436 664.438 7,526.428 1

Chebycheff 2048 608.738 594.82 1,378.444 2047
4096 8,194.06 10,014 35,880.069 4095

Laguerre 2048 1,336.14 1,324.33 3,706.749 2047
4096 20,727.9 23,605.7 91,668.577 4095

Wilkinson 2048 630.481 614.94 1,031.36 2047
4096 9,359.25 10,733.3 26,496.979 4095

Table: Running times on AMD 48-core
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Summary

www.bpaslib.org
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