On the Extended Hensel Construction and its Application to the Computation of Limit Points

Parisa Alvandi, Masoud Ataei, Marc Moreno Maza

University of Western Ontario

ISSAC 2017, 27 July, Kaiserslautern, Germany

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Plan

1 Introduction

2 The Extended Hensel Construction

3 Yun-Moses Polynomials

4 Lifting the factors

Plan

1 Introduction

2 The Extended Hensel Construction

3 Yun-Moses Polynomials

4 Lifting the factors

Problem

Goal

Factorize $F(X, Y) \in \mathbb{C}[X, Y]$ into linear factors in X over $\mathbb{C}(\langle Y^* \rangle)$:

$$F(X,Y) = (X - \chi_1(Y))(X - \chi_2(Y)) \cdots (X - \chi_d(Y))$$

where each $\chi_i(Y)$ is a <u>Puiseux series</u>.

Puiseux Series Series of the form

$$\chi_i(Y) = \sum_{k=a_i}^{\infty} c_k Y^{k/d_i}$$

where

• $c_k \in \mathbb{C}$ • $a_i \in \mathbb{Z}$

•
$$d_i \in \mathbb{Z}_{>0}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

An example

$$F(X, Y) = Y^{2} X + Y^{2} - Y X^{3} - Y X^{2} + Y - X^{2}.$$

• $\chi_{1}(Y) = \frac{-Y - 1}{Y}$ • $\chi_{2}(Y) = Y$ • $\chi_{3}(Y) = -Y$

æ

Another example

ロトメ目とメヨトメヨトニヨーのへで

Previous works (1/2)

1 Extended Hensel Construction (EHC):

- Introduction: F. Kako and T. Sasaki, 1999
- Extensions:
 - M. Iwami, 2003,
 - D. Inaba, 2005,
 - D. Inaba and T. Sasaki 2007,
 - D. Inaba and T. Sasaki 2016.

2 Newton-Puiseux:

- H. T. Kung and J. F. Traub, 1978,
- D. V. Chudnovsky and G. V. Chudnovsky, 1986

• A. Poteaux and M. Rybowicz, 2015.

Previous works (2/2)

- The Extended Hensel Construction (EHC) compute all branches concurrently
- while approaches based on Newton-Puiseux computes one branch after another.

For $F(X, Y) := -X^3 + YX + Y$: 1 the EHC produces 1 $\chi_1(Y) := Y^{\frac{1}{3}} + \frac{1}{3}Y^{\frac{2}{3}} + O(Y)$, 2 $\chi_2(Y) := \frac{-1+\sqrt{-3}}{2}Y^{\frac{1}{3}} + \frac{1}{3}(\frac{-1-\sqrt{-3}}{2})Y^{\frac{2}{3}} + O(Y)$, 3 $\chi_3(Y) := (\frac{-1-\sqrt{-3}}{2})Y^{\frac{1}{3}} + \frac{1}{3}(\frac{-1+\sqrt{-3}}{2})Y^{\frac{2}{3}} + O(Y)$.

Previous works (2/2)

- The Extended Hensel Construction (EHC) compute all branches concurrently
- while approaches based on Newton-Puiseux computes one branch after another.

For $F(X, Y) := -X^3 + YX + Y$: 1 the EHC produces 1 $\chi_1(Y) := Y^{\frac{1}{3}} + \frac{1}{3}Y^{\frac{2}{3}} + O(Y)$, 2 $\chi_2(Y) := \frac{-1+\sqrt{-3}}{2}Y^{\frac{1}{3}} + \frac{1}{3}(\frac{-1-\sqrt{-3}}{2})Y^{\frac{2}{3}} + O(Y)$, 3 $\chi_3(Y) := (\frac{-1-\sqrt{-3}}{2})Y^{\frac{1}{3}} + \frac{1}{3}(\frac{-1+\sqrt{-3}}{2})Y^{\frac{2}{3}} + O(Y)$.

Whereas Kung-Traub's method (based on Newton-Puiseux) computes

1
$$\chi_1(Y) := Y^{\frac{1}{3}} + \frac{1}{3}Y^{\frac{2}{3}} + O(Y),$$

Previous works (2/2)

- The Extended Hensel Construction (EHC) compute all branches concurrently
- while approaches based on Newton-Puiseux computes one branch after another.

For $F(X, Y) := -X^3 + YX + Y$: the EHC produces 1) $\chi_1(Y) := Y^{\frac{1}{3}} + \frac{1}{2}Y^{\frac{2}{3}} + O(Y),$ 2 $\chi_2(Y) := \frac{-1+\sqrt{-3}}{2}Y^{\frac{1}{3}} + \frac{1}{2}(\frac{-1-\sqrt{-3}}{2})Y^{\frac{2}{3}} + O(Y),$ **3** $\chi_3(Y) := \left(\frac{-1-\sqrt{-3}}{2}\right)Y^{\frac{1}{3}} + \frac{1}{2}\left(\frac{-1+\sqrt{-3}}{2}\right)Y^{\frac{2}{3}} + O(Y).$ 2 Whereas Kung-Traub's method (based on Newton-Puiseux) computes 1 $\chi_1(Y) := Y^{\frac{1}{3}} + \frac{1}{2}Y^{\frac{2}{3}} + O(Y),$ **2** $\chi_2(Y) := \theta Y^{\frac{1}{3}} + \frac{\theta^2}{2} Y^{\frac{2}{3}} + O(Y),$ **3** $\chi_3(Y) := \theta^2 Y^{\frac{1}{3}} + \frac{\theta}{2} Y^{\frac{2}{3}} + O(Y).$ for $\theta \in \mathbb{C}$ such that $\theta^3 = 1, \theta^2 \neq 1, \theta \neq 1$, since F(X, Y) is a Weierstrass polynomial.

Our contributions

- We show that the EHC requires only linear algebra and univariate polynomial arithmetic
- 2 We derive complexity estimates for the EHC
- We obtain a competitive implementation against the original EHC and Kung-Traub's method
- We apply the EHC to the problem of computing real limit points of quasi-components of regular chains.

Application (1/2)

One immediate application of Extended Hensel Construction is finding the limit of a multivariate rational function i.e. for a rational function $q = \frac{P_1}{P_2}$ where P_1 and $P_2 \in \mathbb{F}[X_1, \ldots, X_n]$, we can ask whether

$$\lim_{(X_1,\ldots,X_n)\to(x_1,\ldots,x_n)}q(X_1,\ldots,X_n)$$

exists and what it converges to.

うくで

Application (2/2)

> R := PolynomialRing([x, y, z]): $rc \coloneqq Chain([y^{(3)}-2*y^{(3)}+y^{(2)}+z^{(5)},z^{(4)}*x+y^{(3)}-y^{(2)}], Empty(R), R):$ LimitPoints(rc, R, coefficient = complex); Display(%, R); [regular_chain, regular_chain] $\begin{bmatrix} x = 0 \\ y = 0 \\ z = 0 \end{bmatrix}, \begin{bmatrix} x = 0 \\ y - 1 = 0 \\ z = 0 \end{bmatrix}$ LimitPoints(rc. R. coefficient = real): Display(%, R): [regular_semi_algebraic_system] $\begin{cases} x = 0 \\ y - 1 = 0 \end{cases}$ > RegularChainBranches(rc. R. [z]); $\left[\left[z = T^{2}, y = \frac{1}{2}T^{5}\left(-T^{5} + 2 \operatorname{RootOf}\left(-Z^{2} + 1\right)\right), x = -\frac{1}{8}T^{2}\left(-T^{20} + 6T^{15}\operatorname{RootOf}\left(-Z^{2} + 1\right) + 10T^{10} + 8\right)\right], \left[z = T^{2}, y = -\frac{1}{2}T^{2}\left(-T^{20} + 6T^{15}\operatorname{RootOf}\left(-Z^{2} + 1\right) + 10T^{10} + 8\right)\right], z = T^{2}, y = -\frac{1}{2}T^{2}\left(-T^{20} + 6T^{15}\operatorname{RootOf}\left(-Z^{2} + 1\right) + 10T^{10} + 8\right)\right]$ + 2 RootOf $(_Z^2 + 1)$, $x = \frac{1}{8}T^2 (T^{20} + 6T^{15} RootOf (_Z^2 + 1) - 10T^{10} - 8)$, $[z = T, y = T^5 + 1, x = -T (T^{10} + 2T^5 + 1), x = -T (T^{10} + 2T^5 + 1)]$ RegularChainBranches(rc, R, [z], coefficient = real); $\left[\left[z = T, y = T^{5} + 1, x = -T(T^{10} + 2T^{5} + 1)\right]\right]$ E 1

1 Introduction

2 The Extended Hensel Construction

3 Yun-Moses Polynomials

4 Lifting the factors

Newton Polynomial

- Let F(x, y) ∈ C[x, y] be square-free, monic in x and let d := deg_x(F).
- The "south-west-most" terms c x^{ex}y^{ey} of F(x, y) satisfy an equation of the form e_x/d + e_y/δ = 1, with δ ∈ Q and form the Newton polynomial F⁽⁰⁾(x, y) which is homogeneous (x, y^{δ/d}) of degree d.

• Let
$$\hat{\delta}, \hat{d} \in \mathbb{Z}^{>0}$$
 such that: $\hat{\delta}/\hat{d} = \delta/d$, $gcd(()\hat{\delta}, \hat{d}) = F(x, y) = G_1^{(0)}(x, y) \cdots G_r^{(0)}(x, y)$

where the $G_i^{(0)}(X,Y) := (X - \zeta_i Y^{\delta/d})^{m_i}$ are the initial factors.

We define the ideal

$$S_k = \langle X^d Y^{(k+0)/\hat{d}}, X^{d-1} Y^{(k+\hat{\delta})/\hat{d}}, \dots, X^0 Y^{(k+d\hat{\delta})/\hat{d}} \rangle, \qquad (1)$$

for k = 1, 2, ...

Algorithm 1: EHC_Lift(F, k)

begin

Compute the Newton polynomial $F^{(0)}$ and $\hat{\delta}, \hat{d}$; Compute $G_i^{(0)} = (X - \zeta_i Y)^{m_i}$, with $1 \le i \le r$; Compute the Yun-Moses polynomial $W_i^{(\ell)}$ for $i = 1, \dots, r$ and $\ell = 0, \dots, d-1$: for j = 1, ..., k do Compute $\Delta F^{(j)}(X, Y) := F(X, Y) - \prod_{i=1}^{r} G_i^{(j-1)}$ mod \bar{S}_{i+1} ; Compute $\Delta G_{i}^{(j)} = \sum_{\ell=0}^{m-1} W_{i}^{(\ell)} f_{\ell}^{(j)}$, for $i = 1, \dots, r$; Let $G_i^{(j)} = G_i^{(j-1)} + \Delta G_i^{(j)}$ for $i = 1, \dots, r$; return $G_1^{(k)}, \ldots, G_r^{(k)}$:

Algorithm 2: EHC_Lift(F, k)

begin

Compute the Newton polynomial $F^{(0)}$ and $\hat{\delta}, \hat{d}$; Compute $G_i^{(0)} = (X - \zeta_i Y)^{m_i}$, with $1 \le i \le r$; Compute the Yun-Moses polynomial $W_i^{(\ell)}$ for $i = 1, \dots, r$ and $\ell = 0, \cdots, d-1$: for j = 1, ..., k do Compute $\Delta F^{(j)}(X,Y) := F(X,Y) - \prod_{i=1}^{r} G_{i}^{(j-1)} \mod \overline{S}_{i+1};$ Compute $\Delta G_i^{(j)} = \sum_{\ell=0}^{m-1} W_i^{(\ell)} f_\ell^{(j)}$, for $i = 1, \cdots, r$; Let $G_i^{(j)} = G_i^{(j-1)} + \Delta G_i^{(j)}$ for $i = 1, \dots, r$; return $G_1^{(k)}, \ldots, G_r^{(k)}$:

Algorithm 3: EHC_LiftF, k

begin

Compute the Newton polynomial $F^{(0)}$ and $\hat{\delta}, \hat{d}$; Compute $G_i^{(0)} = (X - \zeta_i Y)^{m_i}$, with $1 \le i \le r$; Compute the Yun-Moses polynomial $W_i^{(\ell)}$ for $i = 1, \dots, r$ and $\ell = 0, \cdots, d-1$: for j = 1, ..., k do Compute $\Delta F^{(j)}(X, Y) := F(X, Y) - \prod_{i=1}^{r} G_{i}^{(j-1)}$ mod \bar{S}_{i+1} ; Compute $\Delta G_i^{(j)} = \sum_{\ell=0}^{m-1} W_i^{(\ell)} f_\ell^{(j)}$, for $i = 1, \cdots, r$; Let $G_i^{(j)} = G_i^{(j-1)} + \Delta G_i^{(j)}$ for $i = 1, \dots, r$; return $G_1^{(k)}, \ldots, G_r^{(k)}$:

1 Introduction

2 The Extended Hensel Construction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

3 Yun-Moses Polynomials

4 Lifting the factors

5 Experimentation

Yun-Moses Polynomials (1/3)

Assume $G_1(X, Y), \ldots, G_r(X, Y)$ are homogeneous polynomials. Regarding them as polynomials of $\mathbb{C}\langle Y \rangle [X]$, further assume

$$gcd((\hat{G}_i, \hat{G}_j)) = 1$$
 for $i \neq j$,

Let $d := \deg(G_1(X, Y) \dots G_r(X, Y))$. Then, for each $\ell \in \{0, \dots, d-1\}$, there exists a unique set of polynomials $\{W_i^{(\ell)}(X, Y) \in \mathbb{C}\langle Y \rangle [X] \mid i = 1, \dots, r\}$ satisfying

$$W_1^{(\ell)}\left(\frac{G_1\cdots G_r}{G_1}\right)+\cdots+W_r^{(\ell)}\left(\frac{G_1\cdots G_r}{G_r}\right)=X^\ell Y^{d-\ell},$$

where $\deg_X(W_i^{(\ell)}(X,Y)) < \deg_X(G_i(X,Y)), i = 1, ..., r.$

Yun-Moses Polynomials (2/3)

Key observation

Let us fix $i := \lambda$. Writing $W_{\lambda}^{(\ell)} = \sum_{j=0}^{m_{\lambda}-1} w_{\lambda,j}(\hat{Y}) X^{j}$, we have

$$\sum_{j=0}^{m_{\lambda}-1} \frac{\partial^{\mu}}{\partial X^{\mu}} \left(X^{j} \frac{F^{(0)}}{G_{\lambda}^{(0)}} \right) \Big|_{X = \zeta_{\lambda} \hat{Y}} w_{\lambda,j}^{(\ell)} = \frac{\partial^{\mu}}{\partial X^{\mu}} (X^{\ell} \hat{Y}^{d-\ell}) \Big|_{X = \zeta_{\lambda} \hat{Y}} .$$

where ζ_{λ} is a root of $F^{(0)}(X,1)$ and m_{λ} is its multiplicity

Consequences

- This is a system of linear equations $\mathcal{W}_{\lambda}\mathcal{X}_{\lambda}^{(\ell)} = \mathcal{B}_{\lambda}^{(\ell)}$.
- The matrix \mathcal{W}_{λ} is a Wronskian matrix.

Yun-Moses Polynomials (3/3)

The inverse of W_{λ} is $W_{\lambda}^{-1} = M_2 M_1$ where M_1 and M_2 are square matrices of order m_{λ} , defined as follows. The matrix M_1 writes $M_1 = M_{1(m_{\lambda}-1)} \cdots M_{11} M_{10}$ such that, for $j = 0, \cdots, m_{\lambda} - 1$, we have

$$M_{1j} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & \frac{1}{j!f} & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & \binom{j+1}{j} \frac{-f'}{f} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \binom{m_{\lambda}-1}{f} \frac{-f^{(m_{\lambda}-1-j)}}{f} & 0 & \cdots & 1 \end{bmatrix}$$

Hence, the matrix M_{1j} differs from the identity matrix only in its (j+1)-th column. The matrix M_2 is an upper triangular matrix $M_2 = [\gamma_{j,k}]$ with $\gamma_{j,k} = (-1)^{j+k} \binom{k}{k-j} \zeta_{\lambda}^{k-j} \hat{Y}^{k-j}$ if $j \leq k$ and $\gamma_{j,k} = 0$ if j > k, for $j, k \in \{0, 1, \ldots, m_{\lambda} - 1\}$.

Matrix M_1

Matrix M_2

Matrix $\mathcal{W}_i^{-1} = M_2 M_1$

Complexity Result:

Theorem 1:

One can compute all the Yun-Moses polynomials $W_i^{(\ell)}$ $(0 \le \ell \le d - 1, 1 \le i \le r)$, within

- $\mathcal{O}(d^3)$ operations in \mathbb{C} , or
- $\mathcal{O}(d^3 \operatorname{M}(d))$ operations in the field of coefficients of F(X, Y).

Plan

1 Introduction

2 The Extended Hensel Construction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3 Yun-Moses Polynomials

4 Lifting the factors

6 Experimentation

Algorithm 4: EHC_LiftF, k

begin

Compute the Newton polynomial $F^{(0)}$ and $\hat{\delta}, \hat{d}$: Compute $G_i^{(0)} = (X - \zeta_i Y)^{m_i}$, with $1 \le i \le r$; Compute the Yun-Moses polynomial $W_i^{(\ell)}$ for $i = 1, \dots, r$ and $\ell = 0, \cdots, d-1$: for j = 1, ..., k do Compute $\Delta F^{(j)}(X,Y) := F(X,Y) - \prod_{i=1}^{r} G_i^{(j-1)} \mod \overline{S}_{j+1};$ Compute $\Delta G_i^{(j)} = \sum_{\ell=0}^{m-1} W_i^{(\ell)} f_\ell^{(j)}$, for $i = 1, \cdots, r$; Let $G_i^{(j)} = G_i^{(j-1)} + \Delta G_i^{(j)}$ for $i = 1, \dots, r$; return $G_1^{(k)}, \ldots, G_r^{(k)};$

Goal

$$\Delta F^{(j)}(X,Y) := F(X,Y) - \prod_{i=1}^{r} G_{i}^{(j-1)} \mod \bar{S}_{j+1}$$

Oobservation

•
$$G_i^{(j-2)} := G_i^{(0)} + \Delta G_i^{(1)} + \dots + \Delta G_i^{(j-2)}$$

• $G_i^{(j-1)} := G_i^{(0)} + \Delta G_i^{(1)} + \dots + \Delta G_i^{(j-2)} + \Delta G_i^{(j-1)}$

Hence, we aim at recycling terms in the product $\prod_{i=1}^{r} G_{i}^{(j-1)}$ mod \overline{S}_{j+1} computed from previous iterations.

Notations

$$\begin{array}{l} \bullet \ P_2^{k+1} := \prod_{i=1}^2 G_i^{(k)} \mod \overline{S}_{k+1} \\ \bullet \ P_j^{k+1} := \prod_{i=1}^j G_i^{(k)} \mod \overline{S}_{k+1}, \ \text{for } j = 3, \dots, r. \end{array}$$

We want

$$P_r^{k+1} = \prod_{i=1}^r G_i^{(k)} \mod \overline{S}_{k+2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Computing $\Delta F^{(j)}(X, Y)$ Initially define: $P_j^1 \equiv G_1^{(0)} \cdots G_j^{(0)} \mod S_2$, for $j = 2, \cdots, r$. and recursively compute:

$$P_{2}^{k+1} = P_{2}^{k} + (\Delta_{1}^{0}\Delta_{2}^{k} + \Delta_{1}^{k}\Delta_{2}^{0})\tilde{Y}^{k} + (\Delta_{1}^{1}\Delta_{2}^{k} + \dots + \Delta_{1}^{k}\Delta_{2}^{1})\tilde{Y}^{k+1} = \prod_{i=1}^{2} G_{i}^{(k)}$$

2

Now for $j = 3, \ldots, r$, define

$$P_j^k \equiv P_{j-1}^k G_j^{(k-1)} \mod S_{k+1}$$

and assume q_j^{k+1} is recursively given by

 $q_j^{k+1} = \rho_{j-1}^{k+1,0} \Delta_j^k + q_{j-1}^{k+1} \Delta_j^0 \quad \text{with} \quad q_2^{k+1} = \Delta_2^k \Delta_1^0 + \Delta_2^0 \Delta_1^k.$ (2)

where $p_{j-1}^{k+1,0}$ is the coefficient of $ilde{Y}^0$ in P_{j-1}^{k+1} . We can compute

$$P_{j}^{k+1} = P_{j}^{k} + q_{j}^{k+1} \tilde{Y}^{k} + \left(p_{j-1}^{k+1,1} \Delta_{j}^{k} + \dots + p_{j-1}^{k+1,k+1} \Delta_{j}^{0}\right) \tilde{Y}^{k+1} = \prod_{i=1}^{j} G_{i}^{(k)}$$

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ● ● の Q ()・

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● ● ● ● ●

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - のへで

▲□▶▲圖▶▲圖▶▲圖▶ ▲ ■ - のへの

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

▲ロト ▲圖ト ▲画ト ▲画ト 三画 - のへで

(ロ・ドロ・ドロ・ドロ・ 日) のくの

(ロ) 《母) 《母) 《臣) 《日)

Complexity result:

Theorem 2:

he k-th iteration of Step 9 in the Algorithm 4 runs within

- O(k dM(d)) operations in ℂ,
- \$\mathcal{O}(k dM(d)^2)\$ operations in the field of coefficients of \$F(X, Y)\$.

Comparative complexity results

Theorem 3:

Our enhancement of the EHC computes all the branches in $\mathcal{O}(k^2 d \operatorname{M}(d))$ operations in \mathbb{C} , using a linear lifting scheme.

Kung-Traub, 1987

The first k iterations of Newton-Puiseux on an input bivariate polynomial of degree d computes all branches within

- $\mathcal{O}(d^2 k \operatorname{M}(k))$ operations in \mathbb{C} using a linear lifting scheme (Theorem 5.2 in their paper)
- O(d² M(k)) operations in C using a <u>quadratic lifting scheme</u> (Corollary 5.1 in their paper)

D. V. Chudnovsky and G. V. Chudnovsky, 2015

The latter estimate reported by Kung and Traub is improved to $O(d^2 k)$ operations in \mathbb{C} for computing all the branches.

Remark

A quadratic lifting scheme for the EHC is work in progress.

Plan

1 Introduction

2 The Extended Hensel Construction

3 Yun-Moses Polynomials

4 Lifting the factors

Experimentation for lifting

The y axis is in square-root scale.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Experimentation for factoring (1/2)

Ex	MD	KT Lin		KT Quad		EHCWM			EHCEEA	
		KT10	KT20	KT10	KT20	EHC10	YM1	EHC20	EHC10	YM2
1	5	2.22	18.6	4.93	4.91	0.48	0.22	0.73	0.90	0.21
7	4	5.60	65.8	0.56	0.58	0.22	0.14	0.23	0.34	0.13
8	4	14.9	230	1.25	1.25	0.23	0.13	0.28	0.36	0.12
9	3	5.53	114	1.51	1.56	0.30	0.11	0.39	0.88	0.10
10	3	2.71	42.0	0.28	0.63	0.16	0.08	0.20	0.32	0.12
11	3	0.46	2.34	0.21	0.21	0.16	0.08	0.17	0.26	0.12
12	3	0.50	6.86	0.28	0.32	0.16	0.08	0.18	0.30	0.12
13	4	0.86	10.9	0.50	0.48	0.26	0.15	0.28	0.46	0.24
14	4	3.21	34.8	0.69	0.71	0.26	0.15	0.34	0.52	0.24
15	6	27.6	535	4.85	4.85	0.64	0.42	0.82	2.05	1.08
16	7	45.6	836	8.45	9.91	0.64	0.43	0.92	2.33	1.74

Table: Comparing EHC versus Kung-Traub's method

Experimentation for factoring (2/2)

Ex	MD	KT Lin		KT Quad		EHCWM			EHCEEA	
		KT10	KT20	KT10	KT20	EHC10	YM1	EHC20	EHC10	YM2
17	7	145	∞	23.4	23.2	0.78	0.43	3.37	4.12	1.77
19	4	0.14	0.16	0.16	0.14	0.39	0.26	0.45	0.51	0.15
20	4	2.79	7.98	0.77	0.82	0.26	0.15	0.29	0.50	0.24
21	4	8.58	143	1.96	1.93	0.23	0.12	0.31	0.47	0.16
24	5	2.90	24.8	1.11	1.11	0.26	0.15	0.35	0.49	0.17
25	7	1.83	9.45	0.90	1.00	0.46	0.31	0.50	0.73	0.42
26	8	2.35	12.3	3.09	3.29	0.66	0.53	0.74	2.18	1.80
27	8	60.8	2876	23.1	27.1	0.77	0.53	1.20	2.31	1.28
28	9	215	∞	73.8	123	1.88	1.03	2.11	7.03	4.92
30	17	∞	∞	∞	∞	39.8	6.70	41.3	53.8	16.5
31	32	∞	∞	∞	∞	599	24.9	∞	∞	∞
32	33	∞	∞	∞	∞	224	25.0	∞	∞	∞

Table: Comparing EHC versus Kung-Traub's method

Concluding remarks

- We have shown that the EHC requires only linear algebra and univariate polynomial arithmetic
- We have derive complexity estimates for the EHC which are comparable to those of Kung-Traub's method in <u>linear lifting</u> scheme
- Experimentally, this enhanced EHC is competitive and sometimes outperforms Kung-Traub's method in its <u>linear and</u> quadratic lifting schemes.

- A quadratic lifting scheme for the EHC is work in progress.
- Source code and experimental data are available in the PowerSeries library from www.regularchains.org.